稀土复合掺杂钛酸钡基纳米介电陶瓷的研制及其性能、结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电介质陶瓷作为功能陶瓷在传感、电声和电光等技术领域具有广泛的应用价值。剑桥大学的H.A.Pohl教授于1978年提出介电力学体系这一理论体系,根据这一理论,电介质陶瓷还可以应用在介电力学分离工艺中。目前该工艺已经被应用于环境中污染物的去除和燃料油中颗粒杂质的去除,并取得了良好的效果,并且介电性能优异的电介质可以降低能耗、节约能源,起到保护环境的作用。
     钙钛矿介电材料由于其特有的铁电、热点、压电等性质受到人们的广泛关注。钛酸钡作为最代表性的介电材料具有较高的介电常数,被广泛应用于多层陶瓷电容器的制备。结构分析表明:在温度高于120℃时,钛酸钡晶体为立方相空间群O_h~I-Pm3m。在温度高于120℃时,钛酸钡的介电常数最高,约为室温介电常数的6倍。然而,制备条件以及掺杂组分(如稀土的掺杂)对钛酸钡介电性质具有较大的影响,因此在电子陶瓷领域中,钛酸钡的制备和掺杂是人们普遍关注的一个焦点。溶胶—凝胶法可以合成多组分钛酸钡基粉体,这种方法被认为是一种接近绿色的“软化学”合成方法。只要将用这种方法制备的干凝胶在一定温度下(通常低于1000℃)煅烧去除有机组分就可获得陶瓷粉体。
     本文首先综述了钛酸钡粉体制备的各种方法,认为液相法制备的粉体因具有纯度高、成分均匀、粒径小等特点而成为制备粉体主要方法,其中溶胶-凝胶法因其可制得多组分均匀掺杂的钛酸钡粉体,是极具发展前景的制粉方法;此外,总结了掺杂改性钛酸钡系陶瓷研究进展。
     本论文采用溶胶-凝胶法制备了钛酸钡陶瓷、BCST(Ba_(0.62)Ca_(0.08)Sr_(0.3)TiO_3)陶瓷,制备了用固相、液相两种方式掺杂稀土Pr_6O_(11)的BT:xPr_6O_(11)陶瓷,以及用溶胶-凝胶法合成BCST(Ba_(0.62)Ca_(0.08)Sr_(0.3)TiO_3)基质粉体,二次固相同时掺杂两种稀土Pr_6O_(11)和Nd_2O_3的BCST:0.001Pr_6O_(11)·xNd_2O_3系列陶瓷。采用XRD和SEM,等对粉体和陶瓷的相组成、微观形貌进行了表征,并测试了陶瓷的介电性能。得出如下结论:
     1.采用溶胶-凝胶法合成制备了钛酸钡纳米晶粉体及陶瓷。经XRD粉体衍射测试,所得钛酸钡粉体主要为四方相纳米粉体;经过SEM扫描电镜观察到陶瓷陶瓷平均晶粒大小约为5μm;通过介温测试,所得陶瓷的居里温度Tc为134℃。
     2.采用溶胶-凝胶法合成制备了BCST纳米晶粉体及陶瓷。经XRD粉体衍射测试,所得BCST粉体主要为四方相纳米粉体;经过SEM扫描电镜观察到陶瓷平均晶粒大小约为8μm;通过介温测试,与纯BT陶瓷相比,陶瓷的居里峰向低温方向移动并展宽压低,而介电损失比较低,所得陶瓷的居里温度Tc为12℃。
     3.制备了用固相、液相两种方式掺杂稀土Pr_6O_(11)的BT:xPr_6O_(11)纳米粉体及陶瓷,并进行了对比。发现:对于液相掺杂稀土Pr_6O_(11)稀土Pr_6O_(11)的BT:xPr_6O_(11)纳米粉体及陶瓷,x=0.005为最佳掺杂量,经XRD粉体衍射测试,所得BT:0.005Pr_6O_(11)粉体主要为四方相纳米粉体,经过SEM扫描电镜观察到陶瓷陶瓷平均晶粒大小约为300nm,通过介温测试,与纯BT陶瓷相比,BT:0.005Pr_6O_(11)陶瓷的居里峰向低温方向移动,介损也明显降低,陶瓷的居里温度Tc为68℃;对于固相掺杂稀土Pr_6O_(11)的BT:xPr_6O_(11)纳米粉体及陶瓷,x=0.001为最佳掺杂量,经XRD粉体衍射测试,所得BT:0.001Pr_6O_(11)粉体主要为四方相纳米粉体,经过SEM扫描电镜观察到陶瓷陶瓷平均晶粒大小约为500nm,通过介温测试,与纯BT陶瓷相比,BT:0.001Pr_6O_(11)陶瓷的居里峰向低温方向移动并展宽,介损也明显降低,所得陶瓷的居里温度Tc为118℃,此外,在大约34℃曲线有另一较低介电峰值,呈现双峰效应。经过对比发现:与液相掺杂所获得的BT:0.005Pr_6O_(11)陶瓷相比,固相掺杂所获得的BT:0.001Pr_6O_(11)陶瓷晶粒发育较好,气孔较少,晶粒间结合更加紧密;固相掺杂所获得的陶瓷居里点虽没有液相掺杂所获得的陶瓷的居里点低,但是,固相掺杂的居里峰明显展宽压低,比液相掺杂所获得的陶瓷在室温时具有较高的介电常数和较低的介电损失。
     4.采用溶胶-凝胶法合成了BCST纳米晶粉体,制备了用二次固相掺杂法掺杂稀土Pr_6O_(11)和Nd_2O_3的BCST:0.001Pr_6O_(11)·xNd_2O_3粉体及陶瓷。发现x=0.002为最佳掺杂量,经XRD测试,所得BCST:0.001Pr_6O_(11)·0.002Nd_2O_3粉体主要为四方相纳米粉体;经过SEM扫描电镜观察到陶瓷陶瓷平均晶粒大小约为6μm;通过介温测试,与纯BT陶瓷相比,陶瓷的居里峰向低温方向移动,而介电损失比较低;与BCST陶瓷(Tc=12℃)相比,BCST:0.001Pr_6O_(11)·0.002Nd_2O_3陶瓷
    的居里峰(Tc=10℃)并无显著变化,但居里点的介电常数却显著提高。
