粒子滤波改进算法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着模型复杂性的增强和对滤波精度需求的不断提高,在有些应用中传统的非线性滤波方法已不能满足要求。粒子滤波作为一种新型的非线性滤波方法,以其处理非线性、非高斯动态系统滤波问题的优良特性受到广泛地关注。它面向更为复杂的非线性模型且无需对状态分布作任何假设,更符合实际滤波任务的要求。然而,粒子滤波在快速发展的过程中也遇到了一些有待解决的问题。因此,改进和完善粒子滤波方法具有重要的理论意义和实际的工程价值。本文结合统计学习理论的新方法,针对粒子滤波算法和应用中的问题进行了深入研究,主要的研究内容包括以下几个方面:
     首先,针对非线性动态系统滤波的基本问题,在递推贝叶斯估计理论的统一框架下深入研究了三类具有代表性的非线性滤波方法:扩展卡尔曼滤波、Unscented卡尔曼滤波和粒子滤波。分析和比较了各方法的适用条件、优点和不足,并着重讨论了粒子滤波的基本原理、算法步骤、粒子退化和贫化问题、收敛性理论,为后续研究奠定了基础。
     其次,研究了如何从概率密度估计角度解决粒子的退化和贫化问题。从具有不适定性的概率密度估计问题的数学描述出发,提出了支持向量机概率密度估计粒子滤波算法基本思想,采用支持向量机概率密度估计方法建立粒子后验分布模型并进行重采样,克服粒子的退化。通过线性规划方式进一步提高了算法的计算效率,并讨论了该方法的多维状态扩展问题。另外,针对弱观测噪声环境下粒子退化现象更为严重的问题,提出了一种基于支持向量机重采样的似然粒子滤波算法,该算法使用似然函数作为提议分布,融入了最新的观测信息,并且可以有效避免粒子退化,增强粒子的多样性,从而提高了状态估计精度。仿真结果验证了上述算法的可行性和有效性。
     再次,从函数回归估计角度研究了解决粒子退化和贫化的问题。利用粒子滤波过程中的粒子及其权值,建立对应的回归估计模型对权值进行调整,来克服粒子的退化并增加多样性。为了避免求解二次优化问题,分别采用了平均场理论和等式约束方式对优化问题进行了改进,提出了基于平均场支持向量回归机的粒子滤波算法和基于最小二乘支持向量回归机的粒子滤波算法,通过仿真并与现有方法的比较,验证了算法的优越性。另外,还进一步研究了最小二乘支持向量回归机针对大规模数据集的处理方法。
     然后,研究了提高粒子滤波实时性的方法。根据近似支持向量机分类算法的原理,将其扩展到回归估计问题中,采用直接求解法推导了近似支持向量回归机线性、非线性、大规模数据集算法,并与最小二乘支持向量回归机进行了比较。在此基础上,以估计窗实时粒子滤波算法为基本框架,提出了采用近似支持向量回归机融合估计窗内子粒子集滤波结果的实时粒子滤波改进算法,减小了计算复杂度,进一步增强了算法的实时性。通过对一个纯角度目标跟踪的仿真,验证了算法的可行性和有效性。
     最后,研究了基于多模型的粒子滤波方法及其在机动目标跟踪中的应用问题。根据递推贝叶斯估计理论推导了交互多模型粒子滤波的基本算法,并给出了采用高斯近似方式的实用算法。在分析了机动目标基本运动模型的基础上,利用粒子滤波作为模型匹配滤波器,解决了非线性观测方程难以直接应用的问题。采用多普勒测量信息估计目标转弯角速率,从而对多模型进行优化和缩减,提高了算法计算效率。对一个多次转弯机动目标跟踪问题进行了仿真研究,结果验证了算法的可行性和有效性,扩展了粒子滤波在目标跟踪中的应用范围。
The traditional nonlinear filtering method can not meet the requirements of some applications because the models are more complex, and also those applications need higher filter precision. Particle filter, as a recent research focus of nonlinear filtering method, can deal with the nonlinear/non-Gaussian filtering problem effectively without assumption on the state distribution. So it is more applicable for practical filtering problem. However, there are still some problems need to be solved even though the particle filtering theory has been rapid development, so improvement on the particle filtering method have significant theoretical and practical value. This thesis utilized the new statistical learning theory to study the particle filtering algorithm and its applications. The research focused on following aspects.
     Firstly, based on the unified recursive Bayesian estimation theory, three typical nonlinear filtering methods—Extend Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Particle Filter (PF) were studied. The thesis analyzed and compared the basic theory, application conditions, advantages and disadvantages of these three methods. Especially for particle filtering method, the basic principle, algorithm, particle degeneration and impoverishment, convergence theory were studied in depth as the basis of further study.
