同向双螺杆挤出机固体输送段的影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
啮合同向双螺杆挤出机由于其较为优异的输送能力、自洁作用和混炼性能,在聚合物加工过程中起到越来越重要的作用,而目前对双螺杆挤出过程的研究大多集中在熔融段和熔体输送段,对固体输送段的研究较少,尤其是加工过程中输送量和功耗的影响因素研究,缺乏较为实用的固体输送方程。
     本文通过响应曲面实验设计,选择粒料、粉料、长纤维填充物料和无机粉体高填充物料等四种典型物料进行固体输送实验,选择固体输送量和主机功率消耗为目标函数,选择操作参数、螺纹元件结构参数、物料参数等作为影响因素,进行实验研究和结果分析,得到了每种物料在不同工况下的固体输送方程和功耗方程,分析各个因素对目标函数的影响大小和各因素之间的交互影响。
     运用数学建模方法,基于实验对四种物料所建立的Φ34单导程构型固体输送方程和变导程构型固体输送方程,均具有高度的准确性,能够很好的预测实际固体输送量和功耗,各方程的预测准确性均达到90%以上,部分方程预测准确性可达95%以上。
     研究结果表明,在粒料的单导程构型固体输送当中,影响功耗和输送能力的最主要因素是螺旋升角和物料粒径的大小。在固体输送段使用变导程构型,大多数工况都产生了固相堵塞,所以对于粒料的输送,不宜采取变导程构型。对于粉料的固体输送,无论是使用单导程构型还是变导程构型,主机转速对输送量的作用最为明显。在单导程构型粉体物料输送中,螺旋升角对功耗影响最大,在变导程构型输送中,主机转速对功耗影响最大。在同样的工况下,单导程构型的输送能力更强,且功耗更小。填充长纤维的物料其输送具有自身的特点,单导程输送中,螺旋升角对功耗的影响最大,而螺杆填充率对输送量的影响最大;使用变导程构型输送,主机转速对螺杆的功耗和输送量影响最大。在同样的工况下,变导程构型的输送能力更强,功耗更大。在单导程构型输送无机粉体高填充物料过程中,主机转速对功耗的影响最大,螺杆填充率对输送量的影响最大;在变导程构型输送时,主机转速对功耗和输送量的影响均为最大。在同样工况下,变导程构型的输送能力更强,功耗更大。
Co-rotating twin screw extruders are playing more important role in polymer processing for their excellent transmission capacity, self-cleaning and mixing property. At present, there are a lot of literatures on melting and melting convey, but few articles on the stuty of solid convey especially on factors of output and power, lack of equation in solid convey zone.
     In this study, RSM(Response surface methodolygy) experiment were designed to form equation of solid convey, in the experiment design, solid pellets, powders, long-fiber materials and high inorganic powder fillers are were used, output of solid convey and power were choosed as objective functions while operating parameters, structural patameters of screw element and materials paratemeters were choosed as effective factors. After experiments analysis and research, quadratic multinomial equations of output and power equations were built, from these equations, effect of main factors and their corresponding relationships were discussed.
     Based on experiment studies, solid convey equations onφ34 single lead configuration and vary lead configurations of four materials were built by mathematical molding method. These equations were highly accurate and could excellently predicted the practical output and power consumption, forecast accuracy of all these equations are more than 90% and some of them could be more than 95%.
     From results of research, some conclusions can be derived:in the solid pellets convey, when using single lead configuration, the main factors on power and output were respectly helix angle and diameter of pellets, when using vary lead configuration, solid block would appear, so vary lead configuration were not suitable in solid pellets convey; in powder convey, whatever using two configurationss, the main factor on output was rotating speed, while the main factors on power were respectively helix angle of screw elements and rotating speed, it showed that compared to vary lead configuration, single lead configuration had harder transmission capacity and lower power consumption; in convey of long-fiber materials, when using single lead configuration, the main factors on output and power were respectively filling rate and helix angle of screw element, when using vary lead configuration, main factors on output and power were both rotating speed, compared to single lead configuration, vary lead configuration had harder transmission and higher power consumption; in convey of high inorganic powder fillers, when using single lead configuration, the main factors on output and power were repectively filling rate of screw elements and rotating speed, when using vary lead configuration, main factors on output and power were both rotating speed, compared to single lead configuration, vary lead configuration had harder transmission capacity and higher power consumption.
引文
[1]Darnell, Mol. SPE,1959, (12):20.
    [2]Schneider. Uber eine neue Methode zur kinetischen Untersuchung der Perlpolymerisation[J]. Die Makromolekulare Chemie,1969,125(1):213~219.
