双功能RGD-TAT修饰的DNA纳米胶束的构建及细胞转运机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因治疗现已成为攻克肿瘤最具希望,也是研究最为活跃的领域。基因导入系统是基因治疗的核心技术。现阶段面临的最大难题在于尚未找到理想的基因载体,治疗基因的导入仍然是肿瘤基因治疗的瓶颈。非病毒载体近年来发展迅速,其中聚乙烯亚胺(polyethylenimine PEI)是近年来研究最为广泛的阳离子多聚物非病毒基因载体,然而,聚乙烯亚胺作为基因载体使用存在三个突出问题:第一,转染效率与细胞毒性存在矛盾。小分子PEI虽细胞毒性低,但转染效果差,高分子量PEI虽具有较理想转染效率,但细胞毒性强;第二,体液环境中稳定性与穿膜能力存在矛盾。为增加复合物体液环境中的稳定性,应提高PEI/DNA复合物的亲水性,但同时穿膜能力也因而受到影响,使转导效率显著降低。第三,聚乙烯亚胺靶向性差,解决靶向性问题已成为非病毒载体中最为关注的问题。
     基于以上分析,本课题首先采用Pluronic P123连接低分子量聚乙烯亚胺(PEI2000),得到多分枝状或网状结构的高分子量PEI衍生物,然后利用整合素αvβ3在人多数肿瘤细胞和肿瘤新生血管高表达的特点,选择特异亲和该整合素的RGD短肽,与细胞穿膜肽TAT(49-57)连接,合成具有靶向于αvβ3和促进载体穿膜的含RGD和TAT(49-57)双功能肽RGDC-TAT(命名为R13),利用交联技术将R13与PEI衍生物偶联,从而构建新型非病毒基因载体系统P123-PEI-R13,并考察该系统细胞穿膜及胞内转运、释放机制。本课题针对PEI作为基因载体使用中存在的问题,旨在保证较高转染效率情况下,降低PEI细胞毒性,增加其对肿瘤细胞及其新生血管的靶向性,进而提高基因的细胞摄取水平和转染效率,提高肿瘤的基因治疗效果,为基因治疗探索一条有效的途径。
     本课题第一部分内容是P123-PEI-R13合成与表征。首先采用固相法制备双功能肽R13(RGDC-TAT),并通过电喷雾质谱分析鉴定其序列,通过HPLC测定其相对百分含量,通过表位肽标记的HRP来检测R13与整合素阳性的Hela细胞与B16细胞的体外结合。进而采用三光气+琥珀酰亚胺法活化Pluronic P123,并以其为反应剂交联PEI2KDa,得到高分子量PEI衍生物P123-PEI,再选择SMCC法将R13按不同反应比与P123-PEI偶联,得到目的产物P123-PEI-R13,各反应产物通过IR或1H-NMR进行结构分析。结果表明,成功合成了双功能肽R13,其序列为Arg-Gly-Asp-Cys-Arg-Lys-Lys-Aarg-Arg-Gln-Arg-Arg-Arg(RGDCRKKRRQRRR),纯度为95.8677%,同时R13体外具有亲和整合素αvβ3阳性细胞的能力;成功采用三光气+琥珀酰亚胺法活化P123并交联PEI2KDa,同时成功采用SMCC法将双功能肽R13与P123-PEI偶联,红外、核磁等结构表征表明目的产物修饰度高、纯度好,表明所选合成方法稳定、可控、重复性好。
     本课题第二部分内容是P123-PEI-R13理化性质。通过测定P123-PEI-R13在37℃下不同时间点分子量的方法评价其水解性能,采用琼脂糖凝胶电泳阻滞分析考察其缩合DNA能力以及对质粒DNA抗DNase I、FBS和肝素钠酶解及解离能力,利用透射电镜观察复合物形态,使用激光粒度仪和zeta电位仪测定粒径、电位,采用MTT法评价合成的P123-PEI-R13对Hela细胞、B16细胞的毒性,并与PEI25kDa对照。结果表明,聚合物P123-PEI-R13在37℃可缓慢水解,大约60h左右可水解成小分子化合物,其水解过程可用一级动力学方程描述。P123-PEI-R13/DNA复合物呈近似球形的胶束样结构,粒径在100-300nm之间,电位适中。P123-PEI-R13与DNA质量比为2时能与DNA完全结合,同时可抵抗高达280μg/mL的肝素钠、50%的FBS及6UDNase I/DNA的解离或酶解。相比较PEI25kDa,P123-PEI-R13细胞毒性显著降低。
     本课题第三部分内容是P123-PEI-R13/DNA纳米复合物体内外转染。以绿色荧光蛋白质粒pEGFP-N2和虫荧光素酶质粒pGL3-Control作为报告基因,评价其对Hela人宫颈癌细胞、B16小鼠黑色素瘤细胞及HepG2人肝癌细胞转染能力,采用流式细胞仪和发光仪测定绿色荧光蛋白表达阳性细胞百分率和转染细胞的虫荧光素酶活性,分别定性定量考察P123-PEI-R13对各受试细胞体外转染效率,同时,构建肿瘤模型,以虫荧光素酶质粒pGL3-Control作为报告基因,评价P123-PEI-R13递送DNA时在体内的分布与转染效率。体外转染试验表明,在考察的w/w范围内,随w/w比提高,转染效率有逐渐增强的趋势;随R13修饰比提高,转染效率有逐渐下降趋势;整体而言,P123-PEI-R13在各细胞转染远好于PEI2KDa,也好于P123-PEI,比PEI25KDa略强或近似。体内转染试验表明,P123-PEI-R13在HepG2人肝癌移植模型与B16小鼠黑色素瘤移植模型转染情况类似,整体转染能力较P123-PEI与PEI25KDa强,同时也改善了复合物的体内分布,并且由于R13的修饰,使其在肿瘤组织转染效率显著提高,可知聚合物P123-PEI-R13在体内有较强的肿瘤靶向能力,但与其对二种肿瘤细胞的体外转染相比效率要低。
     本课题第四部分内容是P123-PEI-R13/DNA纳米复合物穿膜及胞内转运、释放机制的研究。本部分采用加入不同内吞途径抑制剂对转染效率是否产生影响的方法,考察复合物内吞途径;采用加入内涵体-溶酶体酸化抑制剂、细胞骨架和动力蛋白抑制剂对转染效率是否产生影响的方法,考察复合物细胞内转运机制;采用细胞因子及细胞内环境是否影响复合物稳定性的方法,考察复合物在细胞内的解离;采用荧光标记聚合物并结合激光共聚焦显微镜考察复合物在细胞内的实时定位。结果表明,P123-PEI-R13修饰R13后,使其细胞摄取表现出了不同特性,P123-PEI-R13/DNA复合物可通过网格蛋白介导的内吞、小窝蛋白介导的内吞及巨胞饮三条途径内吞入胞,并可能有不依赖能量的非内吞途径存在。P123-PEI-R13/DNA复合物入胞后首先经内涵体-溶酶体系统酸化过程而从中逃逸,并以微管为轨道和方向,以动力蛋白为动力来源,在微丝作用下,并有中间纤维协助,向微管“-”端,即细胞核方向转运。RNA与P123-PEI-R13具有更强亲和性,P123-PEI-R13/DNA复合物在细胞核内被RNA解离,从而释放DNA。
     本课题通过Pluronic P123连接低分子量PEI制备高分子量PEI衍生物,并利用交联技术将双功能R13与该衍生物偶联,研制新型具有主动靶向αvβ3作用并且具有高转染效率、低毒性的阳离子聚合物/DNA纳米复合物,并探讨其细胞穿膜及胞内转运、释放机制,为解决目前基因给药方式存在的问题和实际应用打下基础,本课题研究内容有着一定的理论意义和实践应用价值。
Gene therapy provides a promising tool to eradicate cancer by treating it at its source.The key to gene therapy is finding an ideal gene delivery vector. Delivery of nucleic acidsinto cells using cationic polymers has recently gained a remarkable interest in the field ofnon-viral gene therapy due to their structural diversity, easy production,non-immunogenicity and safety. One of the most effective and widely studied syntheticnon-viral gene delivery vectors is the polycation polyethylenimine (PEI). However,polyplexes of PEI/DNA have shown three outstanding problems. First of all, long PEIchains are highly effective in gene transfection, but more cytotoxic. Conversely, short PEIchains display lower cytotoxic, but lower efficient. And then, there is a contradictionbetween stability and cell penetrating. To increase the stability of PEI/DNA complexes,their hydrophilicity should be improved. But cell penetrating is affected accordingly andtransfection efficiency decreases. At last, the major drawback with gene delivery using PEIis the lack of satisfactory specificity towards tumor cells because there is no bindingselectivity between the positively charged polycation and the negatively charged bodycells.