     Secondly, the thesis improved the particle filtering method from the perspective of the probability density estimation to overcome the particle degeneration and impoverishment. Started with the mathematical description of ill-posed probability density estimation problem, the basic idea of a density estimation method based on Support Vector Machine (SVM) was proposed, which built the posterior density models and resampled the new particles. Then the efficiency of this estimation algorithm was improved by using linear optimization theory. And the multi-dimensional extension problem was discussed also. Furthermore, for the more severe degeneracy problem in weak measurement noise applications, an improved likelihood particle filter algorithm based on SVM resampling was proposed. This algorithm used likelihood function as proposed distribution, took account of the most recent observation information, and increased the diversity of sampled particles. So that the degeneration problem was solved effectively and the states estimation precision was improved. Simulation results demonstrated the feasibility and superiority of the proposed algorithms.
     Thirdly, the thesis studied how to solve the problem of particle degeneration and impoverishment from the perspective of function regression estimation. The proposed algorithm used particles and their weights to build regression model during iteration, and adjusted weights of particles by this model to overcome the degeneration and increase the diversity of particles. In order to avoid solving quadratic optimization problem, the Mean Filed Support Vector Regression (MF-SVR) particle filter and Least Squares Support Vector Regression (LSSVR) particle filter were proposed, where the mean filed theory and equality constraint method were implemented respectively. Simulation results illustrated the superiority of the two algorithms to existing methods. In addition, the application on large scale data set algorithm of LSSVR was discussed.
     Then, the thesis studied the method of improving the real-time performance of particle filter. The Proximal Support Vector Machines (PSVM), used in classification problems, was extended into this regression problem. By solving the optimization problem directly, the algorithms for linear, nonlinear, and large scale data sets applications were derived, and compared with LSSVR. According to that, an improved real-time particle filter algorithm was proposed, which was based on data fusion with Proximal Support Vector Regression (PSVR), to estimate the filtering result of particles within the estimation window. The new algorithm reduced the calculation complexity, and was more practical for real-time applications. The simulation results of bearings-only tracking problem demonstrated the feasibility and superiority of the proposed algorithm.
     Finally, the thesis studied the particle filter that based on multiple models and its application on maneuvering target tracking. According to the principle of recursive Bayesian estimation theory, the basic algorithm of interacting multiple model particle filter was derived and also the practical algorithm based on Gaussian approximation method was provided. Based on the analysis of the basic motion model of maneuvering target, and using the particle filter as model matched filter, the thesis solved the problem that the nonlinear observation equation was difficult to apply directly. The proposed method used Doppler measurement method to estimate the turning angular rate, reduced the number of models, and improved the efficiency of the filter algorithm. The simulation results of a multi-turn maneuvering target tracking problem demonstrated the feasibility and superiority of the proposed algorithm, and also extended the applications of particle filter in target tracking.
引文
1 R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME, Journal of Basic Engineering. 1960, 82: 35~45
    2 L. R. Rabiner, B. H. Juang. An Introduction to Hidden Markov Models. IEEE Acoust., Speech, Signal Processing Magazine. 1986(1): 4~16
    3 Y. Sunahara. An Approximate Method of State Estimation for Nonlinear Dynamical Systems. Joint Automatic Control Conference, University of Colorado. 1969
    4 S. Julier, J. Uhlmann. A New Extension of the Kalman Filter to Nonlinear Systems. Proceedings of AeroSence: The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls. Orlando, Florida, 1997
    5 S. Julier, J. Uhlmann and H. F. Durrant-Whyte. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Transactions on Automatic Control. 2000, 45(3): 477~482
    6 Y. Bar-Shalom, X. R. Li and T. Kirubarajan. Estimation with Applications to Tracking and Navigation. John Wiley & Son, Inc., 2001: 199~265, 421~488
    7 M. Norgaard, N. K. Poulsen and O. Ravn. New Developments in State Estimation for Nonlinear System. Automatica. 2000, 36: 1627~1638
    8 K. Ito, K. Xiong. Gaussian Filters for Nonlinear Filtering Problems. IEEE Transactions on Automatic Control. 2000, 45(5): 910~927
    9 I. Arasaratnam, S. Haykin and R. J. Elliott. Discrete-time Nonlinear Filtering Algorithms Using Gauss-Hermite Quadrature. Proceedings of the IEEE. 2007, 95(5): 953~977
    10 P. M. Djuric, S. J. Goodsill. Guest Editorial Special Issue on Monte Carlo Methods for Statistical Signal Processing. IEEE Transactions on Signal Processing. 2002, 50(2): 173
    11 S. Haykin, N. de Freitas. Special Issue on Sequential State Estimation. Proceedings of the IEEE. 2004, 92(3): 399~400
    12 J. M. Hammersley, K. W. Morton. Poor Man’s Monte Carlo. Jounal of the Royal Statistical Society B. 1954, 16: 23~38
    13 M. N. Rosebluth, A. Rosenbluth. Monte Carlo Calculation of the Average Extension of Molecular Chains. Journal of Chemical Physics. 1955, 23: 356~359
    14 J. E. Handschin, D. Q. Mayne. Monte Carlo Techniques to Estimate the Conditional Expectation in Multi-Stage Nonlinear Filtering. International Journal of Control. 1969, 9(5): 547~559
    15 J. E. Handschin. Monte Carlo Techniques for Prediction and Filtering of Nonlinear Stochastic Processes. Automatica. 1970, 6: 555~563
    16 V. S. Zaritskii, V. B. Svetnik and L. I. Shimelevich. Monte Carlo Techniques in Problems of Optimal Information Processing. Automation and Remote Control. 1975, 36(3): 2015~2022
    17 H. Akashi, H. Kumamoto. Random Sampling Approach to State Estimation in Switching Environments. Automatica. 1977, 13: 429~434
    18 N. Gordon, D. J. Salmond and A. F. M. Smith. Novel Approach to Nonlinear/ Non-Gaussian Bayesian State Estimation. IEE Proceedings-Radar, Sonar & Navigation. 1993, 140(2): 107~113
    19 J. Carpener, P. Clifford and P. Fearnhead. Improved Particle Filter for Nonlinear Problems. IEE Proc.-Radar, Sonar Navig., 1999, 146(1): 1~7
    20 M. S. Arulampalam, S. Maskell, N. Gordon, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing. 2002, 50(2): 174~188.
