深厚表土层非均质厚冻结壁力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭作为我国重要的一次能源,在能源结构中仍然占有十分重要的比重;随着浅层煤炭资源的开采殆尽,为满足国民经济发展对煤炭资源的需求,深部煤炭资源开采的需求已经日益迫切。预计未来10年内我国东部地区将新建井筒100个以上,这些井筒都不可避免地要穿过深厚的表土层(400~800m);随着冻结深度和表土层厚度的不断增加,冻结壁的厚度也不断增大(冻结壁的厚度已经由最初的3m左右,增加到目前10m以上,与井筒的开挖荒径相当),冻结壁形成也由一圈冻结增加到双圈和三圈冻结,但是对于多圈形成厚冻结壁,仍然按照“冻结壁的平均温度”将冻结壁假设为均质的材料来研究,势必存在着一定误差,因此,有必要开展深入的研究。
     本文采用大型物理模拟试验、数值模拟、理论分析等综合研究手段,开展了“深厚表土层非均质厚冻结壁力学特性研究”,研究内容考虑了深厚表土层特殊的工程条件和冻结凿井工程特点,采用“深土冻土力学”的研究方法,获得了多圈冻结形成的非均质厚冻结壁的力学特性。本文多种研究手段相互印证,证明了研究成果的可靠性。
     论文以粘弹塑性理论为基础,考虑深厚表土层中多圈冻结管形成的厚冻结壁径向温度的分布,在试验和实测的蠕变方程的基础上,研究了冻结壁径向非均质条件下,冻结壁的应力场、承载性能和径向变形规律,依据本文提出的“分层理论模型”应用于多圈形成的厚冻结壁计算,较“平均温度”更加合理和科学;同时研究了有限段高条件下,考虑工作面上下端不同约束条件时,冻结壁的径向变形解析解,并讨论了该公式的应用范围,为冻结壁设计提供了有益参考。
     采用ANSYS有限元分析软件模拟了深厚表土层多圈冻结冻结壁的温度场演变规律,在数值模拟温度场的基础上,采用间接耦合分析了非均质厚冻结壁的应力场和变形场的规律。文中讨论了不同约束条件和开挖段高对于冻结壁径向变形的影响;开展了冻结砂土和冻结黏土分层的数值模拟研究,初步探讨了砂土层和黏土层组合层影响下冻结壁的稳定性。
     自行设计、研制了深部非均质厚冻结壁模拟试验系统,该系统可以模拟深度400~800m范围内,多圈冻结管形成的冻结壁的温度场和冻结壁整体变形规律,本文模拟试验的过程按照:固结——有压冻结——开挖卸载(蠕变)进行,符合冻结法凿井特殊施工力学行为特点。
     在理论分析、数值模拟、物理模拟和工程实测的基础上,提出了深厚表土层多圈冻结厚冻结壁设计模型,模型考虑了冻结壁径向温度不均匀的影响,为深厚表土层中冻结壁的设计奠定了理论基础。课题研究具有重要的经济价值和社会价值。
Coal is the primary energy in China, in order to satisfy the development of national economy, the needs of coal resource under the deep alluvium become more and more impendent. And these shaft well are inevitably needed through the deep alluvium (400~800m). With the increasing freezing depth and topsoil layer depth, the depth of the frozen wall also increased constantly. But the thick frozen wall formed by multi-coil frozen pipes is still researched as homogeneous material according to the average temperature of frozen wall, there may be some error that may affect the safety of the frozen wall in the deep alluvium.
     By the physical simulation, numerical simulation and theoretical analysis, as well as the data of engineering measuring, the research on mechanical characteristic of multi-coil thick frozen wall in deep alluvium has been taking on. Combining the condition of deep alluvium and the engineering characteristic of freezing shaft are also taken into consideration, as well as the effect of the heterogeneity of multi-coil thick frozen wall for its stability, the engineering properties of the frozen wall in non-uniform temperature field under high confining pressure had been carried out.
     The second chapter is based on the elastic-plastic theory, and considering radial delamination of multi-coil thick frozen wall in deep alluvium (radial temperature distributing of frozen wall). On the basis of constitutive relation of deep frozen soil in test measuring, the stress field, carrying capacity and radial deformation characteristic of frozen wall have been researched under the condition of the radial uneven condition. Meanwhile basing on the measured data, the rule of radial distortion was researched, considering the upper and lower side of the working face at different constraints above the limited segment height conditions, so, some references were provided to the design of frozen wall in deep alluvium.