As functional ceramics, dielectric ceramics has extensive application value in such as sensor, electro-optical and electro-acoustic technology. Professor H.A.Pohl of the University of Cambridge put forward the theory of dielectrophoresis in 1978. According to this theory, dielectric ceramics can be used in dielectrophoresic mechanical separation process. This separation process has now been used to treat the pollutants in environment and remove micro-particles in petroleum, and some achievements have been achieved. Dielectric materials with excellent dielectric properties can reduce energy consumption and protect the environment.
    Perovskite dielectric materials have been receiving much attention due to their excellent functional properties, such as pyroelectricity, piezoelectricity, electrooptic effect, and so on. Barium titanate which has high dielectric constant and is used widely in multilayer ceramics capacitors is one of the most common dielectric materials. Structural analysis shows that barium titanate crystallizes in the cubic system space group O_h~1-Pm3m assuming at temperatures above 120℃. And the dielectric constant of barium titanate at about 120℃ reaches a maximum which is about 6 times of that at room temperature. However, the preparation and doping components, for example the doping of lanthanon,
    influence the dielectric properties of barium titanate strongly. Therefore the research of preparation and dielectric properties of doped barium titanate ceramics has been a focal point in electronic ceramics field. Sol-gel method which can prepare multicomposition barium titanate powders is considered as a "chimie douce" or soft chemical approach to the synthesis of metastable oxide material. Ceramic powders can be obtained after heat treatment of xerogel to a temperature high enough to remove the organic components.
    Methods of the synthesis of BaTiO_3, technical characteristics, research situation and recent progress had been presented in this paper firstly. Low temperature wet chemical routes offer an exciting possibility for the synthesis of high purity, homogeneous, ultrafine powders which meet the need of electric components in factual application. Sol-gel method, which can prepare multicomposition barium-titanate powders, was the one of the prospective routes for manufacturing barium-titanate powders. Besides, we summarized recent progress of the doping of microelement in BaTiO_3 based ceramics.