     Above all, in this work at first we synthesized a kind of high molecular weight PEIderivate (P123-PEI) by cross-linking low molecular weight PEI with Pluronic P123. Theαvβ3receptors were highly expressed on tumor cells and tumor angiogenic blood vessels,whereas they were not detectable on quiescent blood vessels. Then we used αvβ3-targetingpeptide RGD, in conjunction with the cell-penetrating peptide TAT to yield a bifunctionalpeptide RGD-TAT named R13which can improve cell selection and increase cellularuptake, and at last adopted R13to modify P123-PEI so as to prepare a new polymeric genevector (P123-PEI-R13). Mechanisms of cellular uptake, subsequent intracellular traffickingand disassembly of this vector were also investigated. The purpose of the present studywas to solve the efficiency-versus-cytotoxicity and tumor-targeting problems of PEI usedas a non-viral gene delivery vector. The new non-viral gene vector P123-PEI-R13couldreduce cytotoxicity of PEI on the premise of ensuring higher transfection efficiency,improve its tumor targeting, increase cellular uptake of gene, and then enhance thetherapeutic effect of gene therapy on cancer. This study could find an available way togene therapy on cancer.
     The first part of this work was synthesis and characterizations of P123-PEI-R13. abifunctional peptide R13(RGDC-TAT) was prepared using the solid phase method atfirst. The sequence analysis, content assaying and binding assessment of R13to αvβ3positive cells (Hela cells and B16cells) were performed by ESI-MS, HPLC and HRPlabeling respectively. Then we activated Pluronic P123withbis-(trichloromethyl)-carbonate and solid N-hydroxysuccinimide and employed theactivated P123to crosslink PEI2KDa so as to prepare a high molecular weight PEIderivate of P123-PEI. At last R13was used to modify P123-PEI by SMCC andP123-PEI-R13was obtained. All reaction products were characterized by IR or1H-NMR.The results indicated that the bifunctional peptide R13was synthesized successfully withsequence of RGDCRKKRRQRRR, content of95.8677%and ability of binding to αvβ3positive cells in vitro. P123has been activated and P123-PEI has been also prepared bycross-linking PEI2KDa with the activated P123. The bifunctional peptide R13wascoupled with P123-PEI by SMCC successfully. Structural analysis of IR and1H-NMRrevealed the high modification degree and purity of the products, which showed that thesynthesis method had stability, controllability and repeatability.
     In the second part, the new synthesized gene vector P123-PEI-R13was characterized interms of its physico-chemical properties. Degradation of P123-PEI-R13was estimated bythe measurement of molecular weight. The sizes and zeta potential of polymer/DNAcomplexes in PBS buffer at room temperature were measured using an electrophoretic lightscattering spectrophotometer. The DNA condensation capacity, the resistance to DNase Idigestion and the resistance to FBS, sodium heparin disassembly of P123-PEI-R13wasdetermined by gel retardation experiments. The cytotoxicity of the polymers on the B16and Hela cells were measured using the MTT assay in comparison with PEI25kDa. Theresults indicated that P123-PEI-R13was degraded slowly and the degradation was nearlycompleted after about60h. The degradation profile of P123-PEI-R13could be welldescribed by first-order model. The particle size of P123-PEI-R13/DNA complexes wasaround100-250nm, with proper zeta potential. P123-PEI-R13was able to condense DNAeffectively and neutralized its charge at w/w ratio of2. The nanoparticles can protectplasmid DNA from being digested by DNase I at a concentration of6U DNase I/μg DNA.The nanoparticles were resistant to dissociation induced by50%fetal bovine serum and600μg/mL sodium heparin. P123-PEI-R13showed significantly higher cell viability ascompared with PEI25kDa.
     In the third part, gene transfection of this vector was investigated in vitro and in vivo.We examined the ability of P123-PEI-R13to transfect Hela cells, B16cells and HepG2cells using the plasmid pEGFP-N2and pGL3-Control. Percentage of GFP transfection andluciferase activity were respectively determined using flow cytometry and a luminometerso that the quantitative and qualitative study on in vitro transfection ofP123-PEI-R13/DNA complexes could be carried out. In addition, we established animaltumor model and investigated distribution and transfection efficiency ofP123-PEI-R13/DNA complexes using the plasmid pGL3-Control in vivo. The transfectionexperiments in vitro showed that transfection efficiency of P123-PEI-R13/DNA complexesincreased in correlation with the w/w ratio and decreased with R13modification degree.On a whole, all synthesized P123-PEI-R13showed much higher gene transfer abilitycompared with PEI2KDa, also higher than P123-PEI and similar to PEI2KDa, evenhigher. The transfection experiment in vivo showed that transfection of P123-PEI-R13inthe HepG2liver tumor model was similar to that in the B16melanoma tumor model.P123-PEI-R13showed higher gene transfer ability compared with P123-PEI and PEI25KDa, ameliorated the distribution of the complexes and improved the transfectionefficiency in tumor tissues significantly due to the produce of R13. This showed thepolymer P123-PEI-R13had tumor targeting in vivo. However, the transfection efficiencyof pGL3-Control in viv was lower than that in vitro.
     The last part of this work was the mechanisms of cellular uptake, subsequentintracellular trafficking and disassembly of this vector. The internalization pathways ofP123-PEI-R13/DNA complexes were investigated based on the effect of specific endocyticinhibitors on transfection efficiency. The mechanism of intracellular trafficking wasinvestigated based on the effect of endosome-lysosome acidification inhibitors,cytoskeleton and dynein inhibitors on transfection efficiency. The intracellular disassemblyof P123-PEI-R13/DNA complexes was also investigated based on the effect of cytokineand cellular environment on stability of polyplexes. Intracellular localization ofFITC-labeled P123-PEI-R13polyplexes in Hela cells was researched in order to furtherclarify the transport process in the cells. The results indicated that the modification ofP123-PEI-R13with R13made it display new property of internalization.P123-PEI-R13/DNA complexes were endocyzed by clathrin-mediated endocytosis,caveolin-mediated endocytosis, macropinocytosis and possible energy-independent route.After internalization, P123-PEI-R13/DNA complexes could escape from the endosome-lysosome system because of its acidification and further took microtubule as thetrack, dynein as the dynamic source to transport towards the microtubule (+) end, to witnucleus, under the action of microfilament and with the aid of intermediate filament.P123-PEI-R13had a higher affinity for RNA. It was RNA that resulted in the disassemblyof P123-PEI-R13/DNA complexes in the nucleus.