    21 Z. Chen. Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond. Hamilton: McMaser University, 2003.
    22 A. Doucet, S. Godsill and C. Andrieu. On Sequential Monte Carlo Methods for Bayesian Filtering. Sratistics and Computing. 2000, 10: 197~208
    23 A. Doucet, N. de Freitas, K. Murphy and S. Russell. Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. UAI2000. 2000: 176~183
    24 R. van der Merwe, J. F. G. de Freitas, A. Doucet, et al. The Unscented Particle Filter. Cambridge: Cambridge University Engineering Department, 2000.
    25 M. Pitt, N. Shephard. Filtering via Simulation: Auxiliary Particle Filters. Journal of the American Statistical Association. 1999, 94(446): 590~599
    26 J. MacCormick, A. Blake. A Probabilistic Exclusion Principle for Tracking Multiple Objects. International Journal of Computer Vision. 2000, 39(1): 57~ 71
    27 J. MacCormick, M. Isard. Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking. Tech. Rep., Dept. Eng. Sci., Univ. Oxford,2000.
    28 S. Godsill, A. Doucet and M. West. Maximum a Posteriori Sequence Estimation Using Monte Carlo Particle Filters. Annals of Institute of Statistical Mathematics. 2001, 53(1): 82~96
    29 Z. Chen, K. Huber. Robust Particle Filters with Applications in Tracking and Communications. Tech. Rep., Adaptive Systms Lab, McMaster University, 2003.
    30袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器.电子学报. 2003, 31(7): 970~973
    31郭文艳,韩崇昭.基于统计线性回归的粒子滤波方法.电子与信息学报. 2008, 30(8): 1905~1908
    32熊剑,刘建业,赖际舟,谢征.基于二阶插值滤波的粒子滤波改进算法研究.控制与决策. 2009, 24(6): 907~910
    33 A. Doucet. On Sequential Monte Carlo Methods for Bayesian Filtering. Technical Report Department of Engineering, Cambridge University, 1998
    34 A. F. M. Smith, A. E. Gelfand. Bayesian Statistics Without Tears: A Sampling-Resampling Perspective. American Statistician. 1992, 46(2): 84~88
    35 G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models. Journal of Computational and Graphical Statistics. 1996, 5: 1~25
    36 T. Higuchi. Monte Carlo Filter Using the Gentic Algorithm Operators. Journal of Statistical Computation and Simulation. 1997, 59(1): 1~23
    37 J. S. Liu, R. Chen. Sequential Monte Carlo Methods for Dynamical Systems. Journal of the American Statistical Association. 1998, 93: 1032~1044
    38 E. Bolviken, P. J. Acklam, N. Christophersen, et al. Monte Carlo Filters for Non-linear State Estimation. Automatica. 2001, 37(2): 177~183
    39 J. D. Hol, T. B. Schon, F. Gustafsson. On Resampling Algorithms for Particle Filters. IEEE Nonlinear Statistical Signal Processing Workshop, Cambridge, UK: 2006: 79~82
    40 C. Andrieu, J. F. G. de Freitas and A. Doucet. Sequential MCMC for Bayesian Model Selection. IEEE Higher Order Statistics Workshop, Ceasarea, Israel. 1999: 130~134
    41 S. Godsill, T. Clapp. Improvement Strategies for Monte Carlo Particle Filters. In Sequential Monte Carlo in Practice, A. Doucet, N. de Freitas and N. Gordon,Eds. Berlin: Springer-Verlag. 2001: 139~158
