汽车用先进高强度钢板制件拉毛与回弹缺陷模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进高强度钢板(Advanced High Strength Steels sheet, AHSSs)因汽车工业的高速发展而得到广泛使用。然而因其特有的性质(高强度、低塑性),在利用板料冲压成形技术生产先进高强度钢板汽车制件时,容易产生拉毛和回弹等缺陷,造成大量废品,并降低了模具的使用寿命。
     在冲压成形先进高强度钢板制件过程中,板料和模具(几何结构、材质、力学性能和表面形貌等),以及成形工艺(冲压力、冲压速度和润滑等)等因素,对成形件表面拉毛以及回弹的影响非常复杂。通过对拉毛和回弹的机理进行理论分析,建立合适的评价方法;采用有限元分析的方法,对影响拉毛和回弹现象的因素和发生位置进行了分析和预测。
     (1)对拉毛和回弹的发生机理及其影响因素进行了理论分析和研究,根据主要影响因素建立了相应的评价方法,最终模拟研究的结果表明所建立的评价方法是合理的。
     (2)利用对汽车覆盖件和结构件冲压成形所用的典型工艺进行分析,并参照国际板料成形数值模拟会议(NUMISHEET2011)所给的benchmark4模型,建立了一个U形通道成形模型,利用该模型对双相钢DP780在成形后的拉毛和回弹现象进行了研究。
     (3)对于成形件表面拉毛方面,采用了商用有限元软件Abaqus6.10中的动力显式程序Abaqus/Explicit,结合MATLAB数值计算方法,对得到的历史输出结果进行计算,得到冲压成形中的关键因素接触压力和滑动距离对拉毛的影响规律,发现拉毛多发生在凹模圆角起始位置,随着冲压行程的增加,接触压力趋于平缓;且对圆形凹模圆角,随着圆角半径增大,极限接触压力逐渐减小。根据分析结果对U行通道成形模具和成形工艺进行了优化,得到能减轻成形件表面拉毛的工艺方案。
     (4)U形通道成形回弹方面,使用DYNAFORM5.6对回弹量进行分析,对比了有无预应变对回弹的影响,同时对压边圈压边力和板料厚度对回弹的影响规律进行了研究;其中材料在施加预应变后,U形通道回弹量随之增加,且压边力增大后能显著减小回弹,而板料厚度对回弹的影响较小。
Advanced High Strength Steels sheet(AHSSs) are widely used due to the rapid development of automobile industry. However, to produce automotive parts with advanced high strength steel by sheet metal forming technology, because of its unique properties (high strength, low ductility)many defects are observed, such as galling and spring-back, which resulted in a large number of discarded products, and reduced the life of the die.
     In the process of stamping of advanced high strength steel parts, sheet metal and die (geometric structure, materials, mechanical properties and surface morphology, etc.), and the forming process (stamping press, punch speed and lubrication, etc.) and other factors, the influence on galling of parts surface and spring-back is very complicated. To analyze the mechanism and control measures of galling and spring-back, theoretical analysis are used, and the establishment of appropriate evaluation criteria, using the method of finite element analysis, the factors and the location of the galling and spring-back phenomenon are analyzed and forecasted.
     (1) The mechanism and influence factors of the galling and spring-back are analyzed and researched, the evaluation criteria were also established according to the main factors, the final simulation results of the study shows that the evaluation criteria are reasonable.
     (2) The typical forming process of automobile panels and structural members are analyzed, the model of benchmark4in international conference and workshop on numerical simulation of3D sheet metal forming process (NUMISHEET2011)was set as a reference, a U-shaped channel forming model was built at last, to study the galling and spring-back of dual-phase steel DP780after stamping.
     (3) During investigating the galling on the surface of forming parts, the dynamic explicit elastic plastic program-Abaqus/Explicit in commercial finite element code Abaqus6.10had been used, and MATLAB numerical calculation method was used to analyze the history and field outputs of numerical simulation, got the key in stamping factors--contact pressure and sliding distance on the effects of galling,the results shows that galling always developed in the starting position of the die fillet, with the increase of the punching stroke, the contact pressure tend towards stability; towards circular fillet, with the radius increasing, limit contact pressure gradually decreases. U-shaped channel forming die and forming process had been optimized according to the results of the analysis, the process scheme which can reduce the galling on forming surface are got.