     We developed a new non-viral gene vector, PEI-P123-R13, by cross-linking lowmolecular weight PEI with P123and further coupling a bifunctional peptide R13to thepolymer for targeting tumor and increasing cellular uptake. This new polymer might be apotential candidate in gene delivery with low cytotoxicity and high transfection efficiency.Also, the mechanisms of cellular uptake, subsequent intracellular trafficking and disassemblyof this vector were investigated. This study can form the base of problems solving andpractical applications of PEI as a non-viral gene delivery vector. The contents of this workdisplay theoretical as well as practical values.
引文
[1] Pachuk CJ, Mccallus DE, Weiner DB, et al. DNA vaccines-challenges in delivery. Curr Opin MolTher.2000;2(2):188-98.
    [2] Lai WF, Lin MC. Nucleic acid delivery with chitosan and its derivatives. J Control Release.2009;134:158-68.
    [3] Manam S, Ledmith BJ, Barnum AB, et al. Plasmid DNA vaccines: tissue distribution and effectof DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirolgy.2000;43(4-6):273-81.
    [4] Deng R, Yue Y, Ji F, Chen Y, Kung H-F, Lin MCM, et al. Revisit the complexation of PEI andDNA-how to make low cytotoxic and highly efficient PEI gene transfection non-viral vectorswith a controllable chain length and structure? J Control Release.2009;140:40-6.
    [5] Gebhart CL, Kabanov AV. Evaluation of polyplexes as gene transfer agents. J ControlRelease.2001;73:401-16.
    [6] Seow WY, Yang YY. Functional polycarbonates and their self-assemblies as promising non-viralvectors. J Control Release.2009;139:140-7.
    [7] Yin DF, Ding XY, Gao J, Chu C, Zou H, Gao S. Nonionic Amphiphilic Surfactant ConjunctedPolyethyleneimine as a New and Highly Efficient Non-viral Gene Carrier. Macromol Res.2009;17:19-25.
    [8] Khanam N, Mikoryak C, Draper RK, et al. Electrospun linear polyethyleneimine scanolds for cellgrowth [J]. Acta Biomate.2007;3:1050-59.
    [9]张璇,潘仕荣.聚乙二醇-聚乙烯亚胺共聚物介导体外基因传递[J].中山大学学报.2007;28(2):131-133.
    [10] Kakimoto S, Moriyama T, Tanabe T, et al. Dual-ligand effect of transferrin and transforminggrowth factor alpha on polyethyleneimine-mediated gene delivery. J Control Release.2007;120(3):242-9.
    [11] Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) mediated gene delivery affects endothelialcell function and viability. Biomaterials.2001;22(5):471-80.
    [12] Ahn HH, Lee JH, Kim KS, et al. Polyethyleneimine-mediated gene delivery into human adiposederived stem cells. Biomaterials.2008;29:2415-22.
    [13] Arote R, Kim TH, Kim YK, Hwang SK, Jiang HL, Song HH, et al. A biodegradable poly(esteramine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials.2007;28:735-44.
    [14] Park MR, Han KO, Cho MH, Nah JW, Choi YJ, Cho CS. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J Control Release.2005;105:367-80.
    [15] Dailey LA, Kleemann E, Merdan T, et al. Modified polyethylenimines as non viral gene deliverysystems for aerosol therapy: effects of nebulization on cellular uptake and transfection efficiency.J Control Release.2004;100(3):425-36.
    [16] Huang H, Yu H, Tang G, Wang Q, Li J. Low molecular weight polyethylenimine cross-linked by2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2as a gene deliveryvector. Biomaterials.2010;31:1830-8.
    [17] Kabanov AV, Lemieux P, Vinogradov S, et al. Pluronic block copolymers: novel functionalmolecules for gene therapy. Adv Drug Deliv Rev.2002;54(2):223-33.
    [18] Kim TH, Cook SE, Arote RB, et al. A degradable hyperbranched poly(ester amine) based onpoloxamer diacrylate and polyethylenimine as a gene carrier. Macromol Biosci.2007;7(5):611-9.
    [19] Hong JW, Park JH, Huh KM, Chung H, Kwon IC, Jeong SY. PEGylated polyethylenimine for invivo local gene delivery based on lipiodolized emulsion system. J Control Release.2004;99(1):167-76.
    [20] Whelan J. Nanocapsules for controlled drug delivery. Drug Discov Today.2001;6(23):1183-4.
    [21]汤谷平,陆晓.非病毒基因载体的研究进展[J].浙江大学学报:医学版.2009;38(1):1-6.
    [22] Cohen H, Levy RJ, Gao J, et al. Sustained delivery and expression of DNA encapsulatedinpolymeric nanoparticles. Gene Ther.2000;7(22):1896-905.
    [23] Lamprecht A, Saunter JL, Roux J, et al.Lipidn anocarriersas drugd elivery system for ibuprofeninpain treatment.Int J Pharm.2004;278(2):407-14.
    [24] Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles asdrug delivery devices.J Control Release.2001;70(1):1-20.
    [25] Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles:theoryto practice. Pharmacol Rev.2001;53(2):283-318.
    [26] Chen CC, Chueh JY, Tseng H, et al. Preparation and characterization of biodegradable PLApolymeric blends. Biomaterials.2003;24(7):1167-73.
    [27] Kilk K, EL-Andaloussi S, et al. Evaluation of transportan10in PEI mediated plasmid deliveryassay. J Control Release.2005;103:511-23.
    [28] Suh J, Dawson M, Hanes J. Real-time multiple-particle tracking: applications to drug and genedelivery. Adv Drug Delivery Rev.2005;57:63-78.
    [29] Suh J, Wirtz D, Hanes J. Efficient active transport of gene nanocarriers to cell nucles. Proc NatAcad SCI USA.2003;100:3878-82.
    [30] Okudaa T, Niidomeb T, Aoyagi H. Cytosolic soluble proteins induce DNA release fromDNA–gene carrier complexes. J Control Release.2006;100:325-32.
    [31] Bilati U, Allemann E, Doelker E. Development of a nanoprecipitation method intended for theentrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci.2005;24(1):67-75.
    [1] Gebhart CL, Kabanov AV. Evaluation of polyplexes as gene transfer agents. J Control Release.2001;73:401-16.
    [2] Nguyen HK, Lemieux P, Vinogradov SV, Gebhart CL, Guérin N, Paradis G, et al. Evaluation ofpolyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther.2000;7:126-38.
    [3] Lungwitz U, Breunig M, Blunk T, G pferich A. Polyethylenimine-based non-viral gene deliverysystems. Eur J Pharm Biopharm.2005;60:247-66.
    [4] Gosselin MA, Guo W, Lee RJ. Efficient gene transfer using reversibly cross-linked lowmolecular weight polyethylenimine. Bioconjug Chem.2001;12:989-94.
    [5] Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based onpoly (ethylene imine) and its derivatives. J Gene Med.2005;7:992-1009.