    42 G. Casella, E. George. Explaining the Gibbs sampler. American Statistician. 1992, 46: 167~174
    43 C. Musso, N. Oudjane and F. LeGland. Improving Regularized Particle Filters. Sequential Monte Carlo Methods in Practice. New York: Springer. 2001: 247~ 272
    44 C. Chang, R. Ansari. Kernel Particle Filter for Visual Tracking. IEEE Signal Processing Letters. 2005, 12(3): 242~245
    45 J. H. Kotecha, P. M. Djuric. Gaussian Particle Filtering. IEEE Transactions on Signal Processing. 2003, 51(10): 2592~2601
    46陈鹏,钱徽,朱淼良.一种快速高斯粒子滤波算法.华中科技大学学报(自然科学版). 2008, 36(Sup. I): 291~294
    47侯代文,殷福亮,陈喆.基于充分统计量的粒子滤波方法.信息与控制. 2009, 38(2): 187~193
    48 J. H. Kotecha, P. M. Djuric. Gaussian Sum Particle Filtering. IEEE Transactions on Signal Processing. 2003, 51(10): 2602~2612
    49 R. van der Merwe, E. A. Wan. Gaussian Mixture Sigma-Point Particle Filters for Sequential Probabilistic Inference in Dynamic State-Space Models. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Hong Kong. 2003, 6: 701~704
    50 D. Koller, R. Fratkina. Using Learning for Approximation in Stochastic Processes. Proceedings of the Fifteenth International Conference on Machine Learning, Madison, Wisconsin. 1998: 287~295
    51 M. Bolic, H. Sangjin, P. M. Djuric. Performance and Complexity Analysis of Adaptive Particle Filtering for Tracking Applications. Proceedings of the Asilomar Conference on Signals, Systems, and Computers. Asilomar, CA. 2002: 853~857
    52程水英,张剑云.粒子滤波评述.宇航学报. 2008, 29(4): 1099~1111
    53 R. Karlsson, F. Gustafsson. Monte Carlo Data Association for Multiple Target Tracking. Proceedings of IEEE Colloquium on Target Tracking: Algorithms and Applications. 2001: 1~5
    54 D. Fox. KLD-Sampling: Adaptive Particle Filter. Proceedings of the Neural Information Processing Systems, Vancouver. 2001: 713~720
    55 D. Fox. Adapting the Sample Size in Particle Filters Through KLD-Sampling.International Journal of Robotics Research. 2003, 22(12): 985~1003
    56 A. Soto. Self Adaptive Particle Filter. Proceedings of International Joint Conference on Artificial Intelligence. Edinburgh, Scotland: Professional Book Center. 2005: 1398~1406
    57段琢华,蔡自兴,于金霞.移动机器人软故障检测与补偿的自适应粒子滤波算法.中国科学E辑:信息科学. 2008, 38(4): 565~578
    58于金霞,汤永利,刘文静.粒子滤波自适应机制研究综述.计算机应用研究. 2010, 27(2): 417~422, 428
    59 C. Kwok, D. Fox, M. Meila. Real-Time Particle Filters. Proceedings of the IEEE. 2004, 92(3): 469~484
    60 K. Murphy, S. Russell. Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. Sequential Monte Carlo Methods in Practice. New York: Springer, 2001.
    61 P. J. Nordlund. Sequential Monte Carlo and Integrated Navigation. Thesis. Division of Automatic Control, Department of Electrical Engineering, Linkoping University. 2002
    62 T. Schon, F. Gustafsson, P. J. Nordlund. Marginalized Particle Filters for Mixed Linear/Nonlinear State-Space Models. IEEE Transactions on Signal Processing. 2005, 53(7): 2279~2289
    63 T. Schon, R. Karlsson, F. Gustafsson. The Marginalized Particle Filter in Practice. Linkoping: Linkoping University, LiTH-ISY-R-2715, 2005.
    64 G. Casella, C. P. Robert. Rao-Blackwellisation of Sampling Schemes. Biometrika. 1996, 83(1): 81~94
    65 Y. Bar-Shalom, X. R. Li. Estimation and Tracking: Principles, Techniques, and Software. 1998.
    66 H. A. P. Blom, Y. Bar-Shalom. The Interacting Multiple Model Algorithm for Systems With Markovian Switching Coefficients. IEEE Transactions on Automatic Control. 1988, 33(8): 780~783
    67 Y. Bar-Shalom, X. R. Li and T. Kirubarajan. Estimation with Applications to Tracking and Navigation. John Wiley & Son, Inc., 2001: 199~265, 421~488
    68 Y. Bar-Shalom, K. C. Chang, H. A. P. Blom. Tracking a Maneuvering Target Using Input Estimation Versus the Interacting Multiple Model Algorithm. IEEE Transactions on Aerospace and Electronic Systems. 1989, 25(2): 296~ 300
    69 G. McGinnity, G. W. Irwin. Multiple Model Bootstrap Filter for Maneuvering Target Tracking. IEEE Transactions on Aerospace and Electronic Systems. 2000, 36(3): 1006~1012
    70 N. J. Gordon, S. Maskell, T. Kirubarajan. Efficient Particle Filters for Joint Tracking and Classification. Proceedings of SPIE: Signal and Data Processing of Small Targets, E. Oliver and Drummond, Editors. 2002: 439~449
    71 Y. Boers, J. N. Driessen. Interacting Multiple Model Particle Filter. IEE Proc.-Radar Sonar Navig. 2003, 150(5): 344~349
    72 T. Higuchi. Monte Carlo Filtering Using Genetics Algorithm Operators. Journal of Statistical Computation and Simulation. 1997, 59(1): 1~23
    73 N. M. Kwok, G. Fang, W. Z. Zhou. Evolutionary Particle Filter: Re-sampling From the Genetic Algorithm Perspective. IEEE Intelligent Robots and System. 2005: 2935~2940
    74叶龙,王京玲,张勤.遗传重采样粒子滤波器.自动化学报. 2007, 33(8): 885~887
    75张焱,沈振康,乔士东.一种改进型的粒子滤波器.信号处理. 2008, 24(1): 58~61
    76 S. Park, J. Hwang, K. Rou, et al. A New Particle Filter Inspired by Biological Evolution: Genetic Filter. Proceedings of World Academy of Science, Engineering and Technology. Bangkok, Thailand. 2007, 21: 459~463
    77 K. Uasaki, T. Hatanaka. Evolution Strategies Based Particle Filters for Fault Detection. Proceedings of the IEEE Symposium on Computational Intelligence in Image and Signal Processing. Hawaiian, USA. 2007: 58~65
    78 C. Y. Li, H. B. Ji. A New Particle Filter with GA-MCMC Resampling. Proceedings of the International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China. 2007: 146~150
    79胡振涛,潘泉,梁彦,等.基于进化采样的粒子滤波算法.控制理论与应用. 2009, 26(3): 269~273
    80 J. Fillion-Deneault, J. Rouat. Cohesive Particle Filtering for Sound Source Localization. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France. 2006, IV: 829~832
    81 Z. Y. Pang, D. R. Liu, N. Jin, et al. Neural Network Strategy for Sampling of Particle Filters on the Tracking Problem. Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA. 2007.
    82程水英,张剑云.裂变自举粒子滤波.电子学报. 2008, 36(3): 500~504
    83方正,佟国峰,徐心和.粒子群优化粒子滤波方法.控制与决策. 2007, 22(3): 273~277
    84王浩,杨峰,姚宏亮.离散动态贝叶斯网络的进化粒子滤波推理算法.计算机研究与发展. 2008, 45(Sup.): 295~299
    85陆陶荣,朱林户,李德芳,等.一种集群智能粒子滤波算法.西安电子科技大学学报(自然科学版). 2008, 35(3): 536~541
    86张琪,王鑫,胡昌华,等.人工免疫粒子滤波算法的研究.控制与决策, 2008, 23(3): 293~301
    87刘云龙,林宝军.一种基于小生境技术的群智能粒子滤波算法.控制与决策. 2010, 25(2): 316~320
    88 A. S. Bashi, V. P. Jilkov, X. R. Li, et al. Distributed Implementations of Particle Filters. Proceedings of the Sixth International Conference of Information Fusion, Cairns. 2003, 2: 1164~1171
    89 M. Bolic, P. M. Djuric, S. J. Hong. Resampling Algorithms and Architectures for Distributed Particle Filters. IEEE Transactions on Signal Processing. 2005, 53(7): 2442~2450
    90 A. Athalye, M. Bolic, S. J. Hong, et al. Architectures and Memory Schemes for Sampling and Resampling in Particle Filters. IEEE 11th Digital Signal Processing Workshop & IEEE Signal Processing Education Workshop. 2004: 92~96
    91 A. Athalye, S. J. Hong and P. M. Djuric. Distributed Architecture and Interconnection Scheme for Multiple Model Particle Filters. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Toulouse, France. 2006, III: 920~923.
