高层钢框架结构体系稳定分析的样条函数方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢结构具有众多优点,在我国工程建设中的应用越来越广泛,已经是我国主要的结构体系之一。与钢筋混凝土结构相比,钢结构具有强度大、自重轻、抗震性能好、设计灵活、施工方便、工期短、符合产业化要求、符合可持续发展的要求等优点。钢框架是钢结构中最常用的一种结构形式,柱网布置灵活,可采用较大的柱距,而且塑性变形能力强,抗震性好,施工简便,广泛地用于多高层建筑。
     在高层钢框架结构体系中,钢材强度很高,具有极好的延性,钢构件壁薄修长,构造轻巧。在轴压或压弯作用下,结构可能出现局部或整体失稳,稳定因素控制钢框架和构件的极限承载力。稳定分析是对钢框架进行分析时不可忽略的一个重要环节。
     在对结构进行稳定分析的众多方法中,有限单元法运用较为广泛。但是运用传统的有限元法分析高层钢框架的稳定问题时,存在未知量多、计算量大、占用资源多等不足。目前比较常见的一些有限元软件在很多情况下无法跟踪结构的加载平衡路径,得不到真正的稳定极限状态。
     本文旨在研究高层钢框架结构体系稳定分析的样条函数方法,主要作了以下方面工作:
     (1)基于Kirchhoff薄板理论,建立弹性薄板稳定分析的样条无单元法(SEFM)计算格式;基于Mindlin-Reissner中厚度板理论,把板的挠度和剪应变作为独立的场变量,建立了厚/薄板稳定分析的通用样条无单元法的计算格式;应用特征值失稳来判断临界力。用C语言设计相应的通用程序,通过典型算例说明样条无单元法适用于不同厚度、不同边界的板的稳定分析,且具有精度高、收敛快、自由度少、无剪切闭锁现象、程序简便等优点。可用于框架结构体系中的板的稳定分析。
     (2)采用平衡微分方程及稳定函数推导了考虑几何非线性影响的梁柱单元的刚度矩阵。建立了平而钢框架几何非线性性稳定分析的QR法计算格式,用C语言编制了平面钢框架的儿何非线性稳定分析的QR法计算程序。通过算例分析说明几何非线性对钢框架结构稳定的影响不能忽略,而QR法的计算格式简单,而且精度高,不但可以计算结构整体失稳的临界荷载,而且跟踪整个加载路径,在钢框架的稳定分析方面很有优势。
     (3)在几何非线性稳定分析的基础上,同时考虑材料非线性和几何非线性,应用本文推导的梁柱单元刚度矩阵,用荷载增量法建立结构非线性分析的增量刚度方程,采用塑性铰模型,建立钢框架双重非线性稳定分析的QR法计算格式,采用Euler-修正的Newton法求解非线性方程组,用切线刚度法跟踪结构的整个非线性平衡路径,并用C语言设计了相应的通用计算程序。通过典型的算例分析,分析了材料非线性对结构稳定的影响,证明了钢框架双重非线性稳定分析的QR法的可行性和优越性。QR法计算格式简单,未知量少,计算精度高,不会因为塑性铰的出现修正结构的计算网格和自由度,以结构的整体失稳作为程序计算的终止条件,不会因为局部失稳破坏而影响后续的增量计算。
     (4)利用本文算法编制钢框架结构体系稳定性分析的软件包,可用于平面框架及楼板的稳定性分析。以目前广西最高的钢结构商务大楼-广西中烟工业有限责任公司研发中心办公楼为工程实例,利用软件包对其进行稳定分析,评定该结构的稳定性能。
With many advantages, steel structure is more and more widely used in construction, now has become one of China's major structural system. Compared with the reinforced concrete structure, steel structure has some advantages, such as high strength, light weight, good anti-seismic performance, design flexibility, easy construction, short construction period, in line with industrial requirements, meet the requirements of sustainable development and so on. Steel frame, one of the most popular styles of steel structure, is flexible in column arrangement, large in column space, excellent in plastic performance, good for anti-seismic, simple in construction and widely used in many high-rise buildings.
     Since steel has high strength and excellent ductility, frame members is slender, thin-walled and light in high-rise steel frame system. In axial compression or bending, the structure may be local or global instability, and then stability factors control the ultimate strength of steel frame and its components. So stability analysis is very important while analyzing steel frames.