    [6] Deng R, Yue Y, Ji F, Chen Y, Kung H-F, Lin MCM, et al. Revisit the complexation of PEI andDNA-how to make low cytotoxic and highly efficient PEI gene transfection non-viral vectorswith a controllable chain length and structure? J Control Release.2009;140:40-6.
    [7] Huang H, Yu H, Tang G, Wang Q, Li J. Low molecular weight polyethylenimine cross-linked by2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2as a gene deliveryvector. Biomaterials.2010;31:1830-8.
    [8] Hong JW, Park JH, Huh KM, Chung H, Kwon IC, Jeong SY. PEGylated polyethylenimine for invivo local gene delivery based on lipiodolized emulsion system. J Control Release.2004;99(1):167-76.
    [9] Whelan J. Nanocapsules for controlled drug delivery. Drug Discov Today.2001;6(23):1183-1184.
    [10]杨学森,汪华侨,袁群芳,等.Fmoc固相直接法合成Aβ1-15肽疫苗及其免疫活性[J].中山大学学报(医学科学版).2006;27(2):121-5.
    [11]陈瑶函,晏国全,周新文,杨芃原.基质辅助激光解吸电离质谱和电喷雾电离质谱在辣根过氧化物酶糖肽结构分析中的应用[J].色谱.2010;28(12):135-9.
    [12]廖海明,曾文珊,杨仲元,徐康森.HPLC法测定重组人甲状旁腺素1-34肽含量及有关物质[J].药物分析杂志.2006;26(1):27-9.
    [13] Ogawa M, Hatano K, Oishi S, Kawasumi Y, Fujii N, Kawaguchi M, et al. Direct electrophilicradiofluorination of a cyclic RGD peptide for in vivo αvβ3integrin related tumor imaging. NuclMed Biol.2003;30:1-9.
    [14] Lee DE, Hong YD, Choi KH, Lee S-Y, Park PH, Choi SJ. Preparation and evaluation of99mTc-labeled cyclic arginine-glycine-aspartate (RGD) peptide for integrin targeting. Appl RadiatIsotopes.2010;68:1896-902.
    [15]李经忠.新型靶向性聚乙烯亚胺转基因载体的研制[D].杭州:浙江大学,2004.
    [16] Yin DF, Ding XY, Gao J, Chu C, Zou H, Gao S. Nonionic Amphiphilic Surfactant ConjunctedPolyethyleneimine as a New and Highly Efficient Non-viral Gene Carrier. Macromolr Res.2009;17:19-25.
    [17] Miron T, Wilchek M. A spectrophotometric assay for soluble and immobilizedN-hydroxysuccinimide esters. Anal Biochem.1982;126(2):433-5.
    [18] Whelan J. Nanocapsules for controlled drug delivery. Drug Discov Today.2001;6(23):1183-4.
    [19] Kabanov AV, Lemieux P, Vinogradov S, Alakhov V. Pluronic block copolymers: novel functionalmolecules for gene therapy. Adv Drug Deliv Rev.2002;54:223-33.
    [20] Batrakova EV, Miller DW, Li S, Alakhov VY, Kabanov AV, Elmquist, WF. Pluronic P85Enhances the Delivery of Digoxin to the Brain: In Vitro and in Vivo Studies. J Pharmacol ExpTher.2001;296:551-7.
    [21] Lemieux P, Vinogradov SV, Gebhart CL, Guérin N, Paradis G, Nguyen HK, et al. Block and graftcopolymers and NanoGel copolymer networks for DNA delivery into cell. J Drug Target.2000;8:91-105.
    [22] Kabanov AV, Batrakova EV, Sriadibhatla S, Yang Z, Kelly DL, Alakov VY. Polymer genomics:shifting the gene and drug delivery paradigms. J Control Release.2005;101:259-71.
    [23] Sahay G, Batrakova EV, Kabanov AV. Different internalization pathways of polymeric micellesand unimers and their effects on vesicular transport. Bioconjug Chem.2008;19:2023-9.
    [24] Choo ESG, Yu B, Xue JM. Synthesis of poly (acrylic acid)(PAA) modified Pluronic P123copolymers for pH-stimulated release of Doxorubicin. J Colloid Interf Sci.2011;358:462-70.
    [25]成俊然,文佳,邰瑞链.双(三氯甲基)碳酸酯的制备和应用[J].化学通报.1999;4:20-5.
    [1] Kim TH, Cook SE, Arote RB, Cho MH, Nah JW, Choi YJ, Cho CS. A degradable hyperbranchedpoly (ester amine) based on poloxamer diacrylate and polyethylenimine as a gene carrier.Macromol Biosci.2007;7:611-9.
    [2] Arote R, Kim TH, Kim YK, Hwang SK, Jiang HL, Song HH, et al. A biodegradable poly(esteramine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials.2007;28:735-44.
    [3] Ogris M, Steinlein P, Kursa M, et al. The size of DNA/transferrin-PEI complexes is an importantfactor for gene expression in cultured cells. Gene Ther.1998;1425-33.
    [4] Hao Y, Haber S. Electrophoretic motion of a charged spherical particle normal to a planardielectric wall. Int J Muhi Flow.1998;24:793-824.
    [5] Vanderput AG, Bijsterbesch BH. Eleetmkinetic measurements on concentrated polystyrenedispersions and their theoretical interpreatation. J Colloid Inter Sci.1983;92:499-507.
    [6] Kim T-i, Baek J-u, Yoon JK, Choi JS, Kim K, Park J-s. Synthesis and characterization of a novelarginine-grafted dendritic block copolymer for gene delivery and study of its cellular uptakepathway leading to transfection. Bioconjug Chem.2007;18:309-17.
    [7] Yin DF, Ding XY, Gao J, Chu C, Zou H, Gao S. Nonionic Amphiphilic Surfactant ConjunctedPolyethyleneimine as a New and Highly Efficient Non-viral Gene Carrier. Macromol Res.2009;17:19-25.
    [8] Nguyen HK, Lemieux E, Vinogradov SV, et al. Evaluation of polyether-polyethyleneimine grafcopolymers as gene transfer agents. Gene Ther.2000;7(2):126-38.
    [9] Avall-Lundqvist E, Economidou-Karaoglou A, Sjovall K, Lans M, Taper HS, Roberfroid M,Eneroth P. Serum alkaline DNase activity in normal or nonhospitalised individuals. Clin ChemActa.1989;185:35-43.
    [10] Layman JM, Ramirez SM, Green MD, Long TE. Influence of polycation molecular weight onpoly(2-dimethylaminoethl methacrylate)-mediated DNA delivery in vitro. Biomacromolecules.2009;10:1244-52.
    [11] Mosmann T. Rapid colorimetric assay cellular growth and survival: Application to proliferationand cytotoxicity assays. J Immunol Methods.1983;65(1-2):55-63.
    [12]侯春梅,李新颖,叶伟亮,等.MTT法和CCK-8法检测悬浮细胞增殖的比较[J].军事医学科学院院刊.2009;33(4):400.
    [13] Ma K, Hu MX, Qi Y, Zou JH, Qiu LY, Jin Y, et al. PAMAM-triamcinolone acetonide conjugateas a nucleus-targeting gene carrier for enhanced transfer activity. Biomaterials.2009;30:6109-18.