    [3]Zehev,Tadmor. Melting in plasticating extuders theory and experiments[J]. Polymer Engineering & Science,1967,7(3):198~217.
    [4]Chung C I. Plasticating single-screw exrtusion theory[J]. Polymer Engineering & Science,1971, 11(2):93~98.
    [5]W Tedder. SPE,1971,26(5):32.
    [6]E. Broyer,Tadmor E B A Z. Solids conveying in screw extruders part Ⅰ:A modified isothermal model[J]. Polymer Engineering & Science,1972,12(1):12~24.
    [7]E Broyer, Tadmor. Solids conveying in screw extruders part Ⅱ:Non isothermal model[J]. Polymer Engineering & Science,1972,12(5):378~386.
    [8]Fuhua Zhu, Liqi Chen. Studies on the theory of single screw plasticating extrusion. Part Ⅰ:A new experimental method for extrusion[J]. Polymer Engineering & Science,1991,31(15):1113~1116.
    [9]Shizeng Fang,Fuhua Zhu, Liqi Chen. Studies on the theory of single screw plasticating extrusion. Part Ⅱ:Non-plug flow solid conveying[J]. Polymer Engineering & Science,1991,31(15):1117~1122.
    [10]朱复华.单螺杆塑化挤出理论的研究[J].高分子材料科学与工程,1986,(3):1~7.
    [11]江顺亮,朱复华.非塞流固体输送理论的简化 [J].中国塑料,1995,9(6):60~63.
    [12]B. Maxwell, G G.Gogos, Structure-property modifications by fabrication operations[J]. Polymer Engineering and Science,1964,4(3):165~168.
    [13]N. M. Smith, J Parnaby. Bulk density versus hydrostatic pressure characteristics of plastics in powder and pellet form[J]. Polymer Engineering & Science,1980,20(12):830~833.
    [14]Friehe C A. Static coefficients of friction for polyethylenes[J]. Polymer Engineering & Science, 1966,6(2):135~141.
    [15]Kun S. Hyun, Mark A Spalding. Bulk density of solid polymer resins as a function of temperature and pressure[J]. Polymer Engineering & Science,1990,30(10):571~576.
    [16]D.Q.Qiu P Prentice. Influence of pressure on bulk density of polymer solid granules at different temperatures[J]. Advances in Polymer Technology,1998,17(1):23~26.
    [17]Chii-Guang Hwang James M. McKelvey. Solid bed compaction and frictional drag during melting in a simulated plasticating extruder[J]. Advances in Polymer Technology,1989,9(3):227~251.
    [18]C. I. Chung, W. J. Hennessey, M. H. Tusim. Frictional behavior of solid polymers on a metal surface at processing conditions [J]. Polymer Engineering & Science,1977,17(1):9~20.
    [19]Mark A. Spalding, Donald E. Kirkpatrick, Kun S. Hyun. Coefficients of dynamic friction for low density polyethylene[J]. Polymer Engineering & Science,1993,33(7):423~430.
    [20]Mark A. Spalding, Kun S. Hyun, Steven R. Jenkins and Donald E. Kirkpatrick. Coefficients of dynamic friction and the mechanical melting mechanism for vinylidene chloride copolymers[J]. Polymer Engineering & Science,1995,35(23):1907~1916.
    [21]E. Gamache, P. G. Lafleur, C. Peiti and B. Vergnes. Measurement of the coefficient of dynamic friction at extrusion processing conditions[J]. Polymer Engineering & Science,1999,39(9):1604~ 1613.
    [22]江顺亮,朱复华.单螺杆挤出全过程三段七区模型的计算机模拟及软件研制[J].中国塑料,2003,17(1):100~105.
    [23]邢应生,朱复华,江顺亮.单螺杆挤出过程固体输送段的数值模拟[J].中国塑料,2004,18(10):83~87.
    [24]瞿金平.聚合物塑化挤出新概念[J].华南理工大学学报,1992,20(4):1~4.
    [25]田雨.动态挤出机固体输送理论的研究[硕士].华南理工大学,1996.
    [26]石宝山,瞿金平等.振动力场作用下的单螺杆挤出机固体输送理论[J].化工学报,2006,57(11):2568~2576.
    [27]张琳,瞿金平李.振动力场强化单螺杆挤出固体输送的离散单元法模拟[J].中国机械工程,2006,17(22):2406~2410.
    [28]韩丽燕,张宁,瞿金平.振动力场对高密度聚乙烯固体物料输送压力的影响[J].塑料科技,2009,37(1):31~33.