     The evolution law of temperature field of the multi-coil thick frozen wall in deep alluvium along with the stability of the frozen wall in the direction of the depth of the different layers (layers of sand and clay) were simulated by ANASYS (finite element analysis software), taking on the premise of non-uniform temperature field of the frozen wall into account, to obtain more accurate distribution law of stress field and deformation field, which can provide a useful reference to the design and construction for freezing shaft in deep alluvium.
     The success of the design and establishment of deep soil and frozen soil multi-purpose simulation systems, and the physical simulation tests of multi-coil thick frozen pipes were carried through the test-bed. At the same time theoretical analysis and numerical simulation results correspond to each other.
     On the basis of theoretic analysis, numerical simulation, physical simulation and engineering measured the deep alluvium in thick multi- coil wall to freeze time and space design was brought out for multi-coil thick frozen wall of the deep alluvium. This research had important economic value and social value.
引文
[1] H.A.崔托维奇著,张长庆,朱元林译.冻土力学[M].北京:科学出版社,1985.
    [2]程国栋.用冷却路基的方法修建青藏铁路[J].中国铁道科学,2003,24(3):1-4.
    [3]崔广心,杨维好,吕恒林.深厚表土层中的冻结壁和井壁[M].徐州:中国矿业大学出版社,1998.
    [4]别小勇.人工冻土冻胀控制[D],徐州:中国矿业大学,2003.
    [5]陈瑞杰等,人工地层冻结应用研究进展和展望[J].岩土工程学报,2000,22(1):40-44.
    [6]陈湘生.地层冻结技术40年[J].煤炭科学技术,1996,24(1): 13-15.
    [7]朱元林,张家懿等.冻土的单轴压缩本构关系[J].冰川冻土,1992,14(3):210-217.
    [8]蔡中民,朱元林等.冻土的粘弹塑性本构模型及材料参数的确定[J].冰川冻土,1990,12(1):31-40.
    [9]何平等.饱和冻结粉土扭转状态下应力应变分析[J].兰州铁道学院学报,1998,17(3):29-33.
    [10]宁建国,王慧等.基于细观力学方法的冻土本构模型研究[J].北京理工大学学报,2005,25(10):847-851.
    [11]张向东,郑雨天.冻粘土的技术蠕变理论及在冻结法中的应用[J].西安矿业学院学报,1997,17(2):136-141.
    [12] Song L,Zhang X D. Measurement of triaxial creep properties of frozen soil[J].6th Int. Conf. on numerical methods in geomechanics, 1988: 211-218.
    [13]何平,程国栋等.非饱和冻土的强度分析[J].冰川冻土,2002,24(3):260-263.
    [14]李栋伟,汪仁和,林斌等.冻粘土粘弹塑本构方程及试验验证[J].煤炭工程,2005,8:69-71.
    [15]李栋伟,汪仁和,胡璞等.人工冻土粘弹塑本构关系研究[J].低温建筑技术,2005,4:73-74.
    [16]王廷栋,武建军,赵希淑等.冻土蠕变的光粘弹性模拟实验可行性研究[J].冰川冻土,1995,17(2):159-163.
    [17]王廷栋,赵希淑,吴紫汪等.冻土蠕变模拟实验的相似条件[J].冰川冻土,1995. 17(4):322-327.
    [18]吴紫汪,赵希淑,王廷栋等.冻土蠕变的光粘弹性模拟实验[J].自然科学进展,1996.6(1):86-92.
    [19]王廷栋,武建军,赵希淑等.有圆形孔的冻土蠕变的光粘弹性模拟实验[J].冰川冻土,1996.18(4):312-318.
    [20] Pu Yibin. The introduction of application methods for CT in frozen soil experimental research[J]. 6th Int. Conf. on Permafrost, 1208-1210.
    [21]吴紫汪,蒲毅彬,马巍等.冻结孔偏斜下冻结壁温度场的形成特征与分析[J].冰川冻土,1995. 17(增刊):41-46.
    [22]吴紫汪,马巍.冻土蠕变过程中结构的CT分析[J].CT理论与应用研究,1995,4(3):31-44.
    [23]蒲毅彬,吴紫汪.CT在岩土实验中的数值分析[J].CT理论与应用研究,1994,3(3):8-12.
    [24]蒲毅彬,吴紫汪.冻土CT实验的数学方程[J].冰川冻土,1995,17(增刊):136-140.