    [14] Hao JG, Sha XY, Tang YJ, Jiang Y, Zhang ZW, Zhang W, et al. Enhanced transfection ofpolyplexes based on pluronic-polypropylenimine dendrimer for gene transfer. Arch Pharm Res.2009;32:1045-54.
    [15] Anderson DG, Akinc A, Hossain N, Langer R. Structure/property studies of polymeric genedelivery using a library of poly (b-amino esters). Mol Ther.2005;11:426-34.
    [16] Lin C, Blaauboer CJ, Timoneda MM, Lok MC, Steenbergen M, Hennink WE, et al. Engbersen,Bioreducible poly(amido amine)s with oligoamine side chains: synthesis, characterization, andstructural effects on gene delivery. J Control Release.2008;126:166-74.
    [17] Park MR, Han KO, Cho MH, Nah JW, Choi YJ, Cho C S. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J Control Release.2005;105:367-80.
    [18] Huang H, Yu H, Tang G, Wang Q, Li J. Low molecular weight polyethylenimine cross-linked by2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2as a gene deliveryvector. Biomaterials.2010;31:1830-8.
    [19] Deng R, Yue Y, Ji F, Chen Y, Kung H-F, Lin MCM, et al. Revisit the complexation of PEI andDNA-how to make low cytotoxic and highly efficient PEI gene transfection non-viral vectorswith a controllable chain length and structure? J Control Release.2009;140:40-6.
    [1] Ko YT, Kale A, Hartner WC, Papahadjopoulos-Sternberg B, Torchilin VP. Self-assemblingmicelle-like nanoparticles based on phospholipid-polyethyleneimine conjugates for systemicgene delivery. J Control Release.2009;133(2):132-8.
    [2] Park MR, Han KO, Cho MH, Nah JW, Choi YJ, Cho C S. Degradable polyethylenimine-alt-poly(ethylene glycol) copolymers as novel gene carriers. J Control Release.2005;105:367-80.
    [3] Yang CA, Li HZ, Wang X, Li J. Cationic supramolecules consisting of oligoethylenimine-graftedalpha-cyclodextrins threaded on poly(ethylene oxide) for gene delivery. J Biomed Mater Res PartA.2009;89A:13-23.
    [4] Lungwitz U, Breunig M, Blunk T, G pferich A. Polyethylenimine-based non-viral gene deliverysystems. Eur J Pharm Biopharm.2005;60:247-66.
    [5] Wong K, Sun G, Zhang X, Dai H, Liu Y, He C, et al. PEI-g-Chitosan, a novel gene deliverysystem with transfection efficiency comparable to polyethylenimine in vitro and after liveradministration in vivo. Bioconjug Chem.2006;17:152-8.
    [6] Ogris M, Wallker G, Blessing T. Tumor-targeted gene therapy:strategies for the preparation ofligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release.2003;91(1-2):173-81.
    [7] Wu X, Ding B, Gao J, et al. Second-generation aptamer-conjugated PSMA-targeted deliverysystem for prostate cancer therapy. Int J Nanomedicine.2011;6:1747-56.
    [8] Deng R, Yue Y, Ji F, Chen Y, Kung H-F, Lin MCM, et al. Revisit the complexation of PEI andDNA-how to make low cytotoxic and highly efficient PEI gene transfection non-viral vectorswith a controllable chain length and structure? J Control Release.2009;140:40-46.
    [9] Hao JG, Sha XY, Tang YJ, Jiang Y, Zhang ZW, Zhang W, et al. Enhanced transfection ofpolyplexes based on pluronic-polypropylenimine dendrimer for gene transfer. Arch Pharm Res.2009;32:1045-54.
    [10] Cho KC, Choi SH, and Park TG. Low Molecular Weight PEI Conjugated Pluronic Copolymer:Useful Additive for Enhancing Gene Transfection Efficiency. Macromol Res.2006;14(3)348-53.
    [11] Liu T, Yu X, Kan B, Guo Q, Wang X, Shi S, Guo G, Luo F, Zhao X, Wei Y, Qian Z. Enhancedgene delivery using biodegradable poly(ester amine)s (PEAs) based on low-molecular-weightpolyethylenimine and poly(epsilon-caprolactone)-pluronic-poly(epsilon-caprolactone). J BiomedNanotechnol.2010;6(4):351-59.
    [12] Kilk K, Andaloussi S EL, J rver P, Meikas A, Valkna A, Bartfai T, et al. Evaluation oftransportan10in PEI mediated plasmid delivery assay. J Control Release.2005;103:511-23.
    [13] Yin DF, Ding XY, Gao J, Chu C, Zou H, Gao S. Nonionic Amphiphilic Surfactant ConjunctedPolyethyleneimine as a New and Highly Efficient Non-viral Gene Carrier. Macromol Res.2009;17:19-25.
    [14] Yang C, Wang X, Li HZ, Tan E, Lim CT, Li J. Cationic polyrotaxanes as gene carriers:physicochemical properties and real-time observation of DNA complexation, and genetransfection in cancer cells. J Phys Chem B.2009;113:7903-11.
    [15] Jiang G, Min SH, Kim MN, Lee DC, Lim MJ, Yeom YI. Alginate/PEI/DNA polyplexes: a newgene delivery system. Yao Xue Xue Bao.2006;41:439-45.
    [16] Bikram M, Ahn CH, Chae SY, Lee M, Yockman JW, Kim SW. Biodegradable poly(ethyleneglycol)-co-poly(L-lysine)-g-histidine multiblock copolymers for nonviral gene delivery.Macromolecules.2004;37:1903-16.
    [17] Benns JM, Choi JS, Mahato RI, Park JS, Kim SW. pH-sensitive cationic polymer gene deliveryvehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug Chem.2000;11:637-45.
    [18] Guo Q, Shi S, Wang X, Kan B, Gu Y, Shi X, Luo F, Zhao X, Wei Y, Qian Z. Synthesis of anovel biodegradable poly(ester amine)(PEAs) copolymer based on low-molecular-weightpolyethyleneimine for gene delivery. Int J Pharm.2009;379(1):82-9.
    [19] Kim TH, Cook SE, Arote RB, Cho MH, Nah JW, Choi YJ, Cho CS. A degradable hyperbranchedpoly (ester amine) based on poloxamer diacrylate and polyethylenimine as a gene carrier.Macromol Biosci.2007;7:611-9.
    [20] Arote R, Kim TH, Kim YK, Hwang SK, Jiang HL, Song HH, et al. A biodegradable poly(esteramine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials.2007;28:735-44.
    [21] Huang H, Yu H, Tang G, Wang Q, Li J. Low molecular weight polyethylenimine cross-linked by2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2as a gene deliveryvector. Biomaterials.2010;31:1830-38.
    [22] Cook SE, Park IK, Kim EM, Jeong HJ, Park TG, Choi YJ, et al. Galactosylatedpolyethylenimine-graft-poly(vinyl pyrrolidone) as a hepatocyte-targeting gene carrier. J ControlRelease.2005;105:151-63.
    [23] Chen G, Chen W, Wu Z, Yuan R, Li H, Gao J, et al. MRI-visible polymeric vector bearing CD3single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials.2009;30:1962-70.
    [24] Liang B, He ML, Chan C, Chen Y, Li XP, Li Y, et al. The use offolate-PEG-graftedhybranched-PEI nonviral vector for the inhibition of glioma growth in the rat.Biomaterials.2009;30:4014-20.
