多年冻土隧道开挖稳定性及其渗漏水特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对青藏铁路昆仑山隧道工程中的两个关键问题——多年冻土隧道工程的开挖与衬砌矛盾和昆仑山隧道渗漏水特征分析及相应的治理方案展开研究,首先介绍了工程背景,以热力学理论为基础,采用有限元技术对不同模型进行数值模拟;通过施工温度场监测,形成了昆仑山隧道工程开挖施工控制与预报系统;通过昆仑山隧道洞内排水沟流量测试、连通试验、地温及水位观测,阐明了昆仑山隧道渗漏水特征,同时也验证了移动边界计算模型的正确性,而移动边界计算模型的引入又从理论上解释了昆仑山隧道形成这种渗漏水特征的原因。
     昆仑山隧道的开挖与衬砌:
     1) 通过对昆仑山隧道自然环境特征分析,初步把握了昆仑山隧道工程的自然气温规律,为整个隧道工程的施工和研究提供了依据。
     2) 通过对施工环境温度场的监测和数理统计分析,第一次提出了分区温度场适应不同工序作业的理念,解决了多年冻土隧道工程开挖与衬砌的矛盾,极大地改善了洞内的作业环境,且将施工对多年冻土环境的热扰动降到最低。
     3) 根据昆仑山隧道工程实际情况建立有限元模型,对隧道不同开挖过程进行了数值模拟,以发现可能存在的稳定问题,从而选取了合理的隧道开挖方案。
     4) 根据工程实际情况选取了瞬态传热分析有限元模型和边界条件,对围岩状态进行了数值模拟。结合施工安全的需要,将昆仑山隧道的开挖过程分为四个阶段,并在此基础上建立了第一个多年冻土隧道工程施工控制与预测系统,成功地指导了昆仑山隧道工程的开挖与衬砌施工。
     昆仑山隧道渗漏水特征分析:
     1) 重新定义了移动边界的概念,将其增加新的内涵,并提出了产生移动边界特征的充要条件,首次揭示了流动的热载体(水)对多年冻土热融蚀作用远远大于静态水对多年冻土的热融蚀作用的原因,为工程界进一步认识冻土提供了新的理论依据。
     2) 根据移动边界的定义,建立了移动边界特征计算模型,并在通用商业有限元程序的基础上,编写了自开发模块,实现了移动边界特征计算程序化。讨论了具有移动边界特征的多年冻土(岩)融化速度的影响因素,
Research on two key points of Kunlun mountain tunnel of Qinghai-Tibet railway, which are the contradiction of excavation and lining of tunneling in permafrost region and the analysis of water seepage from Kunlun mountain tunnel and corresponding treatment, has been done. The engineering project is introduced firstly. Finite element method (FEM) is applied to simulate different models on the basis of thermodynamic theory. The system of construction control and prediction for excavation of Kunlun mountain tunnel is built up by site-monitoring temperature of wall rock. The water seepage features are presented by tests of ditch flux of the tunnel and ground temperature and ground water table and connectivity, and the validity of computational model of moving boundary is verified at the same time. The application of the computational model of moving boundary theoretically explains why water seepage features of Kunlun mountain tunnel are formed. 1. Excavation and lining of Kunlun mountain tunnel1) The climate law around the tunnel is got for research and construction of the tunnel by analysis of the climate around the tunnel.2) The features of site temperature are got for the analysis of wall rock stability of a tunnel in permafrost region and choosing and controlling different temperature fields for excavation and lining of the tunnel by statistical analyses of climate and construction temperature at Kunlun mountain tunnel. The fractional temperature fields are presented firstly for different programs during construction of tunnel in permafrost region. So construction environment is greatly improved, and the disturbing of tunneling to permafrost is limited to minimum.3) The FEM is applied to simulate different excavation to find probable ground stability by the strength and deformation of wall rock on base of geologic feature and geohydrologic condition of Kunlun mountain tunnel, so a suitable excavating method is selected.4) A finite element model is selected to do a transient heat transfer analysis of wall rock on the base of Kunlun mountain tunnel. Construction process is divided by four phases for fulfilling construction safety. Then a system of