    [25]吴紫汪,蒲毅彬,马巍等.冻土蠕变变形特征的细观分析[J].岩土工程学报,1997,19(3):1-6.
    [26]马巍,吴紫汪,蒲毅彬等.冻土三轴蠕变过程中结构变化的CT动态监测[J].冰川冻土,1997,19(1):52-56.
    [27] Miao Tiande et al. A study on creep of frozen soil by damage mechanics[J].6th Int. Conf. on Permafrost. South China University of Technology press. 1993,197-201.
    [28]盛煜,吴紫汪,苗丽娜等.冻土单轴压缩蠕变的归一化模型[J].自然科学进展,1996,3:357-360.
    [29]盛煜,吴紫汪,朱元林等.应用蠕变理论对冻土在增应力过程汇总蠕变规律的几何分析[J].冰川冻土,1995,17(增刊):47-53.
    [30]盛煜,吴紫汪,苗丽娜等.冻结砂土在两级应力作用下的蠕变破坏性质[J].冰川冻土,1995,17(4):334-338.
    [31] Vyalov S S,Gmoshinskii V G et al. The strength and creep of frozen soils and calculation for ice-soil retaining structure[J]. US CRREL Translation,1963:73.
    [32] Ladanyi B. An engineering theory of creep soils[J].Canadian Geotechnical Journal,1972,9(1):63-88.
    [33] Ting J M. Tertiary creep model for frozen sands[J]. ASCE Journal of Geotechnical Engineering,1993,109(7):932-945.
    [34]王建省,宁建国.温度场中冻土接触的蠕变边界单元模型[J].北方工业大学学报,2004,16(3):77-84.
    [35]徐士良.立井多排管冻结温度场的数学模型[J].安徽建筑工业学院学报(自然科学版),2004,10-12.
    [36]崔广心,李毅.有压条件下湿砂结冰温度的研究[J].冰川冻土,1994,16(4):320-326.
    [37]李毅,崔广心,吕恒林.有压条件下湿粘土结冰温度的研究[J].冰川冻土,1996,18(1):43-46.
    [38]崔广心,杨维好,李毅.受荷载的湿土结冰温度变化规律的研究[J].冰川冻土,1997,19(4):321-327.
    [39]崔广心.厚表土层湿土结冰温度与冻结壁厚度确定的研究[J].中国矿业大学学报,1997,26(3):1-4.
    [40]张世银,汪仁和.土壤冻结温度的影响因素研究[J].西部探矿工程,2005,5:26-29.
    [41]汪志诚.热力学统计物理(第二版)[M].北京:高等教育出版社,1993:114-122.
    [42]特鲁巴克.冻结凿井法(上册)[M].北京:煤炭工业出版社,1958:45-56.
    [43]邢述彦.土壤冻结温度测定试验研究[J].太原理工大学学报,2004,35(4):385-387.
    [44]赵怀固,沈华军,潘存银.冻结温度监测仪引进与应用研究[J].西部探矿工程,2005,2:131-132.
    [45]煤矿冻结法凿井经验编写小组.煤矿冻结法凿井经验[M].北京:煤炭工业出版社,1976:82-98.
    [46]徐士良,汪仁和.人工地层冻结温度场试验台设计和研究[J].低温建筑技术,2004,5:66-67.
    [47]汪仁和,徐士良.冻结壁温度场模型试验极其导热系数反分析[J].安徽理工大学学报(自然科学版),2003,23(5):18-22.
    [48]金川,汪仁和,王伟.张集矿北区地层冻结温度场的实测与分析[J].安徽工业大学学报,2004,24(2):13-17.
    [49]杨平,陈维华,张维敏等.冻结壁形成及解冻规律实测研究[J].冰川冻土,1998,20(2):91-95.
    [50]张晓光,岳丰田,张丰敏等.矿井冻结温度场测试系统的研制[J].煤炭科学技术,2002,30(6):7-9.
    [51]任彦龙,杨维好,王衍森.某矿井冻结温度场的数值模拟[J].西部探矿工程,2003,3:89-90.
    [52]沈晓明,高峰,李建军.龙固矿副井冻结壁温度场有限元数值模拟[J].河北理工学院学报,2004,26(2):136-143.
    [53]汪仁和,曹荣斌.双排管冻结下冻结壁温度场形成特征的数值分析[J].冰川冻土,2002,24(2):181-185.