     (4) On the spring-back of U-shaped channel forming,DYNAFORM5.6was used to analyze spring-back quality, comparative analysis was made to check the spring-back with and without pre-strain applied to the blank. The law of blank holder force and sheet thickness on the spring-back were also researched; due to the pre-strain on the blank material, the spring-back on U-shaped channel increases. When the blank holder force increases,which can significantly reduce the spring-back amounts. The impacts of blank thickness on the spring-back are smaller than blank holder force.
引文
[1]苏凯,余际星,徐建兵.新型汽车用高强度钢的应用现状与发展趋势[J].钢铁钒钛,2006(4):53-57.
    [2]赵艳君,胡治流,李逸泰.汽车用高强度钢板现状和发展趋势[J].广西大学学报(自然科学版),2009,34(z1):418-420.
    [3]江海涛,唐荻,米振莉.汽车用先进高强度钢的开发及应用进展[J].钢铁研究学报,2007(8):1-6.
    [4]张贵杰,宋卓霞.汽车用高强度高塑性TWIP钢的开发研究[J].中国科技产业,2009(3):119-120.
    [5]University Mississippi State. Advanced High Strength Steel Project[R].Center for Advanced Vehicular Systems,2010.
    [6]Wagoner Robert H. Report:Advanced High Strength Steel Workshop[R]. Arlington, Virginia, USA:2006.
    [7]Eren Billur M. S., Prof. Dr-IngTaylanAltan. Challenges in Forming Advanced High Strength Steels [R]. Stuttgart:The Ohio State University and Engineering Research Center for Net Shape Manufacturing,2010.
    [8]董瀚,曹文全,时捷,等.第3代汽车钢的组织与性能调控技术[J].钢铁,2011(06):1-11.
    [9]Han Heung Nam, Oh Chang-Seok, Kim Gyosung, et al. Design method for TRIP-aided multiphase steel based on a microstructure-based modelling for transformation-induced plasticity and mechanically induced martensitic transformation [J]. Materials Science and Engineering:A, 2009,499(1-2):462-468.
    [10]王瑞珍,罗海文,董瀚.汽车用高强度钢板的最新研究进展[J].中国冶金,2006(9):1-9.
    [11]中国汽车工业协会.2011年世界各国家(地区)汽车产量明细[EB/OL].http://www.caam.org.cn/,
    [12]王利,朱晓东,张丕军,等.汽车轻量化与先进的高强度钢板[J].宝钢技术,2003(05):53-59.
    [13]康永林,陈贵江,朱国明,等.新一代汽车用先进高强钢的成形与应用[J].钢铁,2010(08):1-6.
    [14]苏连锋.汽车用先进高强度钢开发和研究的进展[J].钢铁研究,2009(05):58-62.
    [15]马鸣图,Shi M. F.先进的高强度钢及其在汽车工业中的应用[J].钢铁,2004(07):68-72.
    [16]WorldAutoSteel. http://www.worldautosteel.org/Projects.aspx,
    [17]Kim Hyung-Ju, McMillan Colin, Keoleian Gregory A., et al. Greenhouse Gas Emissions Payback for Lightweighted Vehicles Using Aluminum and High-Strength Steel [J]. Journal of Industrial Ecology,2010,14(6):929-946.
    [18]EDAG AG. FutureSteelVehicle-Overview Report [M/OL]. http://www.worldautosteel.org/Projects/Future-Steel-Vehicle.aspx.
    [19]Schedin Erik. Galling mechanisms in sheet forming operations [J]. Wear,1994,179(1-2):123-128.
    [20]Schedin E., Lehtinen B. Galling mechanisms in lubricated systems:A study of sheet metal forming [J]. Wear,1993,170(1):119-130.
    [21]E van der Heide, D J Schipper. Galling initiation due to frictional heating [J]. Wear, 2003,254(11):1127-1133.
    [22]Gaard A., Krakhmalev P., Bergstrom J. Wear Mechanisms in Galling:Cold Work Tool Materials Sliding Against High-strength Carbon Steel Sheets [J]. Tribology Letters,2009,33:45-53.
    [23]Gaard A., Krakhmalev P., Bergstrom J., et al. Galling resistance and wear mechanisms-cold work tool materials sliding against carbon steel sheets [J]. Tribology Letters,2007,26:67-72.
    [24]Cora Omer Necati, Koc Muammer. Influence of substrate material on wear performance of stamping dies utilizing a new die wear test system:Transactions of the North American Manufacturing Research Institute of SME,2009 [C].
    [25]Shih H. C., Shi M. F. Die Wear And Coating Galling In Stamping Advanced High Strength Steels [J]. Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition,2011:1-8.
    [26]张正修,马新梅,李欠娃.冲压过程中的摩擦及润滑[J].锻压机械,2001(6):5-8.
    [27]张正修.冲压过程中的摩察、磨损及润滑[J].电子工艺技术,1997(05):33-38.
    [28]陈新平,侯英岢,蒋浩民,等.薄板成形中模具硬度对拉毛影响的实验研究[J].锻压技术,2008,33(2):31-33.
    [29]侯英岢,张卫刚,于忠奇,等.模具硬度对高强度钢板拉毛缺陷的影响规律研究[J].塑性工程学报,2008,15(06):43-47.
    [30]宋启明,张凤,叶立渊.激光热处理技术在汽车模具拉毛缺陷上的应用[J].模具制造,2010(4):9-11.
    [31]黄良国,张懃.后轮罩拉伸模设计制造及其型面激光强化处理[J].模具制造,2010(8):13-16.
    [32]李勇,于忠奇,李淑慧,等.薄板拉深中拉毛缺陷研究进展[J].塑性工程学报,2006,13(4):43-48.
    [33]彭智虎,唐丽文.拉伸类模具的表面拉伤问题及其防止措施[J].模具工业,2006(1):69-71.
    [34]林启权,彭大暑,王志刚,等.高强度钢板方盒形件拉深粘模行为[J].中南大学学报(自然科学版),2009(6):1529-1534.
    [35]Eriksson Jenny, Olsson Mikael. Evaluation of galling resistance for some selected combinations of tool steels/stainless steel sheet materials/lubricants using pin-on-disc testing [Elektronisk resurs][M]//NordTrib 2010. Storforsen,2010.
    [36]Cora Omer Necati, Koc Muammer. Experimental investigations on wear resistance characteristics of alternative die materials for stamping of advanced high-strength steels (AHSS) [J]. International Journal of Machine Tools and Manufacture,2009,49(12-13):897-905.
    [37]Kubota Kunichika, Ohba Takuya, Morito Shigekazu. Frictional properties of new developed cold work tool steel for high tensile strength steel forming die [J]. Wear,2011,271(11-12):2884-2889.
    [38]Eriksson Jenny, Olsson Mikael. Tribological testing of commercial CrN, (Ti,Al)N and CrC/C PVD coatings -- Evaluation of galling and wear characteristics against different high strength steels [J]. Surface and Coatings Technology,2011,205(16):4045-4051.
    [39]周朝政,孔德军,袁锋,等.冷作模具钢表面TD处理强化技术[J].模具工业,2010(4):63-67.
    [40]李泷杲.金属板料成形有限元模拟基础:PAMSTAMP2G (Autostamp) [M]北京航空航天大学出版社,2008.
    [41]Weiss Matthias, Rolfe Bernard F., Dingle Matthew E., et al. The influence of interlayer thickness and properties on spring-back of SPS-(steel/polymer/steel) laminates. [J]. Steel grips, 2004:445-449.
    [42]Mori K., Akita K., Abe Y. Springback behaviour in bending of ultra-high-strength steel sheets using CNC servo press [J]. International Journal of Machine Tools and Manufacture, 2007,47(2):321-325.
    [43]Ahn Kanghwan, Yoo Donghoon, Seo Min, et al. Springback prediction of TWIP automotive sheets[Z]. The Korean Institute of Metals and Materials, co-published with Springer Netherlands, 2009:15,637-647.
    [44]Safaei Mohsen, De Waele Wim, Abdel Wahab Magd, et al. Finite element simulation of springback in TRIP 780 advanced high strength steel,2010[C]. Ghent University. Laboratory Soete.
    [45]Racz Sever-Gabriel, Khan Salim, Chalal Hocine, et al. Prediction of Springback After Draw-Bending Test Using Different Material Models [J]. AIP Conference Proceedings, 2011,1315(1):419-424.
    [46]谢晖.基于CAE仿真的冲压回弹影响因素研究[J].2003.
    [47]肖华,刘艳,汤禹成,等.高强度钢冲压回弹量对板料力学性能参数的灵敏度分析[J].锻压装备与制造技术,2007(2):69-72.
    [48]石磊,肖华,陈军,等.先进高强度钢板弯曲类回弹特性的试验研究[J].材料科学与工艺,2009(5):671-674.
    [49]韩俊.汽车高强板成形回弹控制研究[D]:(硕士)重庆理r大学,2010.
    [50]李同林,殷绥域编著.弹塑性力学[M].中国地质大学出版社,2006.
    [51]龚红英.板料冲压成形CAE实用教程[M].化学工业出版社,2010.
    [52]刘红山,李慎国,谢世坤,等.动力显式算法在汽车覆盖件成形过程有限元模拟中的应用[J].南昌大学学报(工科版),2004(4):4-8.
    [53]Rao S. S. The Finite Element Method in Engineering [M]. Elsevier,2010.
    [54]ABAQUS Inc. Abaqus Theory Manual, version 6.10 [M]. Dassault Systemes,2010.
    [55]ABAQUS Inc. Abaqus Analysis User's Manual, version 6.10 [M]. Dassault Systemes,2010.
    [56]Hibbitt Karlsson Sorensen Inc,庄茁等译ABAQUS/Explicit有限元软件入门指南[M].清华大学出版社,1998.
    [57]Hibbitt Karlsson Sorensen Inc,庄茁等译ABAQUS/Standard有限元软件入门指南[M].清华大学出版社,1998.
    [58]史艳莉,吴建军.各向异性屈服准则的发展及应用[J].锻压技术,2006(1):99-103.
    [59]Bay N., Olsson D. D., Andreasen J. L. Lubricant test methods for sheet metal forming [J]. Tribology International,2008,41(9-10):844-853.
    [60]Figueiredo L., Ramalho A., Oliveira M. C., et al. Experimental study of friction in sheet metal forming [J]. Wear,2011,271(9-10):1651-1657.
    [61]Lee B. H., Keum Y. T., Wagoner R. H. Modeling of the friction caused by lubrication and surface roughness in sheet metal forming [J]. Journal of Materials Processing Technology, 2002,130-131(0):60-63.
    [62]Damoulis G., Gomes E., Batalha G. New trends in sheet metal forming analysis and optimization trough the use of optical measurement technology to control springback[Z]. Springer Paris,2010: 3,29-39.
    [63]Roll Karl. SIMULATION OF SHEET METAL FORMING-NECESSARY DEVELOPMENTS IN THE FUTURE [J]. Numisheet 2008,2008(September):59-68.
    [64]Magnus Hanson. On adhesion and galling in metal forming[D]:(Doctorate dissertations)Uppsala: Acta Universitatis Upsaliensis,2008.
    [65]Erosion ASTM Committee G. on. ASTM G40-10b Standard Terminology Relating to Wear and Erosion[S].2008.
    [66]Archard J. F. Contact and Rubbing of Flat Surfaces [J]. Journal of Applied Physics, 1953,24(8):981-988.
    [67]王建伟.典型汽车覆盖件类零件板料选材模型数值模拟研究[D]:哈尔滨工业大学,2011.
    [68]Okonkwo Paul C., Pereira Michael P., Kelly Georgina, et al. Effects of temperature in relation to sheet metal stamping:International Conference on Manufacturing Engineering, Quality and Production Systems (4th:2011), Barcelona, Spain,2011[C]. World Scientific and Engineering Academy and Society (WSEAS),2011.
    [69]Kim H., Han S., Yan Q., et al. Evaluation of tool materials, coatings and lubricants in forming galvanized advanced high strength steels (AHSS) [J]. CIRP Annals-Manufacturing Technology, 2008,57(1):299-304.
    [70]Olsson D. D., Bay N., Andreasen J. L. Prediction of limits of lubrication in strip reduction testing [J]. CIRP Annals-Manufacturing Technology,2004,53(1):231-234.
    [71]Chung Kwansoo, Han Heung Nam, Huh Hoon, et al. THE 8TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES (NUMISHEET 2011)[Z]. THE 8TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES (NUMISHEET 2011).,2011:Volume 1383.
    [72]白银兰,尤大勇,卢国清.薄板拉伸试样拉伸过程模拟分析[J].物理测试,2011(S1):100-104.
    [73]俞汉清,陈金德.金属塑性成形原理[M].机械工业出版社,1999.
    [74]Kuwabara Toshihiko, Kumano Yutaka, Ziegelheim Jindra, et al. Tension-compression asymmetry of phosphor bronze for electronic parts and its effect on bending behavior [J]. International Journal of Plasticity,2009,25(9):1759-1776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700