    construction control and prediction is firstly established to guide construction of Kunlun mountain tunnel. There is no record of tunneling technique about it in permafrost region.2. Analysis of water seepage from Kunlun mountain tunnel1) Moving boundary is redefined, and the essential factors are presented. It is firstly discovered that the erosion of fluid flow to permafrost is far great than that of still water to permafrost. A new method is presented to further understand frozen soil.2) A suitable computational method is created to calculate a thawed depth with moving boundary property. Some programs are made on the basis of a popular finite element program to perform computing a thawing depth with moving boundary property. The factors influencing a thawing depth are discussed, and critical damping distance is the key factor. The program is used to simulate different models. The method theoretically explains the reason why the water seepage features of Kunlun mountain tunnel form.3) The relationship between water seepage distribution and topography is analyzed to find that one of water seepage features is that water seepage distributes under the valleys over the tunnel.4) It is testified by connectivity test that water seepage from the tunnel comes mainly from surface water of No.l and No.2 valleys, and seepage runoff exists between the tunnel and the bottom of two valleys.5) The results of analysis of ground temperature and geohydrologic condition of No.2 valley in Oct to Nov 2003 and Mar to May 2004 shows that an unfrozen ground water runoff exists between the tunnel and the bottom of No.2 valley along the valley at least, and that tunneling affects on permafrost around the tunnel to a certain extent.6) From the analysis of the relationship between water seepage distribution and topography of Kunlun mountain tunnel to the analysis of connectivity test, and the analysis of ground temperature and ground water table observation, the water seepage behaviors of the tunnel and fit treatments are presented.
引文
[1] 徐恒盛.俄罗斯第2条西伯利亚铁路建设概况及技术措施.铁路建筑技术,2001(6):55~58
    [2] 郑启浦.多年冻土地区铁路工程建筑与环境保护的关系.铁路标准设计,1996(12):43~46
    [3] 吴青柏,刘永智,童长江,等.高原多年冻土地区公路工程地质研究.公路,2000(2):1~4
    [4] 李祝龙,章金钊.高原多年冻土地区波纹管涵应用技术研究.公路,2000(2):28~31
    [5] 焦臣,章金钊.青藏公路桥涵破坏特点及防治对策.西安公路交通大学学报,1996,16(4):63~65
    [6] 温树国,乔刚.关于采用冻结带法整治嫩林线602km基床热融下沉的探讨.哈尔滨铁道科技,1999(2):29~30
    [7] 杨琼,孙林海,杜崇超.浅谈东北多年冻土地区公路冻害的成因及防治.森林工程,1999,15(3):55~56
    [8] 窦明健,胡长顺,多吉罗布,等.青藏公路路面病害成因分析.冰川冻土,2003.25(4):439~444
    [9] M. Yavuz Corapcioglu, Sorab Panday. Multiphase Approach to Thaw Subsidence of Unsaturated Frozen Soils: Equation Development. Journal of Engineering Mechanics, 1995, Vol. 121, No. 3, pp. 448~459
    [10] 原喜忠.大兴安岭北部多年冻土地区路基沉陷研究.冰川冻土,1999,Vol.21(No.2):155~158
    [11] 原喜忠,王辉.大兴安岭北部高含冰量冻土地段路基沉陷防治.黑龙江交通科技,1999,总第(81期):155~158
    [12] 侯仰慕,安春英,董洁滨,等.冻土地区公路的病害特征及防治措施.内蒙古公路与运输,2003(2):18~19
    [13] 王绍令,赵林,李述训,等.青藏公路多年冻土段沥青路面热量平衡及路基稳定性研究.冰川冻土,2001,23(2):111~118
    [14] 吴青柏,米海珍.青藏公路多年冻土路段冻土过程的变化和控制建议.水文地质工程地质,2000(2):14~17
    [15] 贾云翔,许贵,李显伟.青藏铁路多年冻土区段地质灾害危险性评 估方法探讨.甘肃科学学报,2003,15(专辑):50~54
