集群磁流变效应与聚氨酯垫复合研抛加工机理及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子技术的发展,对于半导体硅片材料、结构陶瓷、功能陶瓷等材料的需求越来越多,为了更好的利用其特殊的材料性能,需要对这些硬脆材料进行精密加工,特别是作为衬底材料的单晶硅片和陶瓷基片,需要满足足够的面型精度和表面粗糙度,同时必须减少表面和亚表面损伤。集群磁流变效应与聚氨酯垫复合研抛加工作为一种新的方法,结合了集群磁流变效应研磨加工的高效去除和聚氨酯垫抛光加工的特点,对硬脆材料具有较高的材料去除效率和较好的加工效果。本文以单晶硅片、钛酸锶陶瓷基片和氮化铝陶瓷基片为实验工件材料,基于集群磁流变效应与聚氨酯垫复合研抛加工技术,对其加工机理和加工工艺进行深入研究。
     首先分析了集群磁流变效应研磨加工机理的特点以及抛光垫的特点及其对加工的影响。结合集群磁流变效应研磨加工与聚氨酯垫抛光加工的优点,建立起集群磁流变效应与聚氨酯垫复合研抛加工原理模型,并探索复合研抛加工的机理。研究磁流变效应工作液中粒子大小、磁性粒子与磨料粒子的包络关系及其匹配性对复合研抛加工的影响。
     其次从稳定剂的角度对磁流变研抛工作液的配方进行评价和改进,选择沉降稳定性较好的配方,对几种具有代表性的硬脆材料(单晶硅片、钛酸锶陶瓷基片和氮化铝陶瓷基片)进行单因素加工实验,分析对比了工件材料表面粗糙度和材料去除率,并且在这个基础上研究工艺参数对复合研抛加工的影响。
     接着分析了磨料种类对加工效果的影响,由于单一种类的磨料不能得到满意的加工效果,因此提出了混合磨料集群磁流变效应与聚氨酯垫复合研抛加工工艺,从单一种磨料和两种磨料混合的角度探索磨料种类对复合研抛加工效果的影响。
     最后对研抛盘的磨损导致的工件误差进行分析,从而从研抛盘结构、运动方式和磁极阵列方式对研抛盘进行优化,同时根据复合研抛加工的机理和模型对研抛盘进行粗糙化尝试,建立均匀粗糙化铸铁盘集群磁流变效应研磨加工模型,初步对其进行实验研究,探索新的加工方法。
With the development of Microelectronics, the demand of semiconductor and ceramics is increasing, in order to make use of the special characteristics of these kinds of materials, we have to process these hard brittle materials. Usually, these semiconductor and ceramics are used as substrates, so they require high surface flatness, small enough surface roughness and less surface and sub-surface damage, therefore, a proper processing method is very important. Compound machining of polyurethane polishing pad and cluster abrasive brush based on magnetorheological effect, as a new processing method, combining the high efficiency of lapping based on cluster magnetorheological effect and the precision of polyurethane pad polishing process, has high material remove rate, small surface roughness and little surface and sub-surface damage. The paper studied the processing mechanism and the technical experiments of single crystal silicon chips, SrTiO3 ceramic substrates and AIN ceramic substrates, according to the Compound machining. The detail contents are as follows:
     Firstly, analyzed the specialty of processing mechanism of lapping based on cluster magnetorheological effect, the characteristics of polishing pad and its effects on processing. Combining the advantages of lapping based on cluster magnetorheological effect and polyurethane pad polishing process, established the processing principle model and developed the processing mechanism of compound machining of polyurethane polishing pad and cluster abrasive brush based on magnetorheological effect. Researched the impact of the size of particles, the adaptability of abrasive particles and magnetic particles on compound machining.
     Secondly, evaluated and improved the ingredient of MR processing fluid from the point of stabilizer. Chose single crystal silicon chips, SrTiO3 ceramic substrates and AIN ceramic substrates as the representatives of hard and brittle materials, then researched them with single factor experiment, checked the workpiece surface roughness and the material removal rate, and on this basis, researched the effect exerted by process parameters on compound machining.
     Thirdly, the type of abrasives plays an important role on the processing effects, most researches only studied one single kind of abrasives in processing, but usually, one kind of abrasives can't meet the demand of machining, so this paper came up with the mixed abrasives of compound machining, and studied the impact of abrasive particles on compound machining from the view point of single type of abrasives and the mixture of two kinds of abrasives.
     Finally, analyzed the workpiece errors by the result of lapping plate wear, then optimized the plate from three aspects:the structure of plate, model of motion and ATA RAID. Roughed the surface of lapping plate uniformly according to the mechanism and model of compound machining, then established the processing model of rough lapping plate, studied the technical experiments and explored this new machining method.
引文
[1]盛卫卫.丁玉成,李长河.硬脆材料高效精密磨粒加工技术研究[J].汽车工艺与材料,2008(9):41-45.
    [2]吴明明,周兆忠,巫少龙.单晶硅片的制造技术[J].新技术新工艺,2004(5):7-10.