    Therefore, in this paper, first of all, barium-titanate powder and ceramics were prepared by sol-gel method. Second, different kinds of doping methods were used to synthesize BT:xPr_6O_(11) series ceramics. Third, BCST (Ba_(0.62)Ca_(0.08)Sr_(0.3)TiO_3) powder was prepared by sol-gel method, Pr_6O_(11) and Nd_2O_3 were mixed into the BCST powder by solid
    state method to synthesize BCST:0.001Pr_6O_(11)·xNd_2O_3 series ceramics. The main phases of predecessor powders were characterized by X-ray Diffraction. The patterns of the BT-based ceramics were observed by SEM. The dielectric properties of the ceramics were determined. In general, the main work is as follows:
    1. Nanometer-sized barium-titanate powder and ceramics were prepared by sol-gel method. Tetragonal phase nanometer-sized barium-titanate powder had been synthesized by sol-gel process and was characterized by X-ray Diffraction. The pattern of the BT ceramics was observed by SEM and the average grain size of the ceramics was about 5μm. The Curie temperature Tc is 134℃ measured by Dielectric Frequency and Temperature Spectrum Analyzer.
    2. Nanometer-sized BCST powder and ceramics was prepared by sol-gel method. Tetragonal phase nanometer-sized BCST power was characterized by X-ray Diffraction. The pattern of the BCST ceramics was observed by SEM and the average grain size of the ceramics was about 8μm. Compared with the Curie point of pure BT ceramics, the Curie point of BCST ceramics shifted to lower temperature and the Curie peak was broadened and depressed distinctly, and the Curie temperature is 12℃ measured by Dielectric Frequency and Temperature Spectrum Analyzer. Besides, the dielectric loss of BCST ceramics was lower than that of BT ceramics.
    3. Nanometer-sized BT:xPr_6O_(11) series powders and ceramics were prepared and different kinds of doping methods , solid state and liquid state doping methods, were used to synthesize BT:xPr_6O_(11) series ceramics. The properties of BT:xPr_6O_(11) series ceramics synthesized by those two methods were compared. The optimal sample of BT:xPr_6O_(11) powders and ceramics synthesized by liquid state doping method was BT:0.005Pr_6O_(11); BT:0.005Pr_6O_(11) powder was found to be tetragonal phase and nanometer-sized tested by X-ray Diffraction; the pattern of the BT:0.005Pr_6O_(11) ceramics was observed by SEM and the average grain size of the ceramics was about 300nm; compared with the Curie point of pure BT ceramics, the Curie point of BT:0.005Pr_6O_(11) ceramics, which is 68℃ shifted to lower temperature, and the dielectric loss of BT:0.005Pr_6O_(11) ceramics was lower than that of BT ceramics. For the BT:xPr_6O_(11) powders and ceramics synthesized by solid state doping method, the optimal sample was BT:0.001Pr_6O_(11); the BT:0.001Pr_6O_(11) powder was found to be tetragonal phase and nanometer-sized tested by X-ray Diffraction; the pattern of the BT:0.001Pr_6O_(11) ceramics was observed by SEM and the average grain size of the ceramics was about 500nm; compared with the Curie point of pure BT ceramics, the Curie point of BT:0.005Pr_6O_(11) ceramics, which is 118℃ shifted to lower temperature, and the Curie peak was broadened; besides, the dielectric loss of BT:0.001Pr_6O_(11) ceramics was lower than that of BT ceramics; a
    relative lower dielectric peak which lead the temperature dependence of the dielectric curve double-peak like was found at 34℃. The BT:0.001Pr_6O_(11) ceramics prepared by solid state doping method was better matured in crystalline grain, and had less pores than those of the BT:0.005Pr_6O_(11) ceramics synthesized by liquid state doping method. Also the Curie temperature of BT:0.001Pr_6O_(11) ceramics was higher than that of BT:0.005Pr_6O_(11) ceramics, the Curie peak was wider than that of BT:0.005Pr_6O_(11) ceramics. Thus, the BT:0.001Pr_6O_(11) ceramics prepared by solid state doping method had higher dielectric constant and lower dielectric loss at room temperature.