    92 M. Shabany, P. G. Gulak. An Efficient Architecture for Distributed Resampling for High-Speed Particle Filtering. Proceedings of IEEE International Symposium on Circuits and Systems. Island of Kos, Greece. 2006: 3422~3425
    93 S. Saha, N. K. Bambha and S. S. Bhattacharyya. A Parameterized Design Framework for Hardware Implementation of Particle Filters. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, NV. 2008: 1449~1452
    94程水英,邹继伟,汤鹏.免微分非线性Bayesian滤波方法评述.宇航学报. 2009, 30(3): 843~857
    95 G. Y. Li, B. Li, Z. Liu, et al. Implementation and Optimization of Particle Filter Tracking Algorithm on Multi-DSPs System. Proceedings of IEEE International Conference on Cybernetics and Intelligent Systems. Chengdu, China. 2008: 152~157
    96 S. H. Hong, Z. G. Shi and K. S. Chen. Compact Resampling Algorithm and Hardware Architecture for Paticle Filters. Proceedings of IEEE International Conference on Communications, Circuits and Systems. Fujian, China. 2008: 886~890
    97洪少华,史治国,陈抗生.用于纯方位跟踪的简化粒子滤波算法及其硬件实现.电子与信息学报. 2009, 31(1): 96~100
    98 D. Crisan, P. Del Moral and T. Lyons. Discrete Filtering Using Branching and Interacting Particle Systems. Markov Processes and Related Fields. 1999, 5(3): 293~318
    99 D. Crisan. Particle Filters-A Theoretical Perspective. In Sequential Monte arlo Methods in Practice. Springer-Verlag, 2001: 17~42
    100 D. Crisan, A. Doucet. A Survey of Convergence Results on Particle Filtering Methods for Practitioners. IEEE Transactions on Signal Processing. 2002, 50(3): 736~746
    101 F. LeGland, N. Oudjane. Stability and Approximation of Nonlinear Filters in the Hilbert Metric, and Application to Particle Filters. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, 2000: 1585~1590
    102 X. L. Hu, T. B. Schon, L. Ljung. A Robust Particle Filter for State Estimation-with Convergence Results. Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, LA, USA. 2007: 312~317
    103 X. L. Hu, T. B. Schon, L. Ljung. A Basic Convergence Result for Particle Filtering. IEEE Transactions on Signal Processing. 2008, 56(4): 1337~1348
    104 R. Douc, E. Moulines. Limit Theorems for Weighted Samples with Applications to Sequential Monte Carlo Methods. Annals of Statist. 2008, 36(5): 2344~2376
    105程水英,张剑云.粒子滤波算法中的有限收敛界.数据采集与处理. 2008, 23(4): 481~485
    106曲彦文,张二华,杨静宇.一般性粒子滤波算法收敛特性.计算机研究与发展. 2010, 47(1): 130~139
    107 N. Bergman. Recursive Bayesian Estimation: Navigation and TrackingApplications. Ph.D. Thesis, Linkoping University, Sweden. 1999.
    108 Y. Boers, J. N. Driessen. Particle Filter Based Detection for Tracking. Proceedings of American Control Conference. 2001, 6: 4393~4397
    109 X. Lin, T. Kirubarajan, Y. Bar-Shalom, et al. Comparison of EKF, Pseudomeasurement and Particle Filters for a Bearings-Only Target Tracking Problem. Proceedings of SPIE on Signal and Data Processing of Small Targets. 2002, 4728
    110 C. Hue, J. Le Cadre and P. Perez. Sequential Monte Carlo Methods for Multiple Target Tracking and Data Fusion. IEEE Transactions on Signal Processing. 2002, 50(2): 309~325
    111 C. Hue, J. Le Cadre and P. Perez. Tracking Multiple Objects with Particle Filtering. IEEE Transactions on Aerospace and Electronic Systems. 2002, 38(3): 791~812
    112 M. Orton, W. Fitzgerald. A Bayesian Approach to Tracking Multiple Targets Using Sensor Arrays and Particle Filters. IEEE Transactions on Signal Processing. 2002, 50(2): 216~223
    113 M. Isard, A. Blake. Contour Tracking by Stochastic Propagation of Conditional Density. Proceedings of 4th European Conference on Computer Vision, Cambridge, UK. 1996, 1: 343~356
    114 M. Isard, A. Blake. CONDENSATION: Conditional Density Propagation for Visual Tracking. International Journal of Computer Vision. 1998, 29(1): 5~28
    115 P. Torma, C. Szepesvari. Sequential Importance Sampling for Visual Tracking Reconsidered. Proceedings of 9th Workshop AI and Statistics, 2003.