     Among so many methods for structure stability analysis, the finite element method is widely used. But traditional finite element method has much unknown quantity, resource occupation and calculation. Much finite element software can not track the loading path in many cases. The real ultimate stability state can not be achieved.
     This thesis aims to study the spline function methods for high-rise steel frame structure stability analysis. The main works includes:
     (1) Based on Kirchhoff thin-plate theory, the spline element-free method (SEFM) computation format for elastic thin plate stability analysis is established. The spline element-free method computation format for the stability analysis of thick/thin plate is established based on Mindlin-Reissner theory, which takes deflection and shear strains as the independent field variables. The critical force is determined by eigenvalue buckling. The general program is composed by C language. The results of examples shows that this method has many advantages such as high precision, rapid convergence, less degree of freedom, no shear locking phenomenon, easy to be programmed, applicable for the stability analysis of the plate with various boundaries and various thickness. It can be used to analyze the plate in frame structure.
     (2) Using beam-to-column theory and stable function, the stiffness matrix of beam-to-column which considered geometric nonlinear is developed. The computation format of QR method for the geometric nonlinear stability analysis of plan steel frame is conducted and adopted to programming by C language. The examples show that the effecting of geometry nonlinear to the stability analysis of steel frames can not be neglected. QR method has simple computation format and high precision, not only can calculate the critical load of whole instability of structure, but also can track the entire loading path. QR method has great advantages on steel frame stability analysis.
     (3) Based on the geometric nonlinear stability analysis, taking both material nonlinearity and geometric nonlinearity into account, using the stiffness matrix of beam-to-column developed in this thesis, the nonlinear stability analysis incremental stiffness equation by load incremental method is established. Plastic hinge model is used to establish the QR method format for double nonlinear stability analysis of steel frame. The Euler-modified-Newton method is used to solve the nonlinear equations. The tangent stiffness method is applied to trace the nonlinear equilibrium path of the structure. General computer program is composed by C language. Through typical examples, the effecting of material nonlinearity to structure stability is analyzed, which proofs the feasibility and superiority of QR method for double nonlinear stability analysis of steel frame. QR method has simple computation format, less unknown and high precision, do not need to modify the computational grid and the degree of freedom of structure to meet the appearance of plastic hinges, takes the overall instability as the termination condition. So the subsequent incremental calculation will not be terminated by local buckling damage.
     (4) A software of steel frame structure stability analysis which programmed by the algorithm of this thesis is introduced. It can be used to analyze the stability of plane frame and plate. Then takes the Guangxi Tobacco Industrial Co., Ltd. Research and Development Center Building as example, uses that software to analyze its stability, assess the stability of the structure.
引文
[1]张洁,李国强,钢结构在我国高层建筑中应用现状的述评(上)[J],四川建筑科学研究,1999,2:7-12.
    [2]周鹏洋,我国高层建筑钢结构的发展及展望[J],浙江建筑,2002,B02,:14-17.
    [3]徐芸,曹静,徐荫,对高层钢结构建筑结构体系与建筑体形的探讨[J],山西建筑,2007,33(16):11-12.
    [4]秦荣,高层与超高层结构[M],北京:中国科学出版社,2007.
    [5]陈绍蕃.钢结构稳定设计的几个基本概念[J],建筑结构,1994,(6):13-16.
    [6]李国强,高层钢-混结构住宅研究[J],建设科技,2004,13:34-35.
    [7]尧国皇,孙占琦,孙素文,潘东辉,赵群昌,某超高层钢管混凝土框架一核心筒结构的整体稳定性分析[J],钢结构,2010,25(6):35—38.
    [8]郑廷银,钢结构高等分析理论与实用计算[M],北京:科学出版社,2007.
    [9]张耀春,张文元,超高层巨型钢结构体系的研究与应用[J],建筑钢结构进展,2005,7(2):19-26.
    [10]沈祖炎,李国强等著,钢结构学[M],北京:中国建筑工业出版社,2005.
    [11]陈绍蕃.钢结构设计原理[M],北京:中国科学出版社,1998.
    [12]夏志斌,潘有昌.结构稳定理论[M].上海:高等教育出版社,1989.2:35-36.
    [13]孙焕纯,许强,李湘沅,框架结构的线性欧拉稳定理论[J],应用力学学报,2008,25(4):703—708.
    [14]郭耀杰,钢结构稳定设计[M]武汉,武汉大学出版社,2003.3:4-5.
    [15]刘古岷等.应用结构稳定计算[M].北京:科学出版社,2004.7:45-46.
    [16]余卫华,王正中,王志刚,弧形钢闸门主框架的稳定性[J],人民长江,2008,39(6):62—64.
    [17]陈力,钢结构失稳分析[J],科技博览,2010,32:458.
    [18]S.P.Timoshenko. History of Strength of Materials. Dove Publications, New York,1983.
    [19]N.S.Trahair. Flexural-torsional Buckling of Structures. CRC Press, Boca Raton,1993.
    [20]S.P.Timoshenko, J.M.Gere. Theory of Elastic Stability,2nd ed. New York:McGraw-Hill, 1961.
    [21]F.Bleich. Buekling Strength of Metal Structures, New York:McGraw-Hill,1952.
    [22]L.H.Donnell,C.C.Wan.Effects of imperfections on buckling of thin cylinders and columns under axial compression. Journal of Applied Mechanics(ASME),1950,17(1):73-83.
    [23]T.VonKarman, H.S.Tsien. The buckling of spherical shells by external pressure. Journal of Aeronautical Science,1939,7(1):43-50.
    [24]W.T.Koiter, Thesis, Delft(1945):English translation published as NASATTF-10,1967, 833.
    [25]J.W.Hutchinson. Plastic buekling. Advances in Applied Mechanies,1974,14:67-144.
    [26]吕烈武.钢结构构件稳定理论[M].北京:中国建筑工业出版社,1983.3:34.
    [27]陈绍蕃,梁整体稳定的压杆比拟和拉—压杆比拟[J],钢结构,2010,25(10):1—6.
    [28]齐永胜,赵风华,周军文.多层框架单向无梁柱稳定性研究[J].2011,37(1):45—48.
    [29]王涛,蔡俊坡,靳杰.带支撑钢框架非线性稳定分析[J],山西建筑,2010,36(22):54—55.
    [30]刘迎春,张文福,计静.单层框架动力稳定性影响参数分析与极限位移确定[J].科学技术与工程,2009,9(12):3553-3555.
    [31]秦荣.结构力学的样条函数方法[M].南宁:广西人民出版社,1985.3.
    [32]Livesley R K. The application of a electronic digital computer to some Problems of structural analysis, The Struct.Engr.,34(1),1956:1-12.
    [33]Nethercot D.A., Frame Structures:Global Performance, static and stability behaviour general report.", J.Constr.SteelRes., Vol.55,2000:109-124.
    [34]朱金华,彭寿留,覃祚威,浅谈钢框架稳定设计[J],科协论坛,2011,(2):83—84.
    [35]齐飞,童根树,连栋温室钢结构框架稳定设计方法[J],农业工程学报,2009,25(9):202—209.
    [36]夏志斌,潘有昌.《结构稳定理论》[M].,高等教育出版社,北京,1988.
    [37]吕烈武等.《钢结构构件稳定理论》[M].,中国建筑工业出版社,北京,1983.
    [38]孙普,张娜,钢结构稳定设计心得[J],建设科技,2009,(4):49-50.
    [39]易笑兰,钢框架结构稳定性设计的两种实用方法比较[J],山西建筑,2008,34(20):70—71.
    [40]张唯,钢框架稳定计算方法的探讨[J],广东建材,2009,(12):83—85.
    [41]周菊根,钢框架稳定性探讨[J],科学之友,2011,(2):13—15.
    [42]Giulio B. and Federieo M.M. Theory and Design of Steel Structure. J. W. Arrow smith Ltd., Bristol,1983.
    [43]Wood R.H., Effective Lengths of Columns in Multi-story Bulildings, The Structrual Engineer. Vol.52, No.7,1974:25-244.
    [44]蒋丽忠,汤裕坤.钢-混凝土组合框架柱的稳定设计方法[J],建筑科学与工程学报,2008,25(3):12—16.
    [45]童根树,金阳.框架柱计算长度系数法和二阶分析设计法的比较[J].钢结构,2005,20(2):8-11.
    [46]童根树,翁赞,考虑剪切变形影响的框架柱弹性稳定[J],工程力学,2008,25(12): 171—178.
    [47]Chen, W.F., and Toma S., eds. Advanced analysis of steel frames. CRC Press, Inc, Boca Raton, Fla.,1994.
    [48]Eurocode 3, ENV-1993-1-1, Design of Steel Structures, Commission of the European Communities, European Prenorm, Brussel, APril,1992.
    [49]AS4100-1990, Steel Structures, Standards Australia. Sydney,1990.
    [50]赵建.影响钢框架稳定承载力要素的有限元分析[J].钢结构,2009,24(119):17—18
    [51]童根树,翁赞.顶部带伸臂的框架-核心筒结构的稳定性和位移、弯矩放大系数[J].工程力学,2008,25(3):132—138.
    [52]姜黎黎,刘永新,CFRP增强钢框架的稳定性分析[J].低温建筑技术,2010,(5):54—55.
    [53]王新堂,季瑶,王剑平,半刚性连接钢框架的弹性屈曲荷载计算[J],工业建筑,2008,38(4):82—86.
    [54]童根树,王素俭,鄢磊,格构柱的剪切变形对超重型厂房框架稳定性的影响分析[J],建筑钢结构进展,2008,10(5):1—6.
    [55]范国刚,考虑组合效应的组合框架稳定计算方法[J],山西建筑,2011,37(4):40—41.
    [56]童根树,黄山,饶芝英,框架中有摇摆柱时框架柱的稳定系数[J],建筑钢结构进展,2009,11(6):8—13.
    [57]徐长征,王飞,米婷,罗永峰,有摇摆柱的钢框架结构整体稳定性能分析[J],钢结构,2009,24(123):1—6.
    [58]王晓峰,秦荣,刘光焰,竖向恒载对框架结构动力稳定性影响研究[J],广西工学院学报,2010,21(2):77—80.
    [59]王晓峰,秦荣,刘光焰,水平荷载作用下框架结构动力稳定性研究[J],山西建筑,2010,36(11):75—76.
    [60]王晓峰,刘光焰,水平阶跃荷载作用下框架结构动力稳定性研究[J],邵阳学院学报(自然科学版),2009,6(3):66—68.
    [61]J. G. Orbison, W. Mcguire, and F. Abel. Yield Surface Application in Nonlinear Steel Frame Analysis[J]. Comput. Maths. Appl. Mech. Engng.1982,33(4):153-156.
    [62]Kassimali. Large Deformation Analysis of Elastic-plastic Frances. [J] struct Engng.,ASCE.1983,109(8):1869-1886.
    [63]F. AL-Mashary, W. F. Chen. Simplified Second-order Inelastic Analysis for Steel frames[J]. Structural Engineer.1991,69(6):1452-1454.
    [64]W. F. Chen, S. Toma. Advanced Analysis of Steel Frames.1993,35 (4) 432-433.
    [65]丁浩民,沈祖炎.空间钢框架结构的弹塑性稳定[J].建筑结构学报,1993,14(6):42-51.
    [66]刘小强,吴惠弼.高层钢框架二阶效应的实用简化计算[J].工程力学,1993, 1 0(2):72-78.
    [67]徐伟良,吴惠弼.钢框架二阶弹塑性分析的简化塑性区法[J].重庆建筑工程学院学报.1998,Vol.16(2):74-80.
    [68]李国强,沈祖炎.钢结构框架体系弹性及弹塑性分析及计算理论[M].上海:上海科学技术出版社,1998.
    [69]舒兴平,尚守平.平面钢框架结构二阶弹塑性分析[J].钢结构.2000,15(47):24-279.
    [70]舒兴平,沈蒲生,尚守平.钢框架结构二阶弹塑性稳定极限承载力试验研究[J].钢结构,1999,14(46):19-22.
    [71]王志骞,董明海.钢框架弯矩作用平面内弹塑性稳定试验研究[J].西安建筑科技大学学报,1999,31(1):48-50.
    [72]周强,吕西林.平面钢框架弹塑性大变形简化分析方法[J].同济大学学报,2000,28(4):388-392.
    [73]季渊.多高层框架-支撑结构的弹塑性稳定性分析及其支撑研究[D].浙江大学博士学位论文,2003.
    [74]秦荣.计算结构力学[M].北京:科学出版社,2001.
    [75]龙驭球,龙志飞,岑松.新型有限元论[M].清华大学出版社,北京,2004,8:156-201.
    [76]秦荣.计算结构非线性力学[M].南宁:广西科学出版社,1999.
    [77]秦荣.工程结构非线性[M].北京:科学出版社,2006.
    [78]秦荣,梁爱明.高层框架分析的新方法[J].工程力学,1988,5(2)
    [79]秦荣.计算结构动力学[M].桂林:广西师范大学出版社,1997.
    [80]秦荣.高层建筑结构分析的新理论新方法[M].北京:科学出版社,2007.
    [81]秦荣.高层建筑结构分析的新方法[J].工程力学,1991,8(4),P41-50.
    [82]秦荣.高层建筑结构稳定性分析的新方法[J].工程力学论文集,南宁:广西科技出版社,1992.
    [83]秦荣.钢筋混凝土结构非线性分析的新方法[J].工程力学,1993,10(增刊)
    [84]秦荣.高层建筑结构弹塑性分析的新方法[J].土木工程学报,1994,27(6)
    [85]秦荣.塑性力学中的新理论新方法[J].广西科学,1994,1(1)
    [86]秦荣.板壳双重非线性分析的新方法[J].工程力学,1995,12(增刊)
    [87]Qin Rong. Spline Function Methods for Nonlinear Analysis of Reinforced Concrete Structures[J]. In:Building for 21 st Century Vol.1,1995.
    [88]Qin Rong. New Theory and New Method for Elastic-plastic Analysis of Structures Engineering[J]. Computation and Computer Simulation, ECCS-1,1995.
    [89]秦荣.板壳非线性分析的新理论新方法[J].工程力学,2004,21(1)
    [90]秦荣,梁汉吉.高层建筑筒体结构动力分析的新方法[J].世界地震工程,2005,21(3).
    [91]秦荣.样条有限点法[J].数值计算与计算机应用,1981,2(2)
    [92]李丕宁,秦荣,张克纯等.高层建筑结构静力弹塑性分析的pushover-QR法[J].世界地震工程,2005,21(4)
    [93]秦荣.样条无网格法及其应用[J].工程力学,2002,19(增刊)
    [94]Qin Rong. Spline Infinite Element-QR Method for Analysis Underground Engineering[J]. Computer Methods and Advances in Geomechanics, P.1603-1608, Balkema, Rotterdam, 1997.
    [95]秦荣.板壳分析的样条有限点法[J].固体力学学报,1984,5(2)
    [96]秦荣.复合材料板壳分析的样条有限点法[J].工程力学,2001,18(1)
    [97]秦荣.板壳双重非线性分析的样条有限点法[J].计算力学学报,1998,15(增刊)
    [98]Zienkiewicz O C, Taylor R L, The finite element method[M],5th edition.Oxford: Butterworth Heinemann,2000.
    [99]陈小虎,沈振中,无单元法的工程应用进展[J],水利水电科技进展,2006,26(6):90-94.
    [100]孟春光,张伟星,无单元法在薄板稳定问题中的应用[J],力学与实践,2004,26(2):51-54.
    [101]秦荣,样条无网格法及其应用[J],工程力学,2002,19(S)
    [102]周文伟,任伟新,陈大鹏,板弯曲有限元方法中的几个问题[J],长沙铁道学院学报,1996,14(3):1-7.
    [103]卜小明,龙驭球,一种薄板弯曲问题的四边形位移单元[J],力学学报,1991,22(1):53-60.
    [104]Long Yuqiu, Bu Xiaoming, Long Zhifei et al. Generalized conforming plate bending elements using point and line compatibility conditions[J]. Computers & Structures,1995, 54 (4):717-723.
    [105]龙驭球,傅向荣.基于解析试函数的广义协调元[J].工程力学,2002增刊:28-39.
    [106]陈万吉,陈运民.薄板稳定和振动分析的精化九参数三角形单元[J].大连理工大学学报,1994,34(3):268-272.
    [107]葛增杰,张京街.薄板稳定分析中的一个精化不协调元[J].大连理工大学学报,1999,39(5):616-620.
    [108]张玮,王肇民,刘勇.一种提高薄板稳定分析精度的方法[J].上海力学,1997,18(4):352-356.
    [109]李秀梅,秦荣.样条无单元法在弹性地基板分析中的应用[J].固体力学学报,2005,26(S):110-114.
    [110]张国祥,罗万象,魏伟,C1阶协调矩形薄板单元的对比分析[J],中南大学学报,2004,35(4):676-680.
    [111]周宏宇,钟光络,李国强等,无剪切闭锁的厚薄板矩形单元的构造[J],同济大学学报, 2003,18(5):530-534.
    [112]龙驭球,陈晓明,岑松,一个不闭锁和抗畸变的四边形厚板元[J],计算力学学报,2005.22(4):385-391.
    [113]龙志飞,王海霞,将薄板矩形元扩展为厚薄板通用单元的一般方法[J],工程力学,2000,17(4):37-43.
    [114]李革,寇应昌,方治华,一种厚板薄板通用的新型广义协调元[J],应用力学学报,2003,20(3):148-150.
    [115]Zienkiewicz O C, Hinton E. Reduced integration function smoothing and nonconforming in finite element analysis [J]. J Franklin Inst,1976,302 (526):443-461.
    [116]Hughes T JR,Cohen M, Haron M, Reduced and selective integration techniques in finite element analysis of plates[J]. Int J Numer Meth Eng,1978,46:203-222.
    [117]Zienkiewicz O C, XU Z, Zeng L F, et al. Linked interpolation for Reissner-Mindlin plate elements:Part I-A simple quadrilateral [J]. Int J Numer Meth Eng,1993,36: 3043-3056
    [118]Katili I. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I:A n extended DKT element for thick-plate bending analysis [J]. Int J Numer Meth Eng,1993,36:1859-1883.
    [119]龙志飞,刘志海,增补挠度场和剪应变场的厚薄板三角形广义协调元,工程力学,2002,19(5):41-47.
    [120]岑松,龙志飞,龙驭球,对转角场和剪应变场进行合理插值的厚薄板通用四边形单元[J].工程力学,1999,16(4).1-15.
    [121]李秀梅,秦荣,袁新胜,厚/薄板弯曲分析的样条函数方法[J].红水河,2007,26(2):37-40
    [122]孙建东,张伟星,童乐为,无单元法在中厚板模态分析中的应用[J],土木工程学报,2006,39(10):29-33.
    [123]葛增杰,张京街,薄板稳定分析中的一个精化不协调元[J],大连理工大学学报,1999,39(5):616-620.
    [124]陈万吉,陈运民,薄板稳定和振动分析的精化九参数三角形单元[J],大连理工大学学报,1994,34(3):268-272.
    [125]喻庆先,张延庆,中厚板稳定分析[J].工程建筑与设计,2007,6:12-14.
    [126]林家骥,薛育,林刚,考虑剪力变形的矩形板的稳定与振动分析[J].西安建筑科技大学学报,1998,30(3):257-260.
    [127]钱源耀,中厚板特征值问题的杂交混合有限元分析[J].应用数学和力学,1987,8(8):733-742.
    [128]罗继伟,中厚板屈曲的平衡模型有限元分析[J].固体力学学报,1983(2):177-184.
    [129]秦荣,高层结构几何非线性分析的QR法[J],工程力学,1996,13(1),8-15.
    [130]陈惠发.钢框架稳定设计[M],世界图书出版社,2001,2:3-5
    [131]陈骥,钢结构稳定理论与设计[M].北京:科学出版社,2001.2:27-28.
    [132]田兴运,钢结构稳定的概念设计[J],工业建筑,2009(8):33-36.
    [133]郭耀杰,钢结构稳定设计[M]武汉,武汉大学出版社,2003.3:4-5.
    [134]刘古岷等.应用结构稳定计算[M].北京:科学出版社,2004.7:45-46.
    [135]张银龙.钢结构稳定设计方法的发展综述及分析[J],钢结构,2008.(8)::20-23.
    [136]童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社,2005.2:55.
    [137]F. AL-Mashary, W. F. Chen. Simplified Second-order Inelastic Analysis for Steel frames[J]. Structural Engineer.1991,69(6):1452-1454.
    [138]W. F. Chen, S. Toma. Advanced Analysis of Steel Frames.1993,35 (4) 432-433.
    [139]刘小强,吴惠弼.高层钢框架二阶效应的实用简化计算[J].工程力学,1993,1 0(2):72-78.
    [140]舒兴平,尚守平.平面钢框架结构二阶弹塑性分析[J].钢结构.2000,15(47):24-279.
    [141]曾建宁.钢结构稳定性探讨[J],中国新技术新产品,2009,16(4):183.
    [142]陈绍蕃.《钢结构稳定设计指南》[M].中国建筑工业出版社,2004.3:75-77.
    [143]陈绍蕃.《钢结构稳定设计的新进展》[J]建筑钢结构进展,2004(4):17-19.
    [144]何玉斌.含随机初始缺陷半刚接钢框架结构的稳定性能研究[D].广西大学,2010.
    [145]叶学林周瑞忠.半刚性连接压杆的稳定计算公式[J].建筑学报,2003(85):34-39.
    [146]牛海清,朱召泉,钢框架结构的二阶效应分析[J],工程力学,2001,15(1),691-695.
    [147]卢小松.多层钢框架整体稳定的设计[J].钢结构,2004,4(16).6-11.
    [148]张文元,张耀春.高层钢结构双重非线性分析的塑性铰法.[J]哈尔滨建筑大学学报,2000.11:22-26.
    [149]W F Chen.Structural Stability:from Theory to Practice[J].Engineering Structures, 2000,58:47-53.
    [150]王成立.考虑初始缺陷影响的空间钢框架结构稳定分析的新方法[D].广西大学,2007.
    [151]舒兴平.空间钢框架结构的非线性全过程分析[J],工程力学,1997.
    [152]中华人民共和国建设部.GB500170-2003,钢结构设计规范[S].中国建筑工业出版社.2003.
    [153]曾建宁.钢结构稳定性探讨[J],中国新技术新产品,2009,16(4):183.
    [154]李国强,刘玉珠,赵欣等,钢结构框架体系高等分析与系统可靠度设计[M],北京:中国建筑工业出版社,2006.1,68-70.
    [155]Liu,E.M.and Chen,W.F.Analysis and Bhavior of flexibly-jointed Frames[J], Engineering Strutures,1986,8:107-118.
    [156]张文元,张耀春高层钢结构双重非线性分析的塑性铰法.[J]哈尔滨建筑大学学报, 2000.11:22-26.
    [157]秦荣,计算结构力学,北京:科学出版社,2001.
    [158]沈世钊,陈昕,网壳结构稳定性,北京:科学出版社,1999.
    [159]赵艳林,高层建筑结构三维空间分析的样条子域法,广西大学研究生学位论文(导师秦荣),1989.
    [160]吴杰,高层框架弹塑性动力分析的QR法,广西大学研究生学位论文(导师秦荣),2000.
    [161]Qin Rong, Spline Subdomain Method for Analysis of Tall Building Structures, Pro. of International Conference on Engineering Science Press,2000.
    [162]周奎,高层建筑钢框架结构几何-材料非线性分析[D],东南大学博士学位论文,2003.
    [163]牛海清,朱召泉,二阶效应对钢框架结构分析的影响[J],河海大学学报,2002,30(4):103-106.
    [164]J.Y. R Liew, W.F. Chen, Advanced inelastic analysis of frame structures[J], Journal of Constructional Steel Research 2000, (55):245-265.
    [165]李国强,刘玉珠,赵欣等,钢结构框架体系高等分析与系统可靠度设计[M],北京:中国建筑工业出版社,2006.
    [166]秦荣,高层建筑结构分析的QR法[J],广西科学,1994.
    [167]Goto, Y. and Chen, W. F., Second-order elastic analyses for frame design[J]. J. Struct. Engrg.,ASCE,1987,113(7),1501-1519.
    [168]赵建.影响钢框架稳定承载力要素的有限元分析[J].钢结构,2009,24(119):17—18
    [169]徐伟良,吴惠弼.钢框架二阶弹塑性分析的简化塑性区法[J].重庆建筑工程学院学报.1998,Vol.16(2):74-80.
    [170]舒兴平,尚守平.平面钢框架结构二阶弹塑性分析[J].钢结构.2000,15(47):24-279.
    [171]王涛,蔡俊坡,靳杰.带支撑钢框架非线性稳定分析[J],山西建筑,2010,36(22):54—55.
    [172]童根树,翁赞,考虑剪切变形影响的框架柱弹性稳定[J],工程力学,2008,25(12):171—178.
    [173]A.Landesmann, E. de Miranda Batista, Advanced analysis of steel framed buildings using the Brazilian standard and Eurocode-3[J], Journal of Constructional Steel Research, 2005,61:1051-1074.
    [174]Liew JYR, White DW, Chen WF. Second-order refined plastic hinge analysis for frame design. Journal of Struct Engg. ASCE,1993;119(11):Part 1:3196-3216; 3217-3237.
    [175]刘坚,李开禧,张利等,基于极限承载力的钢框架二阶非弹性计算方法[J],重庆建筑大学学报,2004,26(3):20-25.
    [176]Ziemian, R.D.Verification study[M], Ithaca, N.Y.:Cornell,Univ.,1989.
    [177]Vogel, U.Calibrating frames[J], Stahlbau,1985,54(10):295-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700