靶向Plk1的siRNA对肝癌BEL-7402细胞株生物学行为的影响及增强长春新碱化疗敏感性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:原发性肝癌是(以下简称肝癌),是我国常见的恶性肿瘤之一,以手术为主联合化疗、放疗是目前治疗肝癌的主要模式。由于肝癌对化疗不太敏感,因此,如何降低化疗药物的毒性并增强化疗效果,值得进一步深入地研究。而随着分子生物学技术的发展,利用基因研究的进展对肝癌进行基因治疗,为肝癌的治疗提供了新的策略。
     Plk1(Polo-like kinase 1)基因属于有丝分裂丝氨酸/苏氨酸激酶家族Plks(Polo-like kinases)中的一员,是G_2/M期DNA损伤检测点重要激酶,对中心体的成熟,双极纺锤体的形成,及胞浆分裂等起重要作用。Plk1作为参与细胞分裂启动和正性推进者,在细胞增殖过程中起重要作用。在多种肿瘤中,Plk1常表现为过表达并与不良预后密切相关。肝癌往往发生于慢性肝病,如肝硬化和慢性肝炎,这类疾病由于肝脏损伤后伴有持续的肝细胞增殖,细胞增殖加速使肝细胞增殖周期中的调控基因更容易发生随机改变,同时细胞增殖加速也容易使慢性肝病过程中致病因子所导致的DNA突变得以保留并迅速克隆性扩张,最后导致肝癌的发生。因此,我们选定Plk1作为潜在的肿瘤基因治疗靶点,调控G_2/M期的DNA损伤检测点功能,以期达到抑制肿瘤生长、增殖的目的。
     RNA干扰(RNA interference,RNAi)技术是近年来出现的一种高效地封闭特异性基因的新技术,近年来无论在功能基因组研究还是肿瘤的基因治疗等方面得到广泛的应用。RNAi是指内源性或外源性双链RNA(dsRNA)介导细胞内的mRNA发生特异性降解,导致靶基因的表达沉默,产生相应的功能表型缺失。因此,运用RNA干扰技术抑制肝癌细胞内异常表达的Plk1基因从而影响其生物学行为并增强化疗药物敏感性可能为肝癌的治疗带来新的思路。
     第一章Plk1在肝癌组织中表达及临床意义
     目的:探讨Plk1在原发性肝细胞性肝癌中的表达及其意义
     方法:用半定量RT-PCR、Western blot的方法检测21例原发性肝细胞性肝癌中Plk1的表达情况,并分析其与肝癌临床病理因素的关系。同时取肝硬化及正常肝组织各7例做对照。
     结果:肝癌组织中Plk1mRNA表达比值(Plk1/β—actin)为0.572±0.144,明显高于肝硬化组织中的0.250±0.057和正常肝组织的0.218±0.073(P<0.01)。Plk1 mRNA表达水平在肿瘤直径大于5cm组中为0.641±0.110,而在肿瘤直径小于5cm组中为0.458±0.120,两组之间比较有统计学差异(P<0.01)。其在有门静脉癌栓患者中的表达为0.652±0.107,明显高于无门静脉癌栓者中的表达0.522±0.144。(P<0.05)。而与有无包膜,肿瘤病理分级和AFP阳性与否无明显相关。肝癌组织Plk1蛋白表达明显高于肝硬化及正常肝组织中的Plk1蛋白表达量。
     结论:
     1.原发性肝癌组织中Plk1mRNA及蛋白表达均明显增加;
     2.Plk1的表达高低与原发性肝癌的肿瘤直径大小及脉管侵犯有明显相关。
     第二章靶向Plk1的shRNA真核表达载体构建和鉴定
     目的:构建靶向Plk1的短发夹状RNA(shRNA)真核表达载体。
     方法:设计合成两条针对Plk1的短发夹状RNA及一条阴性对照无意义短发夹状RNA,将其导入pGenesi1-2质粒中。用菌液PCR、质粒双酶切及重组质粒测序的方法,检验构建载体的正确性。
     结果:分别合成针对Plk1基因251—269及1396—1417位点的siRNA序列及阴性序列,成功将其导入真核表达载体,经菌液PCR、质粒双酶切及重组质粒测序,均显示siRNA序列已成功装入载体。
     结论:构建携带针对Plk1基因shRNA真核表达载体成功。
     第三章靶向Plk1的siRNA对肝癌BEL-7402细胞株生物学行为的影响
     目的:利用RNA(RNAi)干扰技术,研究表达Plk1的短发夹RNA(shRNA)载体对肝癌细胞株BEL-7402生物学行为的影响。
     方法:根据靶基因的不同区域设计两组shRNA以及一个阴性对照,利用电穿孔法转染入肝癌细胞株BEL-7402,获得稳定表达的克隆后,半定量RT-PCR检测肝癌细胞株BEL-7402的Plk1、Cdc25C、p53mRNA的变化,Western blot检测Plk1蛋白的表达,MTT法检测细胞增殖,流式细胞仪检测细胞周期变化。
     结果:利用电穿孔将载体转入肝癌细胞株BEL-7402,利用G418筛选,获得稳定表达的克隆。半定量RT-PCR检测转染shRNA载体的BEL—7402细胞的Plk1表达情况,Plk1siRNA-251,Plk1siRNA-1396,Plk1siRNA-hk转染组与对照组分别为0.184±0.014;0.218±0.043;0.683±0.071;0.729±0.053。检测p53mRNA分别为0.425±0.052;0.400±0.056;0.180±0.027;0.174±0.027。检测Cdc25C mRNA分别为0.387±0.083:0.353±0.059;0.816±0.052;0.837±0.065。Western blot检测BEL—7402细胞转染shRNA载体后的Plk1蛋白的表达分别为0.032±0.007、0.040±0.008、0.272±0.041、0.278±0.053。MTT检测发现转染shRNA载体后BEL—7402细胞增殖明显减慢。细胞周期检测证实转染Plk1siRNA可以引起BEL-7402细胞G0/G1期减少,G_2/M期增高,而对S期影响不大。
     结论:
     1.成功筛选出两条能特异而高效抑制Plk1基因表达的shRNA,为进一步研究该基因的功能和作用机制提供了新的手段;
     2.用电穿孔法筛选出稳定表达Plk1 siRNA的载体的BEL-7402细胞克隆,发现其可以显著抑制Plk1 mRNA的表达;并能引起p53mRNA的升高与Cdc25C mRNA的下降;
     3.用电穿孔法筛选出稳定表达Plk1 siRNA的载体的BEL-7402细胞克隆,发现其可以显著抑制Plk1蛋白的表达;
     4.BEL-7402细胞转染Plk1 siRNA载体后,可明显抑制细胞增殖;改变细胞周期分布。
     第四章靶向Plk1的siRNA对肝癌BEL-7402细胞株化疗敏感性影响的实验研究
     目的:利用RNA(RNAi)干扰技术,研究表达靶向Plk1的短发夹RNA(shRNA)载体对肝癌细胞株BEL-7402化疗敏感性的影响。
     方法:将Plk1siRNA-251,Plk1siRNA-1396,Plk1siRNA-hk转染组与对照组的BEL-7402细胞作为研究对象,用长春新碱处理细胞后,用MTT法检测四组细胞的生长抑制率,计算IC_(50)值,流式细胞仪和Hoechest染色法检测各组细胞凋亡。
     结果:长春新碱处理后,Plk1siRNA-251组和Plk1siRNA-1396组与BEL7402组之间的生长抑制率有显著性差异(P<0.01)。Plk1siRNA-hk组与BEL7402组之间的生长抑制率无显著性差异(P>0.05)。Plk1siRNA-251组的IC_(50)为14.541ug/ml,较Plk1siRNA-hk组IC_(50)22.380ug/ml降低35.02%,较BEL7402组IC_(50)21.176 ug/ml降低31.33%;而Plk1siRNA-1396组的IC_(50)为13.413ug/ml,较Plk1siRNA-hk组IC_(50)降低40.07%,较BEL7402组IC_(50)降低36.66%。5ug/ml浓度长春新碱作用24h后,Plk1siRNA-251组和Plk1siRNA-1396组凋亡指数分别为19.09%±3.97%、19.80%±5.47%明显高于Plk1siRNA-hk组和BEL7402组(P<0.01)。
     结论:利用RNA干扰沉默肝癌细胞Plk1基因能增加长春新碱的化疗敏感性,值得进一步研究。
Operation is the main treatment to deal with primary hepatocellularcarcinoma(PHC)which is one of the most common malignant tumors inChina at present. Chemotherapy and radiotherapy play an important role inthe systemic treatment of PHC. However, the effects of chemotherapy areoverall dissatisfying because PHC is not sensitve to that. Therefore,how todegrade the toxicity of chemotherapeutics and strengthen the curative effectof chemotherapy deserve study and research thoroughly. With thedevelopment of molecular biology technique and gene research, genetictherapy has been applied on the liver cancer, which lead to a new treatmentfor PHC.