    4. Nanometer-sized BCST powder was prepared by sol-gel method, then Pr_6O_(11) and Nd_2O_3 were doped through solid state doping method, and BCST:0.001Pr_6O_(11)·xNd_2O_3 powders and ceramics were prepared. The optimal sample of BCST:0.001Pr_6O_(11)·xNd_2O_3 ceramics was BCST: 0.001Pr_6O_(11)·0.002Nd_2O_3 ceramics. The BCST:0.001Pr_6O_(11)·0.002Nd_2O_3 powder was found to be tetragonal phase and nanometer-sized tested by X-ray Diffraction. The pattern of the BCST:0.001Pr_6O_(11)·0.002Nd_2O_3 ceramics was observed by SEM and the average grain size of the ceramics was about 6μm. Compared with the Curie point of pure BT ceramics, the Curie point of BCST:0.001Pr_6O_(11)·0.002Nd_2O_3 ceramics, which is 10℃ shifted to lower temperature. Besides, the dielectric loss of BCST:0.001Pr_6O_(11)·0.002Nd_2O_3 ceramics was lower than that of BT
    ceramics. Compared with the Curie point of BCST ceramics, which is
    12℃ , the Curie point of BCST:0.001Pr_6O_(11)·0.002Nd_2O_3 ceramics didn't
    shift to lower temperature apparently, but the dielectric constant of
    BCST:0.001Pr_6O_(11)·0.002Nd_2O_3 ceramics at Curie temperature increased
    obviously.
引文
[1] Hirofumi Matsuda, Tetsuro Mizushima and Kuwabara, Low-Temperature Synthesis and Electric Properties of Semiconducting BaTiO_3 Ceramics by the Sol-gel Method with high Concentration Alkoxide Solutions[J]. Jan.Ceram.Soc, 1999, 107(3): 290-292.
    [2] Shimooka H, Makoto K. Preparation of dense BaTiO_3 ceramics from sol-gel-derived-monolithic gels[J]. J Am Ceram Soc, 1995, 78(10): 2849-2852.
    [3] Yamaji A, Enomoto Y, Kinoshita K. Preparation, characterization and properties of Dy-doped small grained BaTiO_3 ceramics[J]. J Am Ceram Soc, 1977, 60(3): 97-101.
    [4] Nosaka Y, Jimbo M, Aizawa M. Sol-Gel processing for BaTiO_3 and application to an a. c. powder electrolum inescence device[J]. Journal of Materials Science Letters, 1991, 10: 406-407.
    [5] Jan-Thorsten Reszat, Alexandre E. Glazounov, Michael J. Hoffmann, Analysis of intrinsic lattice deformation in PZT-ceramics of different compositions[J]. Journal of the European Ceramic Society, 2001, 21:1349-1352.
    [6] Kowalski K, Ijjaali M, Bak T, et al. Electrical properties of Nb-doped BaTiO_3[J]. J. Phy. Chem. Solids, 2001, 62: 543-551.
    [7] Hamaji Y, Sano H, Wada H, et al. Effect of rare earth oxides on X7R dielectrics. In Proceedings of the Seventh US-Japan Seminar on Dielectric and Piezoelectric Ceramics[J]. 1995 Nov 14-17; Tsukuba, Japan, 1995, Ⅳ(5):273.
    [8] 郭卫红,汪济奎编著.现代功能材料及其应用[M].北京:化学工业出版社,2002.8.
    [9] 李玲,向航编著.功能材料与纳米技术[M].北京:化学工业出版社,2002,7.
    [10] 汪东亮主编.精细陶瓷材料[M].北京:中国物资出版社,2000,12.
    [11] 张昭,彭少方等编著.无机精细化工工艺学[M].北京:化学工业出版社,2002.6.