    116 C. Cheng, R. Ansari. Kernel Particle Filter for Visual Tracking. IEEE Signal Processing Letters. 2005, 12(3): 242~245
    117 S. Thrun, D. Fox, W. Burgard, et al. Robust Monte Carlo Localization for Mobile Robots. Artificial Intelligence. 2001, 128(1-2): 99~141
    118 D. Fox, S. Thrun, W. Burgard, et al. Particle Filters for Mobile Robot Localization. Sequential Monte Carlo Methods in Practice. New York: Springer. 2001: 401~427
    119 F. Gustafsson, F. Gunnarsson, N. Bergman, et al. Particle Filters for Positioning, Navigation, and Tracking. IEEE Transactions on Signal Processing. 2002, 50(2): 425~436
    120 E. Punskaya, C. Andrieu, A. Doucet, et al. Particle Filtering for Demodulationin Fading Channels With Non-Gaussian Additive Noise. IEEE Transactions on Communications. 2001, 49(4): 579~582
    121 J. S. Liu, R. Chen. Blind Deconvolution via Sequential Imputation. Journal of the American Statistical Association. 1995, 90: 567~576
    122 T. Clapp, S. J. Godsill. Fixed-Lag Smoothing Using Sequential Importance Sampling. In Bayesian Statistics 6, J. M. Bernardo, J. O. Berger, A. P. Dawid, et al. Editors. Oxford: Oxford University Press. 1999: 743~752
    123 J. Zhang, P. M. Djuric. Joint Estimation and Decoding of Space-Time Trellis Codes. EURASIP Journal on Applied Signal Processing. 2002, 3: 305~315
    124 K. Huber, S. Haykin. Application of Particle Filters to MIMO Wireless Communications. Proceedings of IEEE International Conference on Communications. 2003: 2311~2315
    125 X. Wang, R. Chen and J. S. Liu. Monte Carlo Signal Processing for Wireless Communications. The Journal of VLSI Signal Processing. 2002, 30(1-3): 89~ 105
    126 P. M. Djuric, J. H. Kotecha, J. Zhang, et al. Particle Filtering: A Review of the Theory and How It Can Be Used for Solving Problems in Wireless Communications. IEEE Signal Processing Magazine. 2003, 20(5): 19~38
    127 A. Ahmed. Signal Separation. Ph.D. Thesis, University Cambridge. 2000.
    128 J. Vermaak, C. Andrieu, A. Doucet, et al. Particle Methods for Bayesian Modelling and Enhancement of Speech Signals. IEEE Transactions on Audio Speech Processing. 2002, 10(3): 173~185
    129 K. Yao, S. Nakamura. Sequential Noise Compensation by Sequential Monte Carlo Method. Advances in Neural Information Processing Systems 14. 2002: 1213~1220
    130 M. Fujimoto, S. Nakmura. Particle Filter Based Non-Stationary Noise Tracking for Robust Speech Recognition. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Philadelphia, USA. 2005, 1: 257~260
    131 C. Andrieu, A. Doucet, S. S. Singh, et al. Particle Methods for Change Detection, System Identification, and Control. Proceedings of the IEEE. 2004, 92(3): 423~438
    132 R. Morales-Menendez, N. de Freitas, D. Poole. Real-time Monitoring of Complex Industrial Processes with Particle Filters. Advances in NeuralInformation Processing Systems 15. 2002.
    133莫以为,萧德云.基于粒子滤波算法的混合系统监测与诊断.自动化学报. 2003, 29(5): 641~648
    134 J. S. Liu. Monte Carlo Strategies in Scientific Computing. Berlin: Springer, 2001.
    135 M. West, J. Harrison. Bayesian Forecasting and Dynamic Models, 2nd Edition. New York: Springer, 1997.
    136 J. Liu, M.West. Combined Parameter and State Estimation in Simulation-Based Filtering. Sequential Monte Carlo Methods in Practice. New York: Springer, 2001.
    137 V. N. Vapnik. The Nature of Statistical Learning. Berlin: Springer, 1995.
    138 V. N. Vapnik. Statistical Learning Theory. New York: John Wiley & Sons, 1998.
    139 V. N. Vapnik, S. Golowich, A. Smola. Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 1997: 281~ 287
    140 A. Doucet, N. de Freitas and N. Gordon, Editors. Sequential Monte Carlo Methods in Practice. New York: Springer, 2001.
    141 A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, 1970
    142 A. Kong, J. S. Liu, W. H. Wong. Sequential Imputations and Bayesian Missing Data Problems. Journal of the American Statistical Association. 1994, 89: 278~288
    143 V. N. Vapnik.张学工译.统计学习理论的本质.北京:清华大学出版社. 2000.
    144 S. C. Fang, S. Puthenpura. Linear Optimization and Extensions: Theory and Algorithms. Prentice Hall Inc. 1993.
    145 J. Weston, A. Gammerman, M. O. Stitson, et al. Support Vector Density Estimation. Advances in Kernel Methods–SV Learning, Cambridge, MA: MIT Press. 1999: 293~306
    146 K. Bennett. Combining Support Vector and Mathematical Programming Methods for Induction. Advances in Kernel Methods–SV Learning, Cambridge, MA: MIT Press. 1999: 307~326
    147高建坡,韦志辉,孟迎军,等.基于观测似然重要性采样的粒子滤波算法.系统仿真学报, 2009, 21(12): 3705~3709
    148邓乃扬,田英杰.数据挖掘中的新方法—支持向量机.北京:科学出版社. 2004.
    149 M. Pontil, S. Mukherjee, F. Girosi. On the Noise Model of Support Vector Machine Regression. A. I. Memo 1651, AI Laboratory, MIT, MA, 1998.