    [54]沈晓明.深厚表土层下冻结壁数值分析[D].徐州:中国矿业大学,2003.
    [55]林璋璋,杨俊杰.三排冻结管冻土壁温度场分析[J].建井技术,2003,24(3):21-24.
    [56]徐士良.立井多排管冻结温度场的数学模型研究[J].安徽建筑工业学院学报,2004,12(3):10-12.
    [57]孟进军.深厚表土层冻结壁温度场的研究[D].徐州:中国矿业大学,2005.
    [58]王衍森,杨维好,任彦龙.冻结法凿井冻结温度场的数值反演与模拟[J].中国矿业大学学报,2005,34(5):626-629.
    [59]汪仁和,李晓军.冻结温度场的叠加计算与计算机方法[J].安徽理工大学学报,2003,23(1):25-29.
    [60]皮爱如,杨平.地下水流对冻结壁形成影响的数值模型建立[J].淮南工业学院院报,1999,19(4):18-22.
    [61]黄志秋.地下动水对地层冻结的影响及预防措施[A]//地层冻结技术工程和应用——中国地层冻结工程40年论文集.北京:煤炭科学出版社,1995.
    [62]檀鲁新.古城矿井高流速地下水冻结施工技术[A]//矿井建设技术论文集,徐州:中国矿业大学出版社,1997.
    [63]夏宇君.高流速地下水井筒冻结施工技术[J].建井技术,2006,27(1):2-4.
    [64] Auld,F.A. Freeze-wall strength and stability design problems in deep shaft sinking is current theory realistic[J].4th International Symposium on Ground Freezing,Sapporo,1985:343-350.
    [65] Bopp,P.A.,Lade,P.V. Effects of initial density on soil instability at high pressures[J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123(7):671-677.
    [66] Autorenkollektiv. Gefrierschachtbau.Glückauf– Betribsbücher.Bd.31[J].Verlag Glückauf GmbH,1985.
    [67] Cui Guangxing,Yang Weihao. Stress analysis on freezing pipes by modelling test. in:Yu & Wang (eds) [J].Ground Freezing 91, Balkema, Rotterdam,1991:219-223.
    [68] Domke , O.über die Beanspruchung der Frostmauer beim Schachtabteufen nach Gefrierverfahren[J].Glückauf, 1915,51(47):1129-1135.
    [69] Beckmann , G?rtner und Klein. Betrachtungen zur Spannungs- Stabilit?tsberechnung von gleitenden Schachtausbau[J].Glückauf-Forschungsheft,1986,47(4):163-170.
    [70] Harris,J.S. Ground freezing in practice[J].Thomas Telford,London,1995:52-65,71-85.
    [71] Klein,J. State of the art: Engineering design of shafts,in Johnes & Holden(eds)[J].Ground Freezing 88,Balkema,Rotterdam,1988:235-243.
    [72]崔广心等.冻结壁厚度和变形规律的模拟试验研究[J].煤炭学报,1992,17(3):37-47.
    [73]崔广心.深厚冲积层中冻结壁厚度的研究[J].冰川冻土,1995,17(增刊):26-34.
    [74]崔广心.厚表土层湿土结冰温度与冻结壁厚度确定的研究[J].中国矿业大学学报,1997,26(3):1-4.
    [75]张向东,张树光,李永靖等.冻土三轴流变特性试验研究与冻结壁厚度的确定[J].岩石力学与工程学报,2004,23(3):395-400.
    [76]魏允伯,赵军,诏世全.冻结井筒井帮温度与冻结壁厚度的关系[J].矿山压力与顶板管理,2001,3:87-88.
    [77]杨平,郁楚侯,汪仁和.冻结壁强度及其参数模拟试验研究[J].地层冻结工程技术和应用.北京:煤炭工业出版社,1995,6.
    [78]宋雷,刘天放等.冻结壁发育状况的地质雷达探测研究[J].中国矿业大学学报,2005,3(34):143-147.
    [79]周晓敏,张绪忠.冻结器内测温判定冻结壁厚度的研究[J].煤炭学报,2003,28(2):162-166.
    [80]杨平.深井冻结壁变形计算的理论分析[J].淮南矿业学院学报,1994,14(2):26-31.
    [81]吴紫汪,马巍等.冻土强度与蠕变[M].兰州:兰州大学出版社,1994,5.
    [82]陈湘生.我国人工冻结粘土蠕变数学模型及应用[J].煤炭学报,1995,20(4):399-402.
    [83]马巍,吴紫旺.人工冻结竖井中底鼓问题的弹塑性计算[J].冰川冻土,1991,13(3):237-246.
    [84]张向东,郑雨天等.冻结井筒超前位移与底鼓的理论分析[J].阜新矿业学院学报,1996,15(3):283-287.
    [85]马英明,郭瑞平.冻结凿井中冻结壁位移规律及影响因素的研究[J].冰川冻土,1989,3(11):20-33.
    [86]郭瑞平,霍雷声.冻结壁位移计算及冻结施工优化设计[J].矿冶工程,1999,12(19):6-8.
    [87]郭瑞平,李广信.冻结壁位移对冻结管断裂的影响[J].淮南矿业学院学报,1997,9(17):22-26.
    [88]乾增珍,鲁先龙,陈湘生.人工冻土蠕变的数值计算及其模拟[J].中国矿业大学学报,2004,33(3):273-276.
    [89]张开顺,李炳胜等.井筒冻结壁径向位移规律计算研究[J].中国煤炭,2005,31(11):39-41.
    [90]陈湘生.人工冻黏土力学特性研究及冻土地基离心模型试验[D].清华大学土木水利学院,1999.
    [91]李功洲.深井冻结壁位移实测研究[J].煤炭学报,1995,2(20):99-104.
    [92]关图儒.流变性非均匀冻结壁有限元计算[J].中国力学会第二次全国塑性力学学术交流会,1988.
    [93]王衍森,蒋武军等.某深基坑冻土墙应力与变形的数值计算[J].中国矿业大学学报,2002,31(3):285-288.
    [94]鲁先龙,陈湘生等.深基坑中冻土墙与内衬相互作用的数值模拟研究[J].岩石力学与工程学报,2004,23(13):2-6.
    [95]杨更社,张晶.非均匀温度分布冻土墙围护深基坑开挖[J].岩石力学与工程学报,2003,22(2):316-32.
    [96]王大雁,马巍等.K0固结后卸载状态下冻土应力-应变特性研究[J].岩石力学与工程学报,2004,23(8):1252-1256.
    [97]王大雁,马巍等.模拟人工冻结凿井状态下冻土强度特性研究[J].冰川冻土,2002,24(2):168-172.
    [98]王衍森.特厚冲积层中冻结井外壁强度增长及受力与变形规律研究[D].徐州:中国矿业大学,2005.
    [99]苏立凡.对我国建设700m冻结立井的技术要素分析[A]//地层冻结技术工程和应用——中国地层冻结工程40年论文集.北京:煤炭工业出版社,1995,46-52.
    [100]孙文若,陈明华,姚直书.冻结井应用素混凝土井壁的研究[A]//地层冻结技术工程和应用——中国地层冻结工程40年论文集.北京:煤炭工业出版社,1995,335-340.
    [101]吕恒林.深厚表土中井壁的力学特性[D],徐州:中国矿业大学,1999.
    [102]赵冶泉.冻结井壁设计的历史回顾与展望[A]//地层冻结技术工程和应用——中国地层冻结工程40年论文集.北京:煤炭工业出版社,1995,5-10.
    [103]程桦,李焕成.立井井壁结构设计的问题及对策[J].中国煤炭,1997,23(6):30-33.
    [104] Qiu Shiwu,Wang Tiemeng. Study of sinking deep shafts using artificial freezing,design of shaft linings and method of preventing seepage[J].Special Report- United States Army, Cold Regions Research and Engineering Laboratory. Hanover,New Hampshire,1982,363-366.
    [105] Qiu Shiwu,Chen Minghua. Experiments with combined shaft lining[J].Coal Science and Technology, 1983,(7):24-27.
    [106]朱元林,吴紫汪,何平等.我国冻土力学研究新进展及展望[J].冰川冻土,1995,17(增刊):6-14.
    [107]崔广心.深厚表土中竖井井壁的外载[J].岩土工程学报,2003,25(3):294-298.
    [108]崔广心.深土冻土力学-冻土力学发展的新领域[J].冰川冻土,1998,20(2):97-100.
    [109]余力,马英明.关于冻结壁的计算方法[J].建井技术,1981,03:37-41.
    [110]王文顺.深厚表土层中冻结壁的稳定型研究[D].徐州:中国矿业大学,2007.
    [111]卢清国.冻结壁变形规律的模拟试验研究[D].徐州:中国矿业大学,1988.