    [1] Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J ControlRelease.1999;60(2-3):149-60.
    [2] Godbey WT, Wu KK, Mikos AG. Tracking the intracellular path of poly(ethylenimine)/DNAcomplexes for gene delivery. Proc Natl Acad Sci U S A.1999;96(9):5177-81.
    [3] Moret I, Esteban Peris J, Guillem VM, Benet M, Revert F, Dasi F, Crespo A, Alino SF. Stabilityof PEI–DNA and DOTAP–DNA complexes: effect of alkaline pH, heparin and serum. J ControlRelease.2001;76(1-2):169-81.
    [4] Lambert RC, Maulet Y, Dupont JL, Mykita S, Craig P, Volsen S, Feltz A.Polyethylenimine-mediated DNAtransfection of peripheral and central neurons in primary culture:probing Ca2+channel structure and function with antisense oligonucleotides. Mol Cell Neurosci.1996;7(3):239-46.
    [5] Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D. Polyethylenimine butnot cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem.1998;273(13):7507-11.
    [6] Xu Y, Szoka FC Jr. Mechanism of DNA release from cationic liposome/DNA complexes usedin cell transfection. Biochemistry.1996;35(18):5616-23.
    [7] Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature2003;422:37-44.
    [8] Rejman J, Bragonzi A, Conese M. Role of clathrin-and caveolae-mediated endocytosis in genetransfer mediated by lipo-and polyplexes. Mol Ther.2005;12(3):468-74.
    [9] Mayor S, Pagano RE. Pathway of calthrin-independent endocytosis. Nat Rev Mol Cell Biol.2007;8(8):603-12.
    [10] Doherty GJ. McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem.2009;78:857-902.
    [11] Rejman J, Oberle V, Zuhom IS, Hoekstra D. Size-dependent internalization of particles via thepathways of clathrin-and caveolae-mediated endocytosis. Biochem J.2004;377:159-69.
    [12] Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful?Methods Mol Biol.2008;440:15-33.
    [13] Schekman R, Orci L. Coat proteins and vesicle budding. Science.1996;271:1526-32.
    [14] Lühmann T, Rimann M, Bittermann AG, Hall H. Cellular uptake and intracellular pathways ofPLL-g-PEG-DNA nanoparticles. Bioconjug Chem.2008;19(9):1907-16.
    [15] Nichols B. Caveosomes and endocytosis of lipid rafts. J Cell Sci.2003;116:4707-14.
    [16] Walsh M, Tangney M, O'Neill MJ, Larkin JO, Soden DM, McKenna SL, Darcy R, O'Sullivan GC,O'Driscoll CM. Evaluation of cellular uptake and gene transfer efficiency of pegylatedpoly-L-lysine compacted DNA: implications for cancer gene therapy. Mol Pharm.2006;3(6):644-53.
    [17] Sanjuan N, Porras A, Otero J. Microtubule-dependent intracellular transport of murinepolyomavirus. Virology.2003;313(1):105-16.
    [18] Robertson AS, Smythe E, Ayscough KR. Functions of actin in endocytosis. Cell Mol Life Sci.2009;66(13):2049-65.
    [19] Kaksonen M, Toret CP, Drubin DG. A modular design for the clathrin-and actin-mediatedendocytosis machinery. Cell.2005;123(2):305-20.
    [20] Misinzo G, Delputte PL, Nauwynck HJ. Inhibition of endosome-lysosome system acidificationenhances porcine circovirus2infection of porcine epithelial cells. J Virol.2008;82(3):1128-35.
    [21] Obara K, Yabu H. Effect of cytochalasin B on intestinal smooth muscle cells. Eur J Pharmacol.1994;255(1-3):139-47.
    [22] Stournaras C, Stiakaki E, Koukouritaki SB, Theodoropoulos PA, Kalmanti M, Fostinis Y,Gravanis A. Altered actin polymerization dynamics in various malignant cell types: evidence fordifferential sensitivity to cytochalasin B. Biochem Pharmacol.1996;52(9):1339-46.
    [23] Javeed A, Ashraf M, Riaz A, Ghafoor A, Afzal S, Mukhtar MM. Paclitaxel and immune system.Eur J Pharm Sci.2009;38(4):283-90.
    [24]吴泽志,张钢,蔡绍皙等.秋水仙素和长春花碱对肝癌细胞黏弹性的影响[J].生物物理学报.1998;14(1):167-71.
    [25] Solak Y, Atalay H, Polat I, Biyik Z. Colchicine treatment in autosomal dominant polycystickidney disease: many points in common. Med Hypotheses.2010;74(2):314-7.
    [26] Shabana AH, Oboeuf M, Forest N. Cytoplasmic desmosomes and intermediate filamentdisturbance following acrylamide treatment in cultured rat keratinocytes. Tissue Cell.1994;26(1):43-55.
    [27] Arocena M. Effect of acrylamide on the cytoskeleton and apoptosis of bovine lens epithelial cells.Cell Biol Int.2006;30(12):1007-12.
    [28] D'Souza VM, Bareford LM, Ray A, Swaan PW. Cytoskeletal scaffolds regulate riboflavinendocytosis and recycling in placental trophoblasts. J Nutr Biochem.2006;17(12):821-9.
    [29] Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modifiedpolyethylenimines. Adv Drug Deliv Rev.2001;53(3):341-58.
    [30] Bertschinger M, Backliwal G, Schertenleib A, Jordan M, Hacker DL, Wurm FM. Disassembly ofpolyethylenimine-DNA particles in vitro: implications for polyethylenimine-mediated DNAdelivery. J Control Release.2006;116(1):96-104.
    [31] Okudaa T, Niidomeb T, Aoyagi H. Cytosolic soluble proteins induce DNA release fromDNA–gene carrier complexes. J of Control Release,2006;100:325-32.
    [32] Sharma VK, Thomas M, Klibanov AM. Mechanistic studies on aggregation ofpolyethylenimine-DNA complexes and its prevention. Biotechnol Bioeng.2005;90(5):614-20.
    [33] Ma K, Hu MX, Qi Y, Zou JH, Qiu LY, Jin Y, et al. PAMAM-triamcinolone acetonide conjugateas a nucleus-targeting gene carrier for enhanced transfer activity. Biomaterials.2009;30:6109-18.
    [34] Kanazawa T, Takashima Y, Murakoshi M, Nakai Y, Okada H. Enhancement of gene transfectioninto human dendritic cells using cationic PLGA nanospheres with a synthesized nuclearlocalization signal. Int J Pharm.2009;379(1):187-95.
    [35] Takei K, Haucke V. Clathrin-mediated endocytosis: membrane factors pull the trigger. TrendsCell Biol.2001;11:385-91.
    [36] Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature (Lond).2003,422:37-44.
    [37] Harris J, Werling D, Hope JC, Taylor G, Howard CJ. Caveolae and caveolin in immune cells:distribution and functions. Trends Immunol.2002;23:158-64.
    [38] Kaplan IM, Wadia JS, and Dowdy SF. Cationic TAT peptide transduction domain enters cells bymacropinocytosis. J Control Release.2005;102:247-53.
    [39] Nakase I, Niwa M, Takeuchi T, Sonomura K, Kawabata N, Koike Y, Takehashi M, Tanaka S,Ueda K, Simpson JC, et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosisand actin rearrangement. Mol Ther.2004;10:1011-22.
    [40] Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape ofTAT-fusion proteins after lipid raft macropinocytosis. Nat Med,2004;10(3):310-5.
    [41] Khalil IA, Kogure K, Futaki S, Harashima H. High density of octaarginine stimulatesmacropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem.2006;281(6):3544-51.
    [42] Vives E, Brodin P, and Lebleu B. A truncated HIV-1Tat protein basic domain rapidlytranslocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem.1997;272:16010-7.
    [43] Thoren PE, Persson D, Isakson P, Goksor M, Onfelt A, and Norden B. Uptake of analogs ofpenetratin, Tat(48–60) and oligoarginine in live cells. Biochem Biophys Res Commun.2003;307:100-7.
    [44] Brooks H, Lebleu B, and Vives E. Tat peptide-mediated cellular delivery: back to basics. AdvDrug Deliv Rev.2005;57:559-77.
    [45] Gupta B, Levchenko TS, and Torchilin VP. Intracellular delivery of large molecules and smallparticles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev.2005;57:637-51.
    [46] Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol.2004;5:121-32.
    [47] Peterson JR, Mitchison TJ. Small molecules, big impact: a history of chemical inhibitors and thecytoskeleton. Chem Biol.2002;9(12):1275-85.
    [48] Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D. Polyethylenimine butnot cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem.1998;273(13):7507-11.
    [49] Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellulartrafficking in nonviral gene delivery. Pharmacol Rev.2006;58(1):32-45.
    [50] Parton RG, Joggerst B, and Simons K. Regulated internalization of caveolae. J Cell Biol.1994;127:1199-215.
    [51] Subtil A, Hemar A and Dautry-Varsat A. Rapid endocytosis of interleukin2receptors whenclathrin-coated pit endocytosis is inhibited. J Cell Sci.1994;107(Pt12):3461-8.
    [52] Arrio-Dupont M, Foucault G, Vacher M, Devaux PF, Cribier S. Translational diffusion ofglobular proteins in the cytoplasm of cultured muscle cells. Biophys J.2000;78(2):901-7.
    [53] Seksek O, Biwersi J, Verkman AS. Translational diffusion of macromolecule-sized solutes incytoplasm and nucleus. J. CellBiol.1997;138:131-42.
    [54] Bieber T, Meissner W, Kostin S, Niemann A, Elsasser HP. Intracellular route and transcriptionalcompetence of polyethylenimine-DNA complexes. J Control Release.2002;82(2-3):441-54.
    [55] Prasad TK, Gopal V, Madhusudhana Rao N. Structural changes in DNA mediated by cationiclipids alter in vitro transcriptional activity at low charge ratios. Biochim Biophys Acta.2003;1619(1):59-69.
    [56] Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriersto gene transfer by a cationic lipid. J Biol Chem.1995;270:18997-9007.
    [57] Dworetzky SI, Lanford RE, Feldherr CM. The effects of variations in the number and sequenceof targeting signals on nuclear uptake. J Cell Biol.1988;107:1279-87.
    [58] Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J. Gene delivery to differentiated neurotypic cellswith RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials.2006;27(29):5143-50.
    [1] Pachuk CJ, Mccallus DE, Weiner DB, et al. DNA vaccines-challenges in delivery. Curr Opin MolTher.2000;2(2):188-98.
    [2] Lai WF, Lin MC. Nucleic acid delivery with chitosan and its derivatives. J Control Release.2009;134(3):158-68.
    [3] Manam S, Ledmith BJ, Barnum AB, et al. Plasmid DNA vaccines: tissue distribution and effectof DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirolgy.2000;43(4-6):273-81.
    [4] Deng R, Yue Y, Ji F, Chen Y, Kung H-F, Lin MCM, et al. Revisit the complexation of PEI andDNA-how to make low cytotoxic and highly efficient PEI gene transfection non-viral vectorswith a controllable chain length and structure? J Control Release.2009;140:40-6.
    [5]童荣生,徐孝麟.基因转移载体的研究进展[J].中国医药.2004;13(3):33-6.
    [6] Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. AVersatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in vivo:Polyethylenimine. Proc Nati Acad Sci.1995;92(16):7297-301.
    [7] Khanam N, Mikoryak C, Draper PK, Balkus KJ Jr. Electrospun linear polyethyleneiminescanolds for cell growth. Acta Biomater.2007;3(6):1050-9.
    [8]张璇,潘仕荣.聚乙二醇-聚乙烯亚胺共聚物介导体外基因传递[J].中山大学学报.2007;28(2):131-3.
    [9] Godbey WT, Wu KK, Midos AG, et al. Tracking the intracelular path of poly(ethylenimine) DNAcomplexes for gene delivery. Proc Natl Acad Sci USA.1999;96:5177-81.
    [10] Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) mediated gene delivery affects endothelialcell function and viability. Biomaterials.2001;22(5):471-80.
    [11] Ahn HH, Lee JH, Kim KS, et al. Polyethyleneimine-mediated gene delivery into human adiposederived stem cells. Biomaterials.2008;29:2415-22.
    [12]王星,姚静,周建平.低相对分子质量聚乙烯亚胺及其衍生物作为基因载体的应用[J].中国药学杂志.2008;43(8):561-4.
    [13] Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) mediated gene delivery affects endothelialcell function and viability. Biomaterials.2001;22(5):471-80.
    [14]陈晓爱,周艳芳,邓宇斌.聚乙二醇-聚乙烯亚胺纳米微囊介导质粒转染骨髓间质干细胞[J].中国科学-生命科学.2008;40(8):694-703.
    [15] Rudolph C, Sieverling N, Schillinger U, et al. Thyroid hormone (T3)-modifcation ofpolyethyleneglycol (PEG)-polyethyleneimine (PEI) graft copolymers for improved gene deliveryto hepatocytes. Biomaterials.2007;28:1900-11.
    [16]聂常富,刘春桃,李华,等.肝细胞靶向性半乳糖-聚乙二醇-聚乙烯亚胺纳米基因载体的合成及其理化特性[J].中国组织工程研究与临床康复.2008;12(36):7139-42.
    [17]赵璐,陈欢,陈丹,等.构建络合四氯化铂的PEG-PEI基因载体[J].浙江大学学报(医学版).2009;38(1):59-66.
    [18]姚懿,吴飞,金拓.聚乙烯亚胺衍生物作为非病毒基因载体的研究进展[J].中国医药工业杂志.2007;38(5):387-90.
    [19] Dailey LA, Kleemann E, Merdan T, et al. Modified polyethylenimines as non viral gene deliverysystems for aerosol therapy: effects of nebulization on cellular uptake and transfection efficiency.J Control Release.2004;100(3):425-36.
    [20] Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellulartrafficking of non-viral gene delivery particles. Eur J Cell Biol.2004;83(3):97-111.
    [21] Lwmarchand C, Cref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J PharmBiopharm.2004;58(2):327-41.
    [22]周泉波,陈汝福.纳米靶向载体在肿瘤治疗中的应用[J].国外医学(肿瘤学分册).2005;32(7):483-75.
    [23] Kakimoto S, Moriyama T, Tanabe T, et al. Dual-ligand effect of transferrin and transforminggrowth factor alpha on polyethyleneimine-mediated gene delivery. J Control Release.2007;120(3):242-9.
    [24] Chertok B, David AE, Yang VC. Polyethyleneimine-modifed iron oxide nanoparticles for braintumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterial.2010;31(24):6317-24.
    [25] Strehblow C, Schuster M, Moritz T, et al. Monoclonal antibody–polyethyleneimine conjugatestargeting Her-2/neu or CD90allow cell type-specific nonviral gene delivery. J Control Release.2005;102:737-47.
    [26] Talsma SS, Babensee JE, Murthy N, et al. Development and in vitro validation of a targeteddelivery vehicle for DNA vaccines. J Control Release.2006;112:271-79.
    [27] Weiss SI, Sieverling N, Niclasen M, et al. Uronic acids functionalized polyethyleneimine(PEI)–polyethyleneglycol (PEG)-graft-copolymers as novel synthetic gene carriers. Biomaterials.2006;27:2302-12.
    [28]李达,王青青,汤谷平,等.含RGD肽CP9修饰的聚乙烯亚胺复合物的理化特性及其转基因功能的研究[J].浙江大学学报.2006;35(6):615-21.
    [29] Guo Q, Shi S, Wang X, et al. Synthesis of a novel biodegradable poly(ester amine)(PEAs)copolymer based on low-molecular-weight polyethyleneimine for gene delivery[J]. Int J Pharm.2009;379(1):82-9.
    [30] Kang HC, Kang HJ, Bae YH. A reducible polycationic gene vector derived from thiolated lowmolecular weight branched polyethyleneimine linked by2-iminothiolane. Biomaterials.2010;32(4):1193-203.
    [31] Kasturi SP, Sachaphibulkij K, Roy K. Covalent conjugation of polyethyleneimine onbiodegradable microparticles for delivery of plasmid DNA vaccines. Biomaterial.2005;26(32):6375-85.
    [32]陈丹,何彬彬,赵丹军,等.聚-羟丙基-天冬氨酸-谷氨酸-聚乙烯亚胺共聚物作为非病毒载体的研究[J].浙江大学学报.2009;38(1):31-8.
    [33] Brunot C, Porsonnet L, Lagneau C, et al. Cytotoxicity of polyethyleneimine (PEI), precursor baselayer of polyelectrolyte multilayer flms. Biomaterials.2007;28(4):632-40.
    [34] Didenko VV, Ngo H. Polyethyleneimine as a transmembrane carrier of Xuorescently labeledproteins and antibodies:Development and in vitro validation of a targeted delivery vehicle forDNA vaccines. Anal Biochem.2005;344:168-73.
    [35] Kabanov AV, Batrakova EV, Sriadibhatla S, Yang Z, Kelly DL, Alakov VY. Polymer genomics:shifting the gene and drug delivery paradigms. J Control Release2005;101(1-3):259-71.
    [36] Bromberg L, Alakhov VY, Hatton TA. Self-assembling Pluronic-modified polycations in genedelivery. Curr Opin Colloid In.2006;11(4):217-23.
    [37] Bromberg L, Deshmukh S, Temchenko M, Iourtchenko L, Alakhov V, Alvarez-Lorenzo C, et al.Polycationic block copolymers of poly(ethylene oxide) and poly(propylene oxide) for celltransfection. Bioconjug Chem2005;16(3):626-33.
    [38] Gaymalov ZZ, Yang Z, Pisarev VM, Alakhov VY, Kabanov AV. The effect of the nonionic blockcopolymer pluronic P85on gene expression in mouse muscle and antigen-presenting cells.Biomaterials.2009;30(6):1232-45.
    [39] Lee JI, Kim HS, Yoo HS. DNA nanogels composed of chitosan and Pluronic withthermo-sensitive and photo-crosslinking properties. Int J Pharm.2009;373(1-2):93-9.
    [40] Chen YC, Jiang LP, Liu NX, Wang ZH, Hong K, Zhang QP. P85, Optison microbubbles andultrasound cooperate in mediating plasmid DNA transfection in mouse skeletal muscles in vivo.Ultrason Sonochem.2011;18(2):513-9.
    [41] Chen YC, Liang HD, Zhang QP, Blomley MJ, Lu QL. Pluronic block copolymers: novelfunctions in ultrasound-mediated gene transfer and against cell damage. Ultrasound Med Biol.2006;32(1):131-7.
    [42] Wasungu L, Marty AL, Bureau MF, Kichler A, Bessodes M, Teissie J, Scherman D, Rols MP,Mignet N. Pre-treatment of cells with pluronic L64increases DNA transfection mediated byelectrotransfer. J Control Release.2011;149(2):117-25.
    [43] Jeon E, Kim HD, Kim JS. Pluronic-grafted poly-(L)-lysine as a new synthetic gene carrier. JBiomed Mater Res A.2003;66(4):854-9.
    [44] Vinogradov SV, Bronich TK, Kabanov AV. Self-assembly of polyamine-poly(ethylene glycol)copolymers with phosphorothioate oligonucleotides. Bioconjug Chem.1998;9(6):805-12.
    [45] Gebhart CL, Sriadibhatla S, Vinogradov S, Lemieux P, Alakhov V, Kabanov AV. Design andformulation of polyplexes based on pluronic-polyethyleneimine conjugates for gene transfer.Bioconjug Chem.2002;13(5):937-44.
    [46] Jeon E, Kim HD, Kim JS. Pluronic-grafted poly-(L)-lysine as a new synthetic gene carrier. JBiomed Mater Res A.2003;66(4):854-9.
    [47] Guo Q, Shi S, Wang X, Kan B, Gu Y, Shi X, Luo F, Zhao X, Wei Y, Qian Z. Synthesis of a novelbiodegradable poly(ester amine)(PEAs) copolymer based on low-molecular-weightpolyethyleneimine for gene delivery. Int J Pharm.2009;379(1):82-9.
    [48] Lai TC, Kataoka K, Kwon GS. Pluronic-based cationic block copolymer for forming pDNApolyplexes with enhanced cellular uptake and improved transfection efficiency. Biomaterials.2011;32(20):4594-603.
    [49] Lai TC, Kataoka K, Kwon GS. Bioreducible polyether-based pDNA ternary polyplexes:Balancing particle stability and transfection efficiency. Colloids Surf B Biointerfaces.2011; inPress.
    [50] Lee JI, Yoo HS. Pluronic decorated-nanogels with temperature-responsive volume transitions,cytotoxicities, and transfection efficiencies. Eur J Pharm Biopharm.2008;70(2):506-13.
    [51] Zhang B, Jia F, Fleming MQ, Mallapragada SK. Injectable self-assembled block copolymers forsustained gene and drug co-delivery: An in vitro study. Int J Pharm.2012;427(1):88-96.
    [52] Agarwal A, Unfer RC, Mallapragada SK. Dual-role self-assembling nanoplexes for efficient genetransfection and sustained gene delivery. Biomaterials.2008;29(5):607-17.
    [53] Yang C, Wang X, Li H, Ding JL, Wang DY, Li J. A supramolecular gene carrier composed ofmultiple cationic α-cyclodextrins threaded on a PPO–PEO–PPO triblock polymer. Polymer.2009;50(6):1378-88.
    [54] Ma D, Zhang HB, Chen DH, Zhang LM. Novel supramolecular gelation route to in situentrapment and sustained delivery of plasmid DNA. J Colloid Interface Sci.2011;364(2):566-73.
    [55] Kim TH, Cook SE, Arote RB, et al. A degradable hyperbranched poly(ester amine) based onpoloxamer diacrylate and polyethylenimine as a gene carrier. Macromol Biosci.2007;7(5):611-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700