     Plk1(Polo-like kinase 1),a member of the polo-like kinase family whichis the mammalian serine/threonine protein kinase, plays pivotal roles in theregulation of cell cycle progression as a important DNA damage checkpointkinase in G_2/M phase of the mitosis. Plk1 activity is necessary for entry intomitosis, centrosome maturation, bipolar spindle formation and cytokinesis.Plk1contributes to the pathways which positively trigger entry into andprogression through mitosis and accelerate cellular proliferation. In multiplekind of tumors, Overexpression of Plk1 is observed and the level of Plk1expression has prognostic value for predicting outcomes in patients. PHCusually presented with simultaneouly underlying liver disease, eg, liver cirrhosis and chronic hepatitis which cause eontinueous liver damage andsubsequent hepatocyte regeneration result in a tendency for the control geneof cell cycle to mutate, and the intensified hepatocyte regeneration keep theDNA mutation from repair and make it multiplied in the regenerationprocess, and finally leading to the occurrence. Thus, We select Plk1 as thepotential gene therapy target to regulation the function of the DNA damagecheckpoint of G_2/M phase so as to develop a anticancer approach.
     RNA interference (RNAi) is a new powerful tool to inhibit the targetgene expression by post-transcriptional gene silencing, which mediated bydouble-stranded RNA (dsRNA) destructing the endogenous target mRNAssequence-specificly. The technical application has been utilized widely in theresearch of functional genome and tumor gene therapy. So silencing theexpression Plk1 in hepatocellular cells and strengthen the sensitive ofchemotherapeutics by RNA interference maybe bring a new pathway to treatPHC.
     PartⅠ
     Expression and clinical significance of Polo-like kinase 1 inprimary hepatocellular carcinoma
     Objective To investigate the expressions of Polo-like kinase 1 mRNAand protein in primary hepatocellular carcinoma with regard to the clinicalsignificance.
     Methods Expressions of Pik1 mRNA and protein were detected bysemi-quantitative RT-PCR、Western blot technique in 21 cases ofPHC,7cases of hepatic cirrhosis and 7cases of normal liver tissues ascontrols. The relevance between the expressions of Plk1 mRNA and theclinical pathology of the patients of PHC were studied.
     Results Semi-quantitative RT-PCR demonstrated that the expressionratio of Plk1 mRNA were 0.572±0.144 in the tissues of PHC, whichsignificantly up-regulated compared with that in hepatic cirrhosis as0.250±0.057 and normal hepatic tissues as 0.218±0.073(P<0.01). Theexpression of Plk1 mRNA was significantly positive correlated with the sizeof the tumor and the portal vein embolism. Western blot demonstrated thatthe expression of Plk1 protein also were higher than that in hepatic cirrhosisand normal hepatic tissues.
     Conclusion
     1. The expressions of Plk1 mRNA and protein were significantlyincreased in PHC tissues.
     2. The expressions of Plk1 mRNA was in high relevance with the tumorsize and the portal vein embolism of PHC.
     PartⅡ
     Constuction and identificantion of Eukaryotic expressionvector of siRNA targeting Plk1 gene
     Objective To construct the eukaryotic expression vector of siRNAtargeting Plk1 gene.
     Methods One pair of short hairpin RNA targeting Plk1 and anegative control nonsense short hairpin RNA were designed and synthesizedand inserted into plasmid pGenesil-2 to generate siRNA eukaryoticexpression vector. Their correct construction were tested by PCR、releasedby Barn H and HindⅢand recombinatant plasmid sequencing.