    [112]特鲁巴克.冻结凿井法(下册)[M].北京:煤炭工业出版社.1958.
    [113]崔广心,卢清国.冻结壁厚度和变形规律的模型试验研究[J].煤炭学报,1992,17(3):37-47.
    [114]李功洲,陈文豹,熊翼翔.冻结壁和外层井壁位移实测研究[A]//地层冻结技术工程与应用——中国地层冻结工程40年论文集.北京:煤炭工业出版社1995,111-116.
    [115]王长生.深井冻结壁变形的分析[A]//地层冻结技术工程与应用——中国地层冻结工程40年论文集.北京:煤炭工业出版社,1995,165-170.
    [116]吴紫汪,丁德文,张长庆等.冻结凿井冻土壁的工程性质[M].兰州:兰州大学出版社,1988.
    [117]丁德文,付连弟,庞荣庆.冻结壁变化的数学模型及其计算[J].科学通报,1983,No.14.
    [118]张向东,郑雨天,徐恩虎.冻结井筒超前位移与底臌的理论分析[J].阜新矿业学院学报(自然科学版).1996,15(3):283-287.
    [119]张世芳,李功洲,陈文豹等.永夏矿区深厚冲积层特殊凿井技术[J].北京:煤炭工业出版社,2003.
    [120]陈远坤.深厚冲积层井筒冻结压力实测及分析[J].建井技术,2006,27(2):19-21.
    [121]李运来,汪仁和,姚兆明.深厚表土层冻结法凿井井壁冻结压力特征分析[J].煤炭工程,2006,10:35-37.
    [122]孙家学,刘斌.冻结壁原始冻胀力的分析与计算方法[J].东北大学学报(自然科学版),1995,16(3): 243-247.
    [123]胡向东.卸荷状态下冻结壁外载的确定[J].同济大学学报,2002,30(1):6-10.
    [124]吴金根.对冻结壁厚度计算公式的探讨[J].江苏煤炭,1987,3:39-42.
    [125] Nobuhide, Ogata, Masayuki Yasuda and Tetsuyuki Kataoka Eeffects of salt concentration on strength and creep behavior of artificially frozen soils [J]. Cold Regins Science and Technology, 1983(8): 139-153.
    [126] Banin, A. and D. M. Andersion. Effects of salt concentration changes during freezing on the unfrozen water content of porous materials [J]. Water Resour 1974 10(1): 124-128.
    [127] Coleman B. D. and H. E. Dell. Theory of induced birefringeuce in materials with memory. [J]. Water Resour 1971(10): 215-243.
    [128] Pu Yibing. The introduction of application medels for CT in frozen soil experimental research. 6th Int. Conf. on Permafrost, 1208-1210.
    [129] Chen Xiangsheng, Su Lifan. General report on mechanical properties of frozen soil [A]. in Ground Freezing 1991[C]. Rotterdam: A.A. Balkema, 1991, 112: 429-436.
    [130]袁文伯,马英明和陈宽德.非均质冻结壁弹塑性应力分析及厚度的计算学报,19862 : 80-88.
    [131]尤春安.非均质弹性冻结壁应力分析[J].煤炭学报,1983,2 : 44-50.
    [132] Ma Wei. Analyses of strength and deformation of an artificially frozen soil wall in underground engineering [J].Cold Regions Science and Technology,34(1) 2002: 11-17.
    [133] Niu Yonghong, Zhang Changqing and Zhang Jianming. Viscoelastic calculation on displacement and stress distribution in artificially frozen wall. Proceedings of the 1997 International Symposium on Ground Freezing and Frost Action in Soils, Lulea, Sweden, 1997: 455-462.
    [134] Ma Wei, Wu Ziwang, Xu Xiaozu. Calculation on the thickness of artificially frozen wall for supporting deep base pit. Proceedings of the 1997 International Symposium on Ground Freezing and Frost Action in Soils, Lulea, Sweden, 1997: 439-444.
    [135] Cluhou, Yu,Xinghua Fang. Frozen wall creep patterns and curvature testing method for freezing tube safety. Proceedings of the 2nd International Symposium on Mining Technology and Science,Xvzhou China,1991: 1274-1281.
    [136] Zhang Y, Sego D.C. and Morgenstern, N.R. Deformation of artificially frozen shafts during excavation. Proceedings of the 7th International Symposium on Ground Freezing,Nancy,1994: 225-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700