    [12] 张昭,彭少方等编著.无机精细化工工艺学[M].北京:化学工业出版社,2005.8.
    [13] 杨华明,宋晓岚,金胜名编著.新型无机材料[M].北京:化学工业出版社,2005,1.
    [14] 熊炳昆等编著.锆铪及其化合物应用[M].北京:冶金工业出版社,2002,12.
    [15] 朱岳麟,熊常键,郭红等.航煤新工艺开发研究,中国石化报告.
    [16] 曲远方主编.功能陶瓷及应用[M].北京:化学工业出版社,2003,3.
    [17] B.M.VUL, I.M. GOLDMAN, "Dokl. Akad. Nauk SSSR" , 46, 139(1945).
    [18] A. von HIPPEL, R. G. BRECKENRIDGE, F. G. CHESLEY, 1. TISZA, "Ind. Eng. Chem.", 38, 1097(1946).
    [19] Pradeep P Phule, Subhash H. Risbud. Review-Low-temperature synthesis and processing of electronic materials in the BaO-TiO_2 system[J]. Journal of Materials Science, 1990, 25: 1169-1183.
    [20] Bharat L. Newalkar, Sridhar Komarneni, Hiroaki Katsuki. Microwave -hydrothermal synthesis and characterization of barium titanate powders[J]. Materials Research Bulletin, 2001, 36(13-14): 2347-2355.
    [21] Goo-Dae Kim, Ji-Ae Park, et al. Synthesis and Sintering of BaTiO_3 powders by the Glycine-Nitrate Process Using Metal Carbonate and Alkoxide[J]. J. Jpn.Ceram. Sot., 1999, 107(8): 691-696.
    [22] Zhong Zhimin and Patrick K.Gallagher. Combustion synthesis and Characterization of BaTiO_3[J]. J. Mater. Res., 1995, 10(4): 945-952.
    [23] A.V.Komarov and I.P.Parkin, Self-Propagating High-Temperature Synthesis of BaTiO_3 Using Titanium Trichloride as a Fuel Source[J]. J. Mater. Sci.Lett, 1996, 15: 542-543.
    [24] W. J. MERZ, "Phys. Rev.", 76, 122(1949).
    [25] H. W. KAY, P. VOUSDEN, "Phil. May."40, 1019(1949).
    [26] 徐廷献,沈继跃,薄占满,等.电子陶瓷材料[M].天津:天津大学出版社,1999:131-196.
    [27] 李承恩,薛军民,殷之文,倪焕尧,朱为民.功能陶瓷粉体制备液相包裹技术 的理论基础与应用[M].上海:上海科学普及出版社,1997.
    [28] 赵海燕.钛酸钡系电子陶瓷的制备及电学性质,[硕士论文].河北师范大学,2002.
    [29] 杜仕国.超微粉制备技术及其进展[J].功能材料,1997,28(3):237-241.
    [30] 干福熹.信息材料[M].天津:天津大学出版社,2000:200-231.
    [31] Lieselotte K. Templeton and Joseph A Pask, Formations of BaTiO_3, from BaCO_3 and TiO_2 in air and in CO_2[J]. J. Am Ceram. Soc, 1959, 42(5): 212-216.
    [32] 罗建辉.电子陶瓷粉体.钛酸钡的制备[J].材料导报,1993,5:51-53.
    [33] 潘春跃,王开毅.水热法制备超细钛酸钡[J].中国有色金属学报,1995,5(2):51-54.
    [34] 胡嗣强,黎少华.水热合成技术的研究和应用—Ⅲ.钛酸钡晶体粉末的制备[J].过程工程学报,1994,15(4):316-321.
    [35] 钱逸泰,陈乾旺,陈祖耀等.H_2O_2氧化-水热处理联用法制备高纯超微BaTiO_3粉末[J].应用化学,1993,10(3):32-34.
    [36] Larry L. Hench and Jon K. West. The Sol-Gel process[J]. Chemical Reviews, 1990, 90(1): 33-72.
    [37] 刘祖武编著,现代无机合成[M].北京:化学工业出版社,1999.
    [38] 徐如人,无机合成化学[M].北京:高等教育出版社,1991:217-218.
    [39] J. Livage, M. Henry and C. Sanchez. Sol-gel chemistry of transition metal oxides[J]. Prog. Solid State Chem, 1988, 18(4): 259-341.
    [40] Livage, J. Vanadium pentoxide gels[J]. Chem. Mater, 1991, 3(4): 578-593.
    [41] Brinker, C. J. and Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel processing[M]. Academic Press, New York, 1990.
    [42] Livage, J., Sol-gel Ionics. Solid State Ionics[M]. 1992, 50, 307.
    [43] 蔡政,卢文庆等.溶胶-凝胶(Sol-Gd)法制备BaTiO_3陶瓷的铁电和介电性质研究[J].南京师大学报(自然科学版),2002,25(1):67-70.
    [44] Viswanasth R. N., Ramasamy S. Preparation and ferroelectric phase transition studies ofnanocrystalline BaTiO_3 [J]. Nanostructured Materials, 1997, 8(2): 155-162.
    [45] Jirawat Thongrueng, Toshio Tsuchiya et al. Properties and Degradation of Polarization Reversal of Soft BaTiO_3 Ceramics for Ferroelectric Thin-Film Devices[J]. Jpn. J. Appl. Phys. Part 1, 1999, 38(9B): 5309-5313.
    [46] 郭靖.多层陶瓷电容器(MLCC)用钛酸钡的研制,[硕士论文].四川大学,2004.
    [47] Michael Veith, Sanjay Mathur, Nicolas Lecerf, et al. Sol-gel synthesis of nano-scaled BaTiO_3, BaZrO_3 and BaTi_(0.5)Zr_(0.5)O_3 oxides via single-source alkoxide precursors and semi-alkoxide routes[J]. Journal of Sol-Gel Science and Technology, 2000, 17(2): 145-158.
    [48] X. M. Chen, T. Wang, J. Li. Dielectric characteristics and their field dependence of (Ba, Ca)TiO_3 ceramics[J]. Materials Science and Engineering B, 2004, 113(2): 117-120.
    [49] Jae-Ho Jeon, Yoo-Dong Hahn, Hai-Doo Kim. Microstructure and dielectric properties of barium-strontium titanate with a functionally graded structure[J]. Journal of the European Ceramic Society, 2001, 21(10-11): 1653-1656.
    [50] 丁士文,翟永清等.Ba_(1_x)Ca_xSn_yTi_(1-y)O_3纳米材料的合成、结构与性能[J].化学学报,2000,58(9):1139-1141.
    [51] ZHANG Ya-min, SUN Xiu-yun and LU Da-yong. Effects of Cerium Doping at Ti Sites and Europium Doping at Ba Sites on Dielectric Properties of BaTiO_3 Ceramics[J]. CHEM. RES. CHINESE U, 2006, 22(4), 515-519.
    [52] Zhi Yu, Chen Ang et al. Dielectric properties of Ba(T_(1-x)Zr_x)O_3 solid solutions[J]. Materials Letters, 2007, 61(2): 326-329.
    [53] H.Y. Tian, Y. Wang et al. Preparation and characterization of hafnium doped barium titanate ceramics[J]. Journal of Alloys and Compounds, 2007(1-2): 197-202.
    [54] R. Varatharajana, S. Madeswaran et al. Nb:BST: Crystal growth andferroelectric properties[J]. Journal of Crystal Growth, 2001, 225(2-4): 484-488.
    [55] Hirokazu.C, Kishi.H. Sintering characteristics in BaTiO_3-Nb_2O_5-Co_3O_4 ternary system:I Electrical properties and microstructure[J]. J. Am. Ceram. Soc, 1999, 82(10): 2689-2697.
    [56] T.R. Armstrong, L.E. Morgens, A.K. Maurice, et al. Effects of Zirconia on Microstructure and Dielectric Properties of Barium Titanate Ceramics[J] J. Am. Ceram. Soc, 1989, 72(4)605-611.
    [57] Hong-Yang Lu, Jong-Shing Bow and Wen-How Deng Core-Shell Structures in ZrO_2-Modified BaTiO_3 Ceramic[J]. J. Am. Ceram. Soc, 1990, 73(12): 3562-3568.
    [58] Yun-Sung Jung, Eun-Sang Na, et al. A study on the transition and characteristics of rare earth elements doped BaTiO_3[J]. Materials Research Bulletin, 2002, 37(9): 1633-1640.
    [59] Ravender Tickoo, R.P. Tandon, et al. Dielectric and ferroelectric properties of lanthanum modified lead titanate ceramics[J]. Materials Science and Engineering B, 2002, 94(1): 1-7.
    [60] Xiaohong Wang, Wenzhong Lu, et al. Effects of La_2O_3 additions on properties of Ba_(0.6)Sr_(0.4)TiO_3-MgO ceramics for phase shifter applications[J]. Journal of the European Ceramic Society, 2006, 26(10-11): 1981-1985.
    [61] Hiroshi Kishi, Noriyuki Kohzu, et al. Occupational sites and dielectric properties of rare-earth and Mn substituted BaTiO_3[J]. Journal of the European Ceramic Society, 2001, 21(10-11): 1643-1647.
    [62] Hennings. D. E Dielectric materials for sintering in reducing atmospheres[J]. Journal of the European Ceramic Society, 2001, 21 (10-11): 1637-1642.
    [63] Michael Z C Hu, Kurian V, Andrew Payzant E, et al. Wet-chemical synthesis of monodispersed barium titanate particles—hydrothermal conversion of TiO_2 mierospheres to nanoerystalline BaTiO_3 [J]. Powder Technology, 2000, 110(1-2): 2-14.
    [64] Buseaglia M T, Buscaglia V, Viviani M, et al. Influence of foreign ions on the crystal structure ofBaTiO_3[J]. J Eur Ceram Soe, 2000, 20(12):1997-2007.
    [65] Anthony R.West. Solid State Chemistry and its Applications[M]. John Wiley & Sons Ltd: New Delhi, 1984: 544.
    [66] Fukai K,Hidaka K, Aoki M,et al. Preparation and properties of uniform fine perovskite powders by hydrothermal synthesis[J]. Ceramics International, 1990, 16(5): 285-290.
    [67] West A.R. Solid State Chemistry And Its Applications[M]. John Wiley Sons Ltd: New Delhi, 1984: 367, 543.
    [68] 沈志刚,陈建峰,刘方涛,等.Bal_(1-x)Sr_xTiO_3纳米粉体的直接沉淀法合成、结构与介电特性[J].功能材料,2003,34(5):556-558.
    [69] Nosaka Y, Jimbo M, Aizawa M. Sol-Gel processing for BaTiO3 and application to an a. c. powder electrolum inescence device[J]. Journal of Materials Science Letters, 1991, 10(1): 406-407.
    [70] Kowalski K, Ijjaali M, Bak T, et al.Electrical properties of Nb-doped BaTiO_3[J]. J. Phy. Chem. Solids, 2001, 62(3): 543-551.
    [71] 刘光华主编.稀土材料与应用技术[M].北京:化学工业出版社,2005,7.
    [72] 郑子樵,李红英主编.稀土功能材料[M].北京:化学工业出版社,2003,8
    [73] 曾华容,瞿翠凤,姚春华,等.溶胶-凝胶法制备热释电陶瓷材料[J].无机材料学报,1999,14(1):101-105.
    [74] 齐健全,桂治轮,王永力等.Yb_2O_3的掺杂方式对Ba(Ti_(1-y)Zr_y)O_3陶瓷介电性能的影响[J].无机材料学报,2001,16(5):989-992.
    [75] 江涛,陈绍茂,郭育源,等.中温烧结BaTiO_3基多相铁电瓷料X7R特性[J].华南理工大学学报(自然科学版),1996,24(3):124-128.
    [76] 杨飞宇,燕青芝,赵浩峰等.钛酸钡粉体制备方法研究进展[J].粉末冶金工业,2003,13(6):27-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700