     Results The short hairpin RNA motifs of targeting Plk1 gene 251—269 site and 1396—1417 site and the negative control short hairpin RNAmotifs were synthesized and inserted into plasmid pGenesil-2.Therecombinatant siRNA plasmid were successfully constructed by directbacteria solution PCR、double digestion and nucleic acid sequencingidentification.
     Conclusion Construct the eukaryotic expression vector of siRNAtargeting Plk1 gene successfully
     PartⅢ
     Effect of siRNA targeting Plk1 gene on the biological behaviorof hepatocellular carcinoma cell line BEL-7402
     Objective To study the influence of shRNA targeting Plk1 on thebiological behavior of hepatocellular carcinoma cell line BEL-7402.
     Methods The recombinant eukaryotic plasmids were transmittedinto BEL-7402 cells by electroporation. After gained stable expressedclones,the biological behabiors of the Plk1 siRNA transfected cells wereobserved by the experiments such as semi-quantitive RT-PCR、Westernblot、MTr and flow cytometry.
     Results The stable expressed Plk1 siRNA cell clone were gainedselected by G418 after electroporation transfection into BEL-7402successfully. We identified cell sublines stably transfected byPlk1siRNA-251, Plk1siRNA-1396, Plk1siRNA-hk. Semi-quanfitive RT-PCRdemonstrated that the expression of Plk1 and Cdc25C mRNA decreased andthe expression of p53 mRNA increased in Plk1siRNA-251,Plk1siRNA-1396groups significantly compared with that in Plk1siRNA-hk and controlgroups. Western blot demonstrated that the expression ratio of Plk1 proteinwere 0.032±0.007、0.040±0.008、0.272±0.041、0.278±0.053 in Plk1siRNA-251,Plk1siRNA-1396, Plk1siRNA-hk and control groups separately. Comparedwith other two groups, Plk1siRNA-251 and Plk1siRNA-1396 groups grewmore slowly and had a higher proportion of cells in G_2/M phase whereas lesscells in G_0/G_1 phase.
     Conclusion:
     1. Selected a pair of shRNA targeting Plk1 gene, which provide a new meas of the functional and mechanism to research Plk1 gene.
     2. The expressions of Plk1 mRNA and protein were inhibited which tocause the expression of p53 mRNA to elevate and Cdc25C mRNA todescend in stable expressed Plk1 siRNA cell done.
     3. The transfection of targeting Plk1 siRNA vector could inhabit theproliferation of BEL-7402 cells and change the cell cycle..
     PartⅣ
     Study of the siRNA targeting Plk1 gene inducing sensitivity ofhepatocellular carcinoma cell line BEL-7402 to chemotherapy
     Objective To study the influence of chemotherapy sensitivity ofshRNA targeting Plk1 to hepatocellular carcinoma cell line BEL-7402.
     Methods Using the hepatocellular carcinoma cells constructed inprevious experiment, MTT assay was used to detect the cell growthinhibiting rate of transgene tumor cells affected by vincristine and IC_(50) werecalculated.Flow cytometry and Hoechst dyeing was used to demonstrate theapoptosis index of different cells.
     Results Observed by MTT assay to hepatocellular carcinoma cellsaffected by vincristine, the growth inhibiting rate of Plk1siRNA-251 andPlk1siRNA-1396 group cells were higher significantly than that ofPlk1siRNA-hk and control group cells(P<0.01).The IC_(50) of Plk1siRNA-251group was 14.541 ug/ml and cut down 35.02%, 31.33% compared withPlk1siRNA-hk group and control group. The IC_(50) of Plk1siRNA-1396 groupwas 13.413ug/ml and cut down 40.07 %,36.66 % compared withPlk1siRNA-hk group and control group. Afer given 5ug/ml vincristine 24hlater, the apoptosis index of Plk1siRNA-251 and Plk1siRNA-1396 groupwere 19.09%±3.97 %,19.80%±5.47% and increased significantlycompared with Plk1siRNA-hk group and control group(P<0.01).
     Conclusion The siRNAs targeting Plk1 can not only suppress theexpression of Plk1 in hepatocellular cell, but can also enhance thechemotherapy sensitivity,which deserve to be studied further.
引文
[1] 中华人民共和国卫生部.2005年中国卫生统计提要.北京:中华人民共和国卫生部,2005:79.
    [2] 吴孟超,陈汉,沈锋.原发性肝癌的外科治疗—附5524例报告[J].中华外科杂志.2001,39(1):25—28.
    [3] Grazi G L, Ercolani G, Pierangeli F, et al. Improved results of liver resection for hepatocellular carcinoma on cirrhosis give the procedure added value.[J]. Ann Surg. 2001, 234(1): 71-78.
    [4] 杨秉辉,夏景林,黄力文,等.我国肝癌“临床相”30年的变迁—原发性肝癌3250例的对比研究[J].中华医学杂志.2003,83(12):1053-1057.
    [5] Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.[J]. Nature. 1998, 391(6669): 806-811.
    [6] Hannon G J. RNA interference.[J]. Nature. 2002, 418(6894): 244-251.
    [7] Bak D. RNAi-RNA interference—an efficient way for silence.[J]. Postepy Biochem. 2003, 49(3): 136-146.
    [8] Harborth J, Elbashir S M, Bechert K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs.[J]. J Cell Sci. 2001, 114(Pt 24): 4557-4565.
    [9] Zhou B B, Elledge S J. The DNA damage response: putting checkpoints in perspective.[J]. Nature. 2000, 408(6811): 433-439.
    [10] Wolf G, Elez R, Doermer A, et al. Prognostic significance of polo-like kinase (Plk) expression in non-small cell lung cancer.[J]. Oncogene. 1997, 14(5): 543-549.
    [11] Kanaji S, Saito H, Tsujitani S, et al. Expression of polo-like kinase 1 (Plk1) protein predicts the survival of patients with gastric carcinoma.[J]. Ontology. 2006, 70(2): 126-133.
    [12] Strebhardt K, Kneisel L, Linhart C, et al. Prognostic value of pololike kinase expression in melanomas.[J]. JAMA. 2000, 283(4): 479-480.
    [13] 颜子颖、王海林译.精编分子生物学实验指南.北京:科学出版社,1998. 120-126.
    [14] 颜子颖、王海林译.精编分子生物学实验指南.北京:科学出版社,1998:696—795.
    [15] 颜子颖、王海林译.精编分子生物学实验指南.北京:科学出版社,1998:329-400.
    [16] Golsteyn R M, Schultz S J, Bartek J, et al. Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae CdcS.[J]. J Cell Sci. 1994, 107(Pt 6): 1509-1517.
    [17] Sanchez Y, Bachant J, Wang H, et al. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms.[J]. Science. 1999, 286(5442): 1166-1171.
    [18] Do C A, Tavares A, Glover D M. Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes.[J]. Nat Cell Biol. 2001, 3(4): 421-424.
    [19] De C G, Do C A, Lallena M J, et al. Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability.[J]. EMBO J. 2001, 20(11): 2878-2884.
    [20] Ohkura H, Hagan I M, Glover D M. The conserved Schizosaccharomyces pombe kinase plol, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells.[J]. Genes Dev. 1995, 9(9): 1059-1073.
    [21] Mundt K E, Golsteyn R M, Lane H A, et al. On the regulation and function of human polo-like kinase 1 (Plk1): effects of overexpression on cell cycle progression.[J]. Biochem Biophys Res Commun. 1997, 239(2): 377-385.
    [22] Holtrich U, Wolf G, Brauninger A, et al. Induction and down-regulation of Plk, a human serine/threonine kinase expressed in proliferating cells and tumors.[J]. Proc Natl Acad Sci U S A. 1994, 91(5): 1736-1740.
    [23] Takai N, Miyazaki T, Fujisawa K, et al. Expression of polo-like kinase in ovarian cancer is associated with histological grade and clinical stage.[J]. Cancer Lett. 2001, 164(1): 41-49.
    [24] Weichert W, Ullrich A, Schmidt M, et al. Expression patterns of polo-like kinase 1 in human gastric cancer.[J]. Cancer Sci. 2006, 97(4): 271-276.
    [25] Takahashi T, Sano B, Nagata T, et al. Polo-like kinase 1 (Plk1) is overexpressed in primary colorectal cancers.[J]. Cancer Sci. 2003, 94(2): 148-152.
    [26] Kitamura T, Watanabe S, Sate N. Liver regeneration, liver cancers and cyclins.[J]. J Gastroenterol Hepatol. 1998, 13 Suppl: 96-99.
    [27] Qian Y W, Erikson E, Li C, et al. Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis.[J]. Mol Cell Biol. 1998, 18(7): 4262-4271.
    [28] Abrieu A, Brassae T, Galas S, et al. The Polo-like kinase Plx1 is a component of the MPF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs.[J]. J Cell Sci. 1998, 111 (Pt 12): 1751-1757.
    [29] Watanabe N, Arai H, Nishihara Y, et al. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP.[J]. Proc Natl Acad Sci U S A. 2004, 101(13): 4419-4424.
    [30] Yuan J, Eckerdt F, Bereiter-hahn J, et al. Cooperative phosphorylation including the activity of polo-like kinase 1 regulates the subcellular localization of cyclin B1.[J]. Oncogene. 2002, 21(54): 8282-8292.
    [31] Smits V A, Klompmaker R, Arnaud L, et al. Polo-like kinase-1 is a target of the DNA damage checkpoint.[J]. Nat Cell Biol. 2000, 2(9): 672-676.
    [32] Weichert W, Kristiansen G, Winzer K J, et al. Polo-like kinase isoforms in breast cancer: expression patterns and prognostic implications.[J]. Virchows Arch. 2005, 446(4): 442-450.
    [33] Guo S, Kemphues K J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed.[J]. Cell. 1995, 81(4): 611-620.
    [34] Worby C A, Simonson-leff N, Dixon J E. RNA interference of gene expression (RNAi) in cultured Drosophila cells.[J]. Sci STKE. 2001, 2001(95): PL1.
    [35] Schmid A, Schindelholz B, Zinn K. Combinatorial RNAi: a method for evaluating the functions of gene families in Drosophila.[J]. Trends Neurosci. 2002, 25(2): 71-74.
    [36] Tang G, Galili G. Using RNAi to improve plant nutritional value: from mechanism to application.[J]. Trends Biotechnol. 2004, 22(9): 463-469.
    [37] Cogoni C, Macino G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase.[J]. Nature. 1999, 399(6732): 166-169.
    [38] Paddison P J, Caudy A A, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells.[J]. Genes Dev. 2002, 16(8): 948-958.
    [39] Sui G, Soohoo C, Affar B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.[J]. Proc Natl Acad Sci U S A. 2002, 99(8): 5515-5520.
    [40] Czauderna F, Santel A, Hinz M, et al. Inducible shRNA expression for application in a prostate cancer mouse modeL[J]. Nucleic Acids Res. 2003, 31(21): e127.
    [41] Golsteyn R M, Mundt K E, Fry A M, et al. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function.[J]. J Cell Biol. 1995, 129(6): 1617-1628.
    [42] Van V M, Medema R H. Getting in and out of mitosis with Polo-like kinase-1.[J]. Oncogene. 2005, 24(17): 2844-2859.
    [43] 颜子颖、王海林译.精编分子生物学实验指南.北京:科学出版社,1998:3.
    [44] Elbashir S M, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs.[J]. Genes Dev. 2001, 15(2): 188-200.
    [45] Brummelkamp T R, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells.[J]. Science. 2002, 296(5567): 550-553.
    [46] Yu J Y, Deruiter S L, Turner D L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells.[J]. Proc Natl Acad Sci U S A. 2002, 99(9): 6047-6052.
    [47] Tomari Y, Zamore P D. Perspective: machines for RNAi.[J]. Genes Dev. 2005, 19(5): 517-529.
    [48] Lee N S, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells.[J]. Nat Biotechnol. 2002, 20(5): 500-505.
    [49] Castanotto D, Li H, Rossi J J. Functional siRNA expression from transfected PCR products.[J]. RNA. 2002, 8(11): 1454-1460.
    [50] Uchinmi T, Longo D L, Ferris D K. Cell cycle regulation of the human polo-like kinase (Pik) promoter.[J]. J Biol Chem. 1997, 272(14): 9166-9174.
    [51] Weichert W, Schmidt M, Gekeler V, et al. Polo-like kinase 1 is overexpressed in prostate cancer and linked to higher tumor grades.[J]. Prostate. 2004, 60(3): 240-245.
    [52] Ito Y, Miyoshi E, Sasald N, et al. Polo-like kinase 1 overexpression is an early event in the progression of papillary carcinoma.[J]. Br J Cancer. 2004, 90(2): 414-418.
    [53] Jang Y J, Kim Y S, Kim W H. Oncogenic effect of Polo-like kinase 1 expression in human gastric carcinomas.[J]. Int J Oncol. 2006, 29(3): 589-594.
    [54] Knecht R, Oberhauser C, Strebhardt K. elk (polo-like kinase), a new prognostic marker for oropharyngeal carcinomas.[J]. Int J Cancer. 2000, 89(6): 535-536.
    [55] Spankuch-schmitt B, Bereiter-hahn J, Kaufmann M, et al. Effect of RNA silencing of polo-like kinase-1 (Plk1) on apoptosis and spindle formation in human cancer cells.[J]. J Natl Cancer Inst. 2002, 94(24): 1863-1877.
    [56] Bachewich C, Thomas D Y, Whiteway M. Depletion of a polo-like kinase in Candlda albicans activates cyclase-dependent hyphal-like growth.[J]. Mol Biol Cell. 2003, 14(5): 2163-2180.
    [57] Zhou Q, Bai M, Su Y. Effect of antisense RNA targeting polo-like kinase 1 on cell cycle and proliferation in A549 cells.[J]. Chin Med J (Engl). 2004, 117(11): 1642-1649.
    [58] Mundt K E, Golsteyn R M, Lane H A, et al.On the regulation and function of human polo-like kinase 1(Plk1): effects of overexpression on cell cycle progression.[J]. Biochem Biophys Res Commun. 1997, 239(2): 377-385.
    [59] Mello C C, Conte D J. Revealing the world of RNA interference.[J]. Nature. 2004, 431(7006): 338-342.
    [60] Turner D L Expiratory resistive loaded breathing in humans increases fluctuations of force production in submaximal isometric quadriceps contractions.[J]. Neurosci Lett. 2002, 328(1): 13-16.
    [61] 萨姆布鲁克,弗里奇,曼尼阿蒂斯,.分子克隆实验指南(第2版).北京:科学出版社,1992:765-801.
    [62] 颜子颖、王海林译.精编分子生物学实验指南.北京:科学出版社,1998:285.
    [63] 司徒镇强,吴军正.细胞培养.西安:世界图书出版社西安公司,1996.
    [64] Smith M R, Wilson M L, Hamanaka R, et al. Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase.[J]. Biochem Biophys Res Commun. 1997, 234(2): 397-405.
    [65] Van V M, Van W B, Vader G, et al. Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis.[J]. J Biol Chem. 2004, 279(35): 36841-36854.
    [66] Elez R, Piiper A, Giannini C D, et al. Polo-like kinasel, a new target for antisense tumor therapy.[J]. Biochem Biophys Res Commun. 2000, 269(2): 352-356.
    [67] Cogswell J P, Brown C E, Bisi J E, et al. Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function.[3]. Cell Growth Differ. 2000, 11(12): 615-623.
    [68] Scherr M, Morgan M A, Eder M. Gene silencing mediated by small interfering RNAs in mammalian cells.[J]. Curr Med Chem. 2003, 10(3): 245-256.
    [69] Hutvagner G. Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation.[J]. FEBS Lett. 2005, 579(26): 5850-5857.
    [70] Zilberman D, Cao X, Jacobsen S E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation.[J]. Science. 2003, 299(5607): 716-719.
    [71] Reagan-shaw S, Abroad N. Silencing of polo-like kinase (Plk)1 via siRNA causes induction of apoptosis and impairment of mitosis machinery in human prostate cancer cells: implications for the treatment of prostate cancer.[J]. FASEB J. 2005, 19(6): 611-613.
    [72] 兰斌,刘炳亚,陈雪华,等.保罗样激酶1表达抑制导致胃癌MKN45细胞有丝分裂停滞[J].中华肿瘤杂志.2006,28(3):164-168.
    [73] Obaya A J, Sedivy J M. Regulation of cyclin-Cdk activity in mammalian cells.[J]. Cell Mol Life Sci. 2002, 59(1): 126-142.
    [74] Roshak A K, Capper E A, Imburgia C, et al. The human polo-like kinase, Plk, regulates cdc2/eyclin B through phosphorylation and activation of the cdc25C phosphatase.[J]. Cell Signal. 2000, 12(6): 405-411.
    [75] Toyoshima-morimoto F, Taniguchi E, Shinya N, et al. Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase.[J]. Nature. 2001, 410(6825): 215-220.
    [76] Toyoshima-morimoto F, Taniguchi E, Nishida E. Plk1 promotes nuclear translocation of human Cdc25C during prophase.[J]. EMBO Rep. 2002, 3(4): 341-348.
    [77] Qian Y W, Erikson E, Maller J L Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx1.[J]. Mol Cell Biol. 1999, 19(12): 8625-8632.
    [78] Ree A H, Bratland A, Nome R V, et al. Repression of mRNA for the Plk cell cycle gene after DNA damage requires BRCA1.[J]. Oncogene. 2003, 22(55): 8952-8955.
    [79] Winters Z E. P53 pathways involving G2 checkpoint regulators and the role of their subcellular localisation.[J]. J R Coll Surg Edinb. 2002, 47(4): 591-598.
    [80] Ando K, Ozaki T, Yamamoto H, et al. Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation.[J]. J Biol Chem. 2004, 279(24): 25549-25561.
    [81] Liu X, Erikson R L. Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells.[J]. Proc Natl Acad Sci U S A. 2003, 100(10): 5789-5794.
    [82] Chen J, Dai G, Wang Y Q, et al. Polo-like kinase 1 regulates mitotic arrest after UV irradiation through dephosphorylation of p53 and inducing p53 degradation.[J]. FEBS Lett. 2006, 580(15): 3624-3630.
    [83] Lee K S, Yuan Y L, Kuriyama R, et al. Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1.[J]. Mol Cell Biol. 1995, 15(12): 7143-7151.
    [84] Abroad N. Polo-like kinase (Plk) 1: a novel target for the treatment of prostate cancer.[J]. FASEB J. 2004, 18(1): 5-7.
    [85] Ait-si-ali S, Guaseoni V, Harel-bellan A.[RNA interference and its possible use in cancer therapy][J]. Bull Cancer. 2004, 91(1): 15-18.
    [86] 曾庆华,吕新生,汤辉焕.MTT测定恶性肿瘤细胞对化疗药物的敏感性[J].中国普通外科杂志.2000,9(6):552-554.
    [87] Kanaji S, Saito H, Tsujitani S, et al. Expression of polo-like kinase 1 (Plk1) protein predicts the survival of patients with gastric carcinoma.[J]. Ontology. 2006, 70(2): 126-133.
    [88] Jang Y J, Kim Y S, Kim W H. Oneogenic effect of Polo-like kinase 1 expression in human gastric carcinomas.[J]. Int J Oncol. 2006, 29(3): 589-594.
    [89] Weichert W, Denkert C, Schmidt M, et al. Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma.[J]. Br J Cancer. 2004, 90(4): 815-821.
    [90] 刘林,张敏,邹萍,等.Plk1基因沉默增强K562/A02细胞对阿霉素敏感性的实验研究[J].癌症.2006(04).
    [91] Fan Y, Zheng S, Xu Z F, et al. Apoptosis induction with polo-like kinase-1 antisense phosphorothioate oligodeoxynucleotide of colon cancer cell line SW480.[J]. World J Gastroenterol. 2005, 11(29): 4596-4599.
    [92] Masuda Y, Nishida A, Hori K, et al. Beta-hydroxyisovalerylshikonin induces apoptosis in human leukemia cells by inhibiting the activity of a polo-like kinase 1 (Plk1).[J]. Oncogene. 2003, 22(7): 1012-1023.
    [93] Neef R, Preisinger C, Sutcliffe J, et al. Phosphorylation of mitotic kinesin-like protein 2 by polo-like ldnase 1 is required for cytokinesis.[J]. J Cell Biol. 2003, 162(5): 863-875.
    [94] Haskell, cm. Antineoplastic agents:Cancer Treatment[M]. 4th ed. PhiladelPhia: W.B. Saunders ComPany, 1995: 78-165.
    [95] Yokoyama G, Fujii T, Tayama K, et al. PKCdelta and MAPK mediate G(1) arrest induced by PMA in SKBR-3 breast cancer cells.[J]. Biochem Biophys Res Commun. 2005, 327(3): 720-726.
    [96] Chambers T C, Mcavoy E M, Jacobs J W, et al. Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells.[J]. J Biol Chem. 1990, 265(13): 7679-7686.
    [97] Power C, Fanning N, Redmond H P. Cellular apoptosis and organ injury in sepsis: a review.[J]. Shock. 2002, 18(3): 197-211.
    [98] Igney F H, Krammer P H. Death and anti-death: turnout resistance to apoptosis.[J]. Nat Rev Cancer. 2002, 2(4): 277-288.
    [99] Gao Q, Huang X, Tang D, et al. Influence of chkl and plk1 silencing on radiationor cisplatin-induced cytotoxicity in human malignant cells.[J]. Apoptosis. 2006, 11(10): 1789-1800.
    [100] Liu X, Erikson R L. Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells.[J]. Proc Natl Acad Sci U S A. 2003, 100(10): 5789-5794.
    [1] Barr F A, Sillje H H, Nigg E A. Polo-like kinases and the orchestration of cell division.[J]. Nat Rev Mol Cell Biol. 2004, 5(6): 429-440.
    [2] Golsteyn R M, Schultz S J, Bartek J, et al. Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5.[J]. J Cell Sci. 1994, 107 (Pt 6): 1509-1517.
    [3] Lee K S, Grenfell T Z, Yarm F R, et al. Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk.[J]. Proc Natl Acad Sci U S A. 1998, 95(16): 9301-9306.
    [4] Jang Y J, Ma S, Terada Y, et al. Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase.[J]. J Biol Chem. 2002, 277(46): 44115-44120.
    [5] Lowery D W, Mohammad D H, Elia A E, et al. The Polo-box domain: a molecular integrator of mitotic kinase cascades and Polo-like kinase function.[J].Cell Cycle. 2004, 3(2): 128-131.
    [6] Sunkel C E, Glover D M. polo, a mitotic mutant of Drosophila displaying abnormal spindle poles.[J]. J Cell Sci. 1988, 89 (Pt 1): 25-38.
    [7] Elia A E, Rellos P, Haire L F, et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain.[J]. Cell. 2003, 115(1): 83-95.
    [8] Elia A E, Cantley L C, Yaffe M B. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates.[J]. Science. 2003, 299(5610): 1228-1231.
    [9] Cheng K Y, Lowe E D, Sinclair J, et al. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex.[J]. EMBO J. 2003, 22(21): 5757-5768.
    [10] Lee K S, Song S, Erikson R L. The polo-box-dependent induction of ectopic septal structures by a mammalian polo kinase, plk, in Saccharomyces cerevisiae.[J]. Proc Natl Acad Sci U S A. 1999, 96(25): 14360-14365.
    [11] Zhou T, Aumais J P, Liu X, et al. A role for Plk1 phosphorylation of Nude in cytokinesis.[J]. Dev Cell. 2003, 5(1): 127-138.
    [12] Toyoshima-morimoto F, Taniguchi E, Nishida E. Plk1 promotes nuclear translocation of human Cdc25C during prophase.[J]. EMBO Rep. 2002, 3(4): 341-348.
    [13] Lane H A, Nigg E A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes.[J]. J Cell Biol. 1996, 135(6 Pt 2): 1701-1713.
    [14] De C G, Do C A, Lallena M J, et al. Requirement of Hspg0 for centrosomal function reflects its regulation of Polo kinase stability.[J]. EMBO J. 2001, 20(11): 2878-2884.
    [15] Do C A, Tavares A, Glover D M. Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes.[J]. Nat Cell Biol. 2001, 3(4): 421-424.
    [16] Descombes P, Nigg E A. The polo-like kinase Plx1 is required for M phase exit and destruction of mitotic regulators in Xenopus egg extracts.[J]. EMBO J. 1998, 17(5): 1328-1335.
    [17] Elledge S J. Cell cycle checkpoints: preventing an identity crisis.[J]. Science. 1996, 274(5293): 1664-1672.
    [18] Smits V A, Klompmaker R, Amaud L, et al. Polo-like kinase-1 is a target of the DNA damage checkpoint.[J]. Nat Cell Biol. 2000, 2(9): 672-676.
    [19] Qian Y W, Eriksen E, Li C, et al. Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis.[J]. Mol Cell Biol. 1998, 18(7): 4262-4271.
    [20] Abrieu A, Brassac T, Galas S, et al. The Polo-like kinase Plx1 is a component of the MPF amplification loop at the G2/M-phase transition of the call cycle in Xenopus eggs.[J]. J Cell Sci. 1998, 111 (Pt 12): 1751-1757.
    [21] Watanabe N, Arai H, Nishihara Y, et al. M-phase kinascs induca phospho-dcpendent ubiquitination of somatic Weel by SCFbeta-TrCP.[J]. Proc Natl Acad Sci U S A. 2004, 101(13): 4419-4424.
    [22] Yuan J, Eckerdt F, Bereiter-hahn J, et al. Cooperative phosphorylation including the activity of polo-like kinase 1 regulates the subcallular localization of cyclin B1.[J]. Oncogcne. 2002, 21(54): 8282-8292.
    [23] Schild D, Byers B. Diploid spore formation and other meiotic effects of two call-division-cycle mutations of Saccharomycas carevisiae.[J]. Genetics. 1980, 96(4): 859-876.
    [24] Ohkura H, Hagan I M, Glover D M. The conserved Schizosaccharomycas pombe kinasc plol, required to form a bipolar spindle, the actin ring, and septum, can drive scptum formation in G1 and G2 calls.[J]. Genes Dee. 1995, 9(9): 1059-1073.
    [25] Spankuch-schmitt B, Bereiter-hahn J, Kaufmann M, et al. Effect of RNA silencing of polo-like kinase-1 (Plk1) on apoptosis and spindle formation in human cancar calls.[J]. J Natl Cancar Inst. 2002, 94(24): 1863-1877.
    [26] Lane H A, Nigg E A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes.[J]. J Cell Biol. 1996, 135(6 Pt 2): 1701-1713.
    [27] Yarm F R. Plk phosphorylation regulates the microtubule-stabilizing protein TCTP.[J]. Mol Cell Biol. 2002, 22(17): 6209-6221.
    [28] Casenghi M, Meraldi P, Weinhart U, et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation.[J]. Dev Cell. 2003, 5(1): 113-125.
    [29] Lee K S, Yuan Y L, Kuriyama R, et al. Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1.[J]. Mol Cell Biol. 1995, 15(12): 7143-7151.
    [30] Holtrich U, Wolf G, Brauninger A, Karn T, Bob.me B, Rubsamen-waigmann H S K. Induction and down-regulation of Plk, a human scrine/threonine kinase expressed in proliferating cells and rumors.[J]. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1736-40. 1994.
    [31] Yuan J, Horlin A, Hock B, Stutte Hj, Rubsamen-waigmann H S K. Polo-like kinase, a novel marker for cellular proliferation.[J]. Am J Pathol.1997 Apr;15o(4):1165-72. 1997.
    [32] Smith M R, Wilson M L, Hamanaka R, et al. Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase.[J]. Biochem Biophys Rcs Commun. 1997, 234(2): 397-405.
    [33] Van V M, Van W B, Vadcr G, et al. Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokincsis.[J]. J Biol Chem. 2004, 279(35): 36841-36854.
    [34] Wolf G, Elez R, Doermer A, et al. Prognostic significance of polo-like kinase (Plk) expression in non-small cell lung cancer.[J]. Oncogene. 1997, 14(5): 543-549.
    [35] Knecht R, Elez R, Oechler M, et al. Prognostic significance of polo-like kinase (Plk) expression in squamous cell carcinomas of the head and neck.[J]. Cancer Res. 1999, 59(12): 2794-2797.
    [36] Knecht R, Oberhauser C, Strebhardt K. Plk (polo-like kinase), a new prognostic marker for oropharyngeal carcinomas.[J]. Int J Cancer. 2000, 89(6): 535-536.
    [37] Kanaji S, Saito H, Tsujitani S, et al. Expression of polo-like kinase 1 (Pik1) protein predicts the survival of patients with gastric carcinoma.[J]. Oncology. 2006, 70(2): 126-133.
    [38] Takal N, Miyazaki T, Fujisawa K, Nasu K, Hamanaka R M I. Expression of polo-like kinase in ovarian cancer is associated with histological grade and clinical stage.[J]. Cancer Lett. 2001 Mar 10;164(1):41-9. 2001.
    [39] Kneisel L, Strebhardt K, Bemd A, et al. Expression of polo-like kinase (Plk1) in thin melanomas: a novel marker of metastatic disease.[J]. J Cutan Pathol. 2002, 29(6): 354-358.
    [40] Strebhardt K, Kneisel L, Linhart C, et al. Prognostic value of pololike kinase expression in melanomas.[J]. JAMA. 2000, 283(4): 479-480.
    [41] Weichert W, Kristiansen G, Winzer K J, et al. Polo-like kinase isoforms in breast cancer: expression patterns and prognostic implications.[J]. Virchows Arch. 2005, 446(4): 442-450.
    [42] Takai N, Miyazaki T, Fujisawa K, et al. Expression of polo-like kinase in ovarian cancer is associated with histological grade and clinical stage.[J]. Cancer Lett. 2001, 164(1): 41-49.
    [43] Weiehert W, Denkert C, Sehmidt M, et al. Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma.[J]. Br J Cancer. 2004, 90(4): 815-821.
    [44] Macmillan J C, Hudson J W, Bull S, et al. Comparative expression of the mitotic regulators SAK and Plk in colorectal cancer.[J]. Ann Surg Oncol. 2001, 8(9): 729-740.
    [45] Takahashi T, Sano B, Nagata T, et al. Polo-like kinase 1 (Plkl) is overexpressed in primary coloreetal cancers.[J]. Cancer Sci. 2003, 94(2): 148-152.
    [46] Dietzmann K, Kirches E, Von B, et al. Inereased human polo-like kinase-1 expression in gliomas.[J]. J Neurooncol. 2001, 53(1): 1-11.
    [47] Ito Y, Miyoshi E, Sasaki N, et al. Polo-like kinase 1 overexpression is an early event in the progression of papillary carcinoma.[J]. Br J Cancer. 2004, 90(2): 414-418.
    [48] Ando K, Ozaki T, Yamamoto H, et al. Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation.[J]. J Biol Chem. 2004, 279(24): 25549-25561.
    [49] Lin H R, Ting N S, Qin J, et al. M phase-specific phosphorylation of BRCA2 by Polo-like kinase 1 correlates with the dissociation of the BRCA2-P/CAF complex.[J]. J Biol Chem. 2003, 278(38): 35979-35987.
    [50] Hirao A, Kong Y Y, Matsuoka S, et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2.[J]. Science. 2000, 287(5459): 1824-1827.
    [51] Tsvetkov L, Xu X, Li J, et al. Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody.[J]. J Biol Chem. 2003, 278(10): 8468-8475.
    [52] Matsuoka S, Rotman G, Ogawa A, et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro.[J]. Proc Natl Acad Sci U S A. 2000, 97(19): 10389-10394.
    [53] Gunawardena R W, Siddiqui H, Solomon D A, et al. Hierarchical requirement of SWI/SNF in retinoblastoma tumor suppressor-mediated repression of Plk1.[J]. J Biol Chem. 2004, 279(28): 29278-29285.
    [54] Ree A H, Bratland A, Nome R V, et al. Repression of mRNA for the Plk cell cycle gene after DNA damage requires BRCAI.[J]. Oncogene. 2003, 22(55): 8952-8955.
    [55] Yarden R I, Pardo-reoyo S, Sgagias M, et al. BRCA1 regulates the G2/M checkpoint by activating Chkl kinase upon DNA damage.[J]. Nat Genet. 2002, 30(3): 285-289.
    [56] Zhou B B, Elledge S J. The DNA damage response: putting checkpoints in perspective.[J]. Nature. 2000, 408(6811): 433-439.
    [57] Gatei M, Sloper K, Sorensen C, et al. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation.[J]. J Biol Chem. 2003, 278(17): 14806-14811.
    [58] Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage.[J]. Science. 1998, 281(5383): 1674-1677.
    [59] Cortez D, Wang Y, Qin J, et al. Requirement of ATM-dependent phosphorylation of brcal in the DNA damage response to double-strand breaks.[J]. Science. 1999, 286(5442): 1162-1166.
    [60] Khosravi R, Maya R, Gottlieb T, et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage.[J]. Proc Natl Acad Sci U S A. 1999, 96(26): 14973-14977.
    [61] Van V M, Smits V A, Klompmaker R, et al. Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM-or ATR-dependent fashion.[J]. J Biol Chem. 2001, 276(45): 41656-41660.
    [62] Yuan J H, Feng Y, Fisher R H, et ai. Polo-like kinase 1 inactivation following mitotic DNA damaging treatments is independent of ataxia telangiectasia mutated kinase.[J]. Mol Cancer Res. 2004, 2(7): 417-426.
    [63] Van V M, Bras A, Mcdema R H. Polo-like kinase-1 controls recovery from a 62 DNA damage-induced arrest in mammalian cells.[J]. Mol Cell. 2004, 15(5): 799-811.
    [64] Van V M, Bras A, Mcdema R H. Restarting the cell cycle when the checkpoint comes to a halt.[J]. Cancer Res. 2005, 65(16): 7037-7040.
    [65] Lane H A, Nigg E A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (ilkl) in the functional maturation of mitotic centrosomes.[J]. J Cell Biol. 1996, 135(6 Pt 2): 1701-1713.
    [66] Cogswell J P, Brown C E, Bisi J E, et al. Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function.[J]. Cell Growth Differ. 2000, 11(12): 615-623.
    [67] Ahmad N. Polo-like kinase (Plk) 1: a novel target for the treatment of prostate cancer.[J]. FASEB J. 2004, 18(1): 5-7.
    [68] Yuan J, Yah R, Kramer A, et al. Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells.[J]. Oncogene. 2004, 23(34): 5843-5852.
    [69] Elez R, Piiper A, Giannini C D, et al. Polo-like kinasel, a new target for antisense tumor therapy.[J]. Biochem Biophys Res Commun. 2000, 269(2): 352-356.
    [70] Spankueh-sehmitt B, Wolf G, Solbaeh C, et al. Downregulation of human polo-like kinase activity by antisense oligonucleotides induces growth inhibition in cancer cells.[J]. Oncogene. 2002, 21(20): 3162-3171.
    [71] Liu X, Erikson R L. Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. [J]. Proe Natl Acad Sei U S A. 2003, 100(10): 5789-5794.
    [72] Spankuch B, Matthess Y, Knecht R, et al. Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against Plk1.[J]. J Natl Cancer Inst. 2004, 96(11): 862-872.
    [73] Stevenson C S, Capper E A, Roshak A K, et al. The identification and characterization of the marine natural product scytonemin as a novel antiprolfferative phannacophore.[J]. J Pharmacol Exp Ther. 2002, 303(2): 858-866.
    [74] Stevenson C S, Capper E A, Roshak A K, et al. Scytonemin-a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases.[J]. Inflamm Res. 2002, 51(2): 112-114.
    [75] Liu Y, Shreder K R, Gai W, et al. Wortmannin, a widely used phosphoinositide 3-kinase inhibitor, also potently inhibits mammalian polo-like kinase.[J]. Chem Biol. 2005, 12(1): 99-107.
    [76] Wipf P, Halter R J. Chemistry and biology of wortmannin.[J]. Org Biomol Chem. 2005, 3(11): 2053-2061.
    [77] Strebhardt K, Ullrich A. Targeting polo-like kinase 1 for cancer therapy.[J]. Nat Rev Cancer. 2006, 6(4): 321-330.
    [78] Gumireddy K, Reddy M V, Cosenza S C, et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent antieancer agent.[J]. Cancer Cell. 2005, 7(3): 275-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700