    150 M. Opper, O. Winther. Gaussian Processes for Classification: Mean Field Algorithms. Neural Computation. 2000, 12(11): 2655~2684
    151 J. B. Gao, S. R. Gunn and C. J. Harris. Mean Field Method for the Support Vector Machine Regression. Neurocomputing. 2003, 50: 391~405
    152 R. M. Mohamed, A. A. Farag. Mean Field Theory for Density Estimation Using Support Vector Machines. Proceedings of the 7th International Conference on Information Fusion, Stockholm. 2004: 495~501
    153 J. A. K. Suykens, J. Vandewalle. Least Squares Support Vector Machine Classifiers. Neural Processing Letters. 1999, 9(3): 293~300
    154 M. Espinoza, J. A. K. Suykens, B. De Moor. Load Forecasting Using Fixed-Size Least Squares Support Vector Machines. Proceedings of the 8th International Workshop on Artificial Neural Networks. Computational Intelligence and Bioinspired Systems. Vilanovaila Geltru: Springer-Verlag. 2005: 1018~1026
    155 J. A. K. Suykens, L. Lukas and J. Vandewalle. Sparse Approximation Using Least Squares Support Vector Machine. Proceedings of the IEEE International Symposium on Circuits and Systems. Geneva: Institute of Electrical and Electronics Engineers Inc. 2000: 757~760
    156范玉刚,李平,宋执环.基于非线性映射的Fisher判别分析.控制与决策. 2007, 22(4): 384~388
    157 N. Kabaoglu, H. A. Cirpan. Wideband Target Tracking by Using SVR-based Sequential Monte Carlo Method. Signal Processing. 2008, 88(11): 2804~2816
    158 N. Kabaoglu. Target Tracking Using Particle Filters With Support Vector Regression. IEEE Transactions on Vehicular Technology. 2009, 58(5): 2569~ 2573
    159 G. Fung, O. L. Mangasarian. Proximal Support Vector Machine Classifiers. Wisconsin: University of Wisconsin. 2001.
    160 D. R. Musicant, A. Feinberg. Active Set Support Vector Regression. IEEETransactions on Neural Networks. 2004, 15(2): 268~275
    161 Y. J. Lee, W. F. Hsieh, C. M. Huang.ε-SSVR: A Smooth Support Vector Machine forε-Insensitive Regression. IEEE Transactions on Knowledge and Data Engineering. 2005, 17(5): 678~685
    162 Y. J. Lee, O. L. Mangasarian. RSVM: Reduced Support Vector Machines. Wisconsin: University of Wisconsin. 2000.
    163 Y. J. Lee, S. Y. Huang. Reduced Support Vector Machines: A Statistical Theory. IEEE Transactions on Neural Networks. 2007, 18(1): 1~13
    164 T. M. Cover, J. A. Thomas. Elements of Information Theory. Wiley Series in Telecommunications. New York: Wiley. 1991.
    165王健,金永镐,董华春,等.基于新的采样更新方法的粒子滤波算法.系统工程与电子技术. 2008, 30(6): 1148~1150
    166 W. Wang, T. Kirubarajan and Y. Bar-Shalom. Precision Large Scale Air Traffic Surveillance Using IMM/Assignment's Estimators. IEEE Transactions on Aerospace and Electronic Systems. 1999, 35(1): 255~265
    167 M. Efe, D. P. Atherton. Maneuvering Target Tracking Using Adaptive Turn Rate Models in the Interacting Multiple Model Algorithm. In Proceedings of 35th Conference on Decision and Control. Kobe, Japan. 1996: 3151~3156
    168孙福明,吴秀清,王鹏伟.转弯机动目标的两层交互多模型跟踪算法.控制理论与应用. 2008, 25(2): 233~236
    169 N. Yang, W. F. Tian and Z. H. Jin. An Interacting Multiple Model Particle Filter for Manoeuvring Target Location. Measurement Science and Technology. 2006, 17: 1307~1311
    170 D. F. Bizup. A Centripetal Acceleration Statistic for Tracking Maneuvering Targets with Radar. In Proceedings of the 7th International Command and Control Research and Technology Symposium, 2002.
    171 D. F. Bizup, D. E. Brown. Maneuver Detection Using the Radar Range Rate Measurement. IEEE Transactions on Aerospace and Electronic Systems. 2004, 40(1): 330~336
    172 X. H. Yuan, C. Z. Han, Z. S. Duan, et al. Adaptive Turn Rate Estimation Using Range Rate Measurements. IEEE Transactions on Aerospace and Electronic Systems. 2006, 42(4): 1532~1540
    173 Z. S. Duan, C. Z. Han and X. R. LI. Sequential Nonlinear Tracking Filter with Range-Rate Measurements in Spherical Coordinates. In Proceedings of 7thInternational Conference on Information Fusion, Stockholm, Sweden. 2004: 599~605
    174祝依龙,范红旗,付强.视线坐标系带多普勒观测的雷达目标跟踪.雷达科学与技术. 2009, 7(3): 200~204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700