    [16] 李述训,程国栋,刘继民.兰州黄土在冻融过程中水热输运实验研究.冰川冻土,1996,18(4):319~324
    [17] 赵林,程国栋,李述训,等.青藏高原五道梁附近多年冻土活动层冻结和融化过程.科学通报,2000,45(11):1205~1211
    [18] 程国栋.冻土力学与工程的国际研究新进展.地球科学进展,2001,16(3):293~299
    [19] Wei Zhou, S. L. Huang. Modeling Impacts of Thaw Lakes to Ground Thermal Regime in Northern Alaska. Journal of Cold Regions Engineering, 2004, Vol. 18, No. 2, pp. 70~87
    [20] Matti Seppala. Piping causing thermokarst in permafrost, Ungava Peninsula, Quebec, Canada. Geomorphology, 1997, 20 (3-4): 313~319
    [21] Julian B. Murton. Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western Arctic Canada. Global and Planetary Change, 1999, 28 (2001): 175~192
    [22] 尹喜霖.大兴安岭东北坡多年冻土分布及冻结层水特征.勘察科学技术,1999(3):45~51
    [23] 章金钊,李祝龙,武民.冻土路基稳定性主要影响因素探讨.公路,2000(2):17~20
    [24] Shiklomanov, N. I. Nelson, F. E. Analytic representation of the active layer thickness field, Kuparuk River Basin, Alaska. Ecological Modelling, 1999, 123 (2-3) : 105~125
    [25] Ott, K. O. Global warming and the greenhouse effect. Progress in Nuclear Energy, 1995 (29) : 81~88
    [26] Qingbai Wu, YongzhiLiu. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau. Cold Regions Science and Technology, 2004, 38 (2-3) : 85~92
    [27] Liu, Jingshi; Hayakawa, Norio; Lu, Mingjiao, et al. Hydrological and geocryological response of winter stream flow to climate warming in Northeast China. Cold Regions Science and Technology, 2003, 37(1): 15~24
    [28] Khrustalel, L. N. On the need to take into account the possibility of global climate warming in the design of buildings constructed in permafrost soil. Geomechanics Abstracts, 1997, 1997(2):102
    [29] Jin, Huijun; Li, Shuxun; Cheng, Guodong, et al. Permafrost and climatic change in China. Global and Planetary Change, 2000, 26(4):387~404
    [30] Qingbai, Wu; Yongzhi, Liu. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau. Cold Regions Science and Technology, 2004, 38(2-3):85~92
    [31] Qingbai, Wu;Yuanlin, Zhu; Yonzhi, Liu. Evaluation model of permafrost thermal stability and thawing sensibility under engineering activity. Cold Regions Science and Technology, 2002, 34(1):19~30
    [32] Fortier, R. Climatic limitations and engineering problems during the construction of the Qinghai-Xizang Highway, China. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(7):293A
    [33] Dowdeswell, J. A. ; Siegert, M. J. Ice-sheet numerical modeling and marine geophysical measurements of glacier-derived sedimentation on the Eurasian Arctic continental margins. Geological Society of America Bulletin, 1999, pp. 1080~1097
    [34] Hahne, J. ; Melles, M. Late- and post-glacial vegetation and climate history of the south-western Taymyr Peninsula, central Siberia, as revealed by pollen analyses of a core from Lake Lama. Vegetation History and Archaeobotany, 1997 pp. 1~8
    [35] Hahne, J. ; Melles M., Kassens, H. ; Bauch, H. A., et al. Land-Ocean Systems in the Siberian Arctic: Dynamics and History, Springer, Berlin, (1999)
    [36] Siegert, M. J. ; Marsiat, I. Numerical reconstructions of LGM climate across the Eurasian Arctic. Quaternary Science Reviews, 2001, pp. 1595~1605