    [29]Buce A Davis. Grooved Feed Single Screw Exrtuder-improving Productivity and Reducing Viscous Heating Effects[J]. Polymer Engineering & Science,1998,38(7):1199~1204.
    [30]Sikora J W. The Effect of the Feed Section Groove Tape Angle on the Performance of a Single-screw Extruder[J]. Polymer Engineering & Science,2001,41(9):1636~1643.
    [31]唐广利,贾明印.1KV挤出机新型固体输送理论研究[J].中国塑料,2007,21(2):90~95.
    [32]L.P.B.M.Janssen. Twin Screw Extrusion[M]. ELSEVIER Scientific Dublishing Company:New york,1978.
    [33]J.L.White. Twin Screw Extrusion-Technogy and Principles[M]. Oxford University Press:New york,1991.
    [34]耿孝正,张沛.塑料混合及设备[M].中国轻工业出版社:1993.
    [35]C. Carrot, J. Guillet, J. F. May and J. P. Puaux. Modeling of the conveying of solid polymer in the feeding zone of intermeshing co-rotating twin screw extruders[J]. Polymer Engineering & Science,1993, 33(11):700~708.
    [36]H. Potente. A Physico-Mathematical Model for Solids Conveying in Co-Rotating Twin Screw Extruders[J]. International Polymer Processing,1996,4(1):29~41.
    [37]White J L. Staved feed solid conveying in single & twin screw extruder [A]. S.P.E[C].
    [38]刘廷华.双螺杆挤出可视化实验研究与非充满固体输送及熔融理论研究[D].北京:北京化工大学,1995.
    [39]徐绍宏.同向啮合双螺杆挤出的固体输送理论的研究[D].北京:北京化工大学,1998.
    [40]郭奕崇,朱复华,刘颖,阎宝瑞.同向双螺杆挤出固体输送现象的描述与分析[J].北京化工大学学报,1998,25(2):41~45.
    [41]郭强,耿孝正,张沛.同向啮合双螺杆挤出过程固体输送可视化研究—螺纹元件中的粒料输送[J].中国塑料,1998,12(3):82~93.
    [42]张沛.同向啮合双螺杆固体输送特性的可视化研究—螺纹元件的粉料输送[J].中国塑料,1999,13(5):90~95.
    [43]Jiang Q. Molding flow, melting, solid conveying and global behavior in intermeshing counter rotating twin screw extruders. Akron:University of Akron,2008.
    [44]周凤佳.基于移动最小二乘响应曲面的注塑件工艺优化.[D]上海:上海交通大学,2008.
    [45]Yan A G R. Use of Box Behnken design of experiments for the adsorption of verofix red using bionpoly[J]. Bioproc Engineering,1998,15(18):463~466.
    [46]Gcesls B C. A fast efficient response surface approach for stracturareliability problem[J]. Structural Safety,1990, (7):57~66.
    [47]佟晓丽,赵国藩.一种与结构可靠度分析几何法相结合的响应曲面祛[J].土木工程学报,1997,30(4):53~57.
    [48]Ming-Chih Huang C T. The effective factors in the warpage problem of an injection-molded part with a thin shell feature[J]. Journal of Materials Processing Technology,2001, (110):1~9.
    [49]朱昱,黄国立.基于遗传算法的注塑工艺优化设计[J].机械设计与制造工程,2001,(1):59~63.
    [50]Prasad K.. Development of a hybrid neural network system for prediction of process parameters in injection moulding[J]. Journal of Materials Processing Technology,2001,21(5):15~18.
    [51]B.Ozcelik.. Comparison of the warpage optimization in the plastic injection molding using ANOVA,neural network model and genetic algorithm[J]. Journal of Materials Processing Technology, 2006, (171):437~445.
    [52]Hasan Kurtaran.. Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm[J]. Journal of Materials Processing Technology,2005, (169):314~319.
    [53]郑占明,刘春太,申长雨.基于遗传算法的注塑模注塑速率优化[J].工程塑料应用,2002,30(7):25~28.
    [54]周凤佳,汤禹成,周雄辉.基于移动最小二乘响应曲面的挤压件毛坯优化[J].锻压技术,2007,32(5):77~85.
    [55]王利霞,杨扬,王蓓,申长雨.注塑成型工艺参数对制品体收缩率变化的影响及工艺参数优 化[J].高分子材料科学与工程,2004,20(2):173~176.
    [56]张志莲,江波.考虑因子之间交互作用优化注射成型工艺参数[J].高分子材料科学与工程,2006,22(2):30~34.
    [57]张玲利,吴大鸣.基于中心组合实验设计的注塑成型过程优化[J].塑料工业,2007,35(6):221~223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700