    [3]金山,景燕,祁太元,等.钛酸锶陶瓷材料制备方法的进展[J].盐湖研究,2004(3):55-61.
    [4]李标荣,庄严.再论半导体陶瓷电容器[J].电子元件与材料,2002(1):34-38.
    [5]郝洪顺,付鹏,巩丽,等.电子封装陶瓷基片材料研究现状[J].陶瓷,2007(5):24-27.
    [6]袁哲俊.精密和超精密加工技术的新进展[J].工具技术,2006,40(3):3-9.
    [7]袁巨龙,王志伟,文东辉,等.超精密加工现状综述[J].机械工程学报,2007,43(1):35-48.
    [8]袁哲俊.国内外精密加工技术最新进展[J].工具技术,2008,,42(10):5-13.
    [9]张翊,郭隐彪,庄司克雄.超精密平面研磨加工速度对精度的影响[J].制造技术与机床,2004(7).
    [10]刘兴华.游离磨粒加工技术的研究现状及发展[J].中国新技术新产品,2008(18):83-84.
    [11]袁巨龙,汤科锋,王志伟,等.大颗粒形状对半固着磨粒磨具”陷阱”效应影响的离散元仿真[J].金刚石与磨料磨具工程,2009(6):28-32.
    [12]李响,杨洪星,于妍,等.SiC化学机械抛光技术的研究进展[J].半导体技术,2008,33(6):470-472.
    [13]雷红,雒建斌,张朝辉.化学机械抛光技术的研究进展[J].上海大学学报:自然科学版,2003,9(6):494-502.
    [14]于思远,林彬.工程陶瓷材料的加工技术及其应用[G].北京:机械工业出版社,2008.
    [15]陈洁.超高精度大直径硅片表面超声浮动抛光研究[J].辽宁工程技术大学学报(自然科学版),2008:322.
    [16]Arasmith S R, Jacobs S D, Lambropoulos J C, et al. The use of magnetorheological finishing (MRF) to relieve residual stress and subsurface damage on lapped semiconductor silicon wafers[M]//Bellingham:Spie-Int Soc Optical Engineering, 2001:286-294.
    [17]Golini D, Kordonski W I, Dumas P, et al. Magnetorheological finishing (MRF) in Commercial Precision Optics Manufacturing[M]//Bellingham:Spie-Int Soc Optical Engineering,1999:80-91.
    [18]Jhs S, Jain V K. Design and development of the magnetorheological abrasive flow finishing (MRAFF) process[J]. International Journal Of Machine Tools & Manufacture,2004,44(10):1019-1029.
    [19]S C, G B, A C. Rhelolgical properties of MR Fluids [J]. Phys Rev E, 1998,57(1):804-811.
    [20]Golini D, Demarco M, Kordonski W, et al. MRF Polishes Calcium Fluoride To High Quality[J]. Laser Focus World,2001,37(7):S5.
    [21]Shorey. A B. Mechanisms of Material Removal in Magnetorheological Finishing (MRF) of Glass[D]. New York:Univ. of Rochester,2000.
    [22]Degroote J E, Romanofsky H J, Kozhnova I A, et al. Polishing PMMA and Other Optical Polymers with Magnetorheological Finishing[M]//Bellingham:Spie-Int Soc Optical Engineering,2003:123-134.
    [23]http://www.qedmrf.com[EB/OL].
    [24]Yan Y, Boseon K, Shiguo H, et al. Glass Polishing Technology Using MR Fluids [J]. Journal Of Rare Earths,2007,Vol.25:367.
    [25]Jha S, Jain V K. Design and Development of the Magnetorheological Abrasive Flow Finishing (MRAFF) Process [J]. International Jounral of Machine Tools & Manuafcutre,2004,44(10):1019-1029.
    [26]张峰,张学军.磁流变抛光数学模型的建立[J].光学技术,2000,26(2):190-192.
    [27]张峰.磁流变抛光技术的研究[D].中国科学院长春光学精密机械与物理研究所,2000.
    [28]程灏波,冯之敬,王英伟.磁流变抛光超光滑光学表面[J].哈尔滨工业大学学报,2005,37(4):433-436.
    [29]程灏波,王英伟,冯之敬.永磁流变抛光纳米精度非球面技术研究[J].光学技术,2005,31(1):52-54.
    [30]彭小强.确定性磁流变抛光的关键技术研究[D].国防科学技术大学,2004.
    [31]Tian H, Yan Q, Lu J B. et al. Foundational Study on Micro Machining with Instantaneous Tiny-polishing Wheel Based on the Electro-magneto-rheological Effect[J]. Proceedings of The Society of Photo-optical Instrumentical Instrumentation Engineers(SPIE),2008,6724:7240-7244.
    [32]路家斌,余娟,阎秋生.磁辅助超精密加工技术[J].机械制造2006,44(1):29-32.
    [33]邱腾雄,阎秋生,高伟强,等.曲面磁性研磨加工的表面粗糙度特性研究[J].金刚石与磨料磨具工程,2008(3):26-30.
    [34]邱腾雄,阎秋生,高伟强.磁力研磨加工塑料模具钢的表面粗糙度特性研究[J].制造技术与机床,2008(4):121-125.
    [35]邱腾雄,阎秋生,高伟强,等.磁力研磨加工表面粗糙度特性研究[J].机电工程技术,2007,36(12):25-27.
    [36]余娟,阎秋生,路家斌.磁流变即效微细砂轮精细加工研究[J].金刚石与磨料磨具工程,2007(1):74-77.
    [37]柴京富,阎秋生,张鹏程.磁流变效应微砂轮的磨粒半固着机理研究[J].中国机械工程,2010(22):2726-2730.
    [38]严杰文.集群磁流变效应平面研抛加工特性研究[D].广东工业大学,2010.
    [39]Degroote J E, Romanofsky H J, Kozhinova I A, et al. Polishing PMMA and Other Optical Polymers with Magnetorheological Finishing[M]//Bellingham:Spie-Int Soc Optical Engineering,2003:123-134.
    [40]李中会.磁流变抛光工艺优化及关键技术研究与应用[D].东华大学,2010.
    [41]Evans C J, Pau E. Material Removal Mechanisms in Lapping and Polishing[J].2007.
    [42]陈越.光学玻璃磁流变抛光工艺试验研究[D].湖南大学,2009.
    [43]苏建修,傅宇,杜家熙,等.抛光垫表面特性分析[J].半导体技术,2007(11):957-960.
    [44]Severs P, Dinsmore R., Meurer S.,等.聚合物抛光垫修整和抛光的研究[J].中国表面工程,2008(3):1-6.
    [45]胡伟,魏听,谢小柱.化学机械抛光中抛光垫表面沟槽的研究[J].制造技术与机床,2008(1):77-79.
    [46]吕玉山,张辽远,王军,等.化学机械抛光中背垫对硅片表面接触压强分布及宏观表面形貌的影响[J].兵工学报,2008,29(4):495-499.
    [47]Chiou Y C, Lee R T, Yau C L. A Novel Method of Composite Electroplating on Lap in Lapping Process[J]. International Journal of Machine Tools & Manufacture, 2007,47(2):361-367.
    [48]叶剑锋,朱永伟,王俊,等.固结磨料抛光垫的凸起图案对其加工性能的影响[J].金刚石与磨料磨具工程,2010(6):8-12.
    [49]康念辉,李圣怡,郑子文,等.典型碳化硅光学材料的超光滑抛光试验研究[J].中国机械工程,2008(21):2528-2531.
    [50]徐进,雒建斌,路新春,等.超精密表面抛光材料去除机理研究进展[J].科学通报,2004(17):1700-1705.
    [51]孙春华,尚广庆.脆硬材料加工机理的研究[J].金刚石与磨料磨具工程,2002(4):51-53.
    [52]李金,张华良.磁流变液研究和应用[J].上海大学学报(自然科学版),2004(1):21-25.
    [53]姚金光,晏华.高性能磁流变液研究的进展[J].材料开发与应用,2009(2):62-67.
    [54]李发胜.水基磁流变液稳定性的研究[D].西南大学,2007.
    [55]张峰,张学军,等.磁流变抛光液的研制[J].功能材料,2002,,33(5):490-491.
    [56]尤伟伟,彭小强,戴一帆.磁流变抛光液的研究[J].光学精密工程,2004,12(3):330-334.
    [57]尤伟伟.磁流变抛光的关键技术研究[D].国防科学技术大学,2004.
    [58]张鹏程.研抛加工磁流变工作液组分优化及性能研究[D].广东工业大学,2010.
    [59]http://www.zhedu.net/teachstudv/se/huaxue/zqb/014/si.htm[EB/OL].
    [60]刘冠芳,李晓力,周芳,等.成型压力对钛酸锶陶瓷电容器介电性能的影响[J].绝缘材料,2008(6):44-46.
    [61]刘健,刘志平.高性能氮化铝陶瓷基片生产关键技术研究[J].电子与封装,2007,,7(12):1-3.
    [62]孙增标,刘玉岭,刘效岩,等.SiO2/CeO2混合磨料对微晶玻璃CMP效果的影响[J].半导体技术,2010(1):72-74.
    [63]肖保其,雷红.纳米SiO2/CeO2复合磨粒的制备及其抛光特性研究[J].摩擦学学报,2008,28(2):103-107.
    [64]http://baike.baidu.com/[EB/OL].
    [65]http://baike.baidu.com/view/596924.htm[EB/OL].
    [66]刘宜国.行星研磨机研磨盘的设计改进[J].机械,1990,17(2):27-31.
    [67]舒畅.双面研磨机消除研磨盘伞状变形机理分析[J].湖南农机,2002(5):25-26.
    [68]魏兵,熊禾根.机械原理[G].武汉:华中科技大学出版社,2007.
    [69]杨勇.集群磁流变效应研磨盘的结构优化及研抛加工实验研究[D].广东工业大学,2009.
    [70]许雪峰,严科伟,马冰迅,等.硅片硬质抛光盘化学机械抛光工艺参数优化试验研究[J].润滑与密封,2008(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700