    [37] Siegert, M. J. ;Dowdeswell, J. A. ;Hald, M., et al. Modelling the Eurasian Ice Sheet through a full (Weichselian) glacial cycle. Global and Planetary Change, 2001, pp. 367~385
    [38] Ryabets, N. ; Kirzhner, F. Weakening of frozen soils by means of ultra-high frequency energy. Cold Regions Science and Technology, 2003, 36(1-3): 115~128
    [39] Hubberten, Hans W.;Andreev, Andrei;Astakhov, Valery I. et. al. The periglacial climate and environment in northern Eurasia during the Last Glaciation. Quaternary Science Reviews, 2004, 23(11-13):1333~1357
    [40] Garagula, L. S. Forecasting Evaluation Method of Frozen Soil Conditions Changed by Human Activity, Gansu Science and Technical Press, Lanzhou, (1984)
    [41] 金会军,李述训,王绍令,等.气候变化对中国多年冻土和寒区环境 的影响.地理学报,2000,55(2):161~173
    [42] 王根绪,李琪,程国栋,等.40a来江河源区的气候变化特征及其生态环境效应.冰川冻土,2001,23(4):346~352
    [43] 李述训,程国栋,郭东信.气候持续变暖条件下青藏高原多年冻土变化趋势数值模拟.中国科学,1996,26(4):342~347
    [44] 吴青柏,李新,李文君.全球气候变化下青藏公路沿线冻土变化响应模型的研究.冰川冻土,2001,23(1):1~6
    [45] 吴青柏,朱元林,刘永智.人类工程活动下多年冻土热融蚀敏感性评价模型.岩土工程学报,2001,23(6):731~735
    [46] 吴青柏,刘永智,童长江.寒区冻土环境与工程环境间的相互作用.工程地质学报,2000,8(3):281~287
    [47] 胡志耘.藏北高原冻土工程地质特性浅析.西部探矿工程,2003(86):49~51
    [48] 张建明,刘永智,吴青柏,等.公路工程冻土类型划分研究.西安公路交通大学学报,2001,21(3):1~5
    [49] 程国栋.局地因素对多年冻土分布的影响及其对青藏铁路设计的启示.中国科学,2003,33(6):602~607
    [50] 张鲁新.青藏铁路高原冻土区地温变化规律及其对路基稳定性影响.中国铁道科学,2000,21(1):37~47
    [51] 石剑,王育光,杜春英,等.黑龙江省季节冻土形成发育规律及特征.黑龙江气象,2003(3):35~38
    [52] Liu, Jiankun, Tian, Yahu. Numerical studies for the thermal regime of a roadbed with insulation on permafrost. Cold Regions Science and Technology, 2002, 35 (1): 1~13
    [53] Lai, Yuanminga;Zhang, Shujuana;Zhang, Luxina, et al. Adjusting temperature distribution under the south and north slopes of embankment in permafrost regions by the ripped-rock revetment. Cold Regions Science and Technology, 2004, 39(1):67~79
    [54] Wu, Qingbaia; Shi, Bina; Fang, Hsai-Yang. Engineering geological characteristics and processes of permafrost along the Qinghai-Xizang (Tibet) Highway. Engineering Geology, 2003, 68(3-4):387~396
    [55] Foriero A, Ladanyi B, Dallimore S R. Modeling of deep seated hill slope creep in permafrost[J]. Canadian Geotechnical Journal,1998,35(4):560~578.
    [56] Stevens H W. The response of frozen soils to vibratory loads[R]. U.S. Army Cold Red. Res. Eng. Lab. Techn. Rep. 265, Hanover, NH. 1975.
    [57] 李祝龙,章金钊,武民.冻土路基热学计算研究.公路,2000(2):9~12
    [58] 李东庆,魏春玲,吴紫汪.边坡渗流对冻土地区路基稳定性的影响分析.兰州大学学报(自然科学版),2000,Vol.36(No.3):175~179
    [59] 李宁,程国栋,徐学祖,等.冻土力学的研究与思考.力学进展,2001,31(1):95~102
    [60] 赖远明,刘松玉,吴紫汪.寒区挡土墙温度场、渗流场和应力场耦合问题的非线性分析.土木工程学报,2003,36(6):88~95
    [61] 冯文杰,李东庆,马巍,等.不同边界条件对多年冻土上限影响的模型试验研究.冰川冻土,2001,Vol.23(No.41:353~359
    [62] Andrew G. Heydinger. Piles in Permafrost. Journal of Cold Regions Engineering, 1987, Vol. 1, No. 2, pp. 59~75
    [63] 张学富,赖远明,喻文兵.寒区涵洞现浇混凝土基础水化热的影响分析.公路,2003(2):50~56
    [64] Scott Lin Huang, Nolan B. Aughenbaugh, Ming-Chee Wu. Stability Study of CRREL Permafrost Tunnel. Journal of Geotechnical Engineering, 1986, Vol. 112, No. 8, pp. 777~790
    [65] 何春雄,吴紫汪,朱林楠.严寒地区隧道围岩冻融状态分析的导热与对流换热模型.中国科学,1999,29(增刊1):1~7.
    [66] 赖远明,吴紫汪,张淑娟.寒区隧道保温效果的现场观察研究.铁道学报,2003,25(1):81~86
    [67] 赖远明,吴紫汪,朱元林,等.寒区隧道地震响应的弹粘塑性分析.铁道科学,2000,22(6):84~89
    [68] 赖远明,喻文兵,吴紫汪.寒区圆形截面隧道温度场的解析解.冰川冻土,2001,23(2):126~130
    [69] 赖远明,吴紫汪,朱元林,等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析.岩土工程学报,1999,21(5):529~533
    [70] 张德华,王梦恕,谭忠盛.风火山隧道围岩冻胀对支护结构体系的影响.岩土工程学报,2003,25(5):571~573
    [71] Cheng, G. ; Tong, B. ; Luo, X. Professional Papers on Permafrost Studies of Qinghai-Xizang Plateau. Beijing : Science Press, 1982.
    [72] Dunayeva, Ye. N. ;Gavrilov, A. V. Proceedings of 4th International Conference on Permafrost. Washington, DC: National Academy Press, 1983(2)
    [73] Goodrich, L. E. The influence of snow cover on the ground thermal regime. Canadian Geotechnical Journal, 1982: 421-432
    [74] Zhi, Wena;Yu, Shenga;Wei, Maa. Evaluation of EPS application to embankment of Qinghai-Tibetan railway. Cold Regions Science and Technology, 2005, 41(3):235~247
    [75] Burn, C. R. ; Smith, C. A. S. Observations of the "thermal offset" in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada. Arctic, 1988: 99-104
    [76] Sego, D. C. ; Robertson, P. K. ;Sasitharan, S. Ground freezing and sampling of foundation soils at Duncan Dam. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(6):281 A
    [77] Grave, N. A. Proceedings of 4th International Conference on Permafrost. Washington DC: National Academy Press, 1983
    [78] Harris, S. A. Permafrost distribution, zonation and stability along the Eastern Ranges of the Cordillera of North American. Arctic, 1986, pp. 28~29
    [79] Kovakov, V. P. ; Shvetsov, P. F. Proceedings of 5th International Conference on Permafrost. Trondheim, Norway: Tapir Publishers, 1988
    [80] Kudelyacev, B. A. Fundamentals of Frost Forecasting in Geological Engineering Investigations. Lanzhou: Lanzhou Univ. Press, 1974
    [81] Liu, Y.; Wu, Q.; Zhang, J. Site testing and research on ground temperature of highway subgrade in plateau regions with permafrost. Highway, 2000, pp. 5-8
    [82] Romanovsky, V. E.; Osterkamp, T. E. Interannual variations of the thermal regime of the active layer and near-surface permafrost in Northern Alaska. Permafrost and Periglacial Processes, 1995, pp. 1~22
    [83] Wang, S. Proceedings of the Fifth Chinese Conference on Glaciology and Geocryology. Lanzhou: Gansu Cultural Press, 1996
    [84] Smith, C. A. S. Proceedings of 7th International Conference on Permafrost. Nordicana, Quebec: Yellowknife, 1998
    [85] Romanovsky, V. E. ; Osterkamp, T. E. Thawing of the active layer on the Coastal Plain of the Alaskan Arctic. Permafrost and Periglacial Processes, 1997,
     pp. 1~22
    [86] Tong, C. ; Wu, Q. The effect of climate warming on Qinghai-Tibet Highway, China. Cold Regions Science and Technology, 1996, pp. 221~223
    [87] Wu, Q. ; Tong, C. Permafrost change and stability of the Qinghai-Xizang Plateau. Journal of Glaciology and Geocryology, 1995, pp. 350~355
    [88] Wu, Q. ;Zhu, Y. ;Liu, Y. Proceedings of the International Symposium on Ground Freezing and Frost Action in Soils, Louvan-la-Neuve, Belgium, A. A. Balkema, Rotterdam, 2000
    [89] Wu, Q. ;Liu, Y. ;Tong, C. Research onhighway engineering geology in plateau regions with permafrost. Highway, 2000, pp. 1~5
    [90] Xu, X. ; Deng, Y. Experimental Study on Water Migration in Freezing and Frozen Soil. Beijing: Science Press, 1991
    [91] Xu, X. ;Oliphant, J. L. ;Tice, A. R. Soil-waterpotential, unfrozen water content and temperature. Journal of Glaciology and Geocryology, 1985, pp. 1~14
    [92] Zhang, T. ; Zhou, Y. Proceedings of the 3rd Chinese Conference on Permafrost. Beijing: Science Press, 1989
    [93] Zhigarew, L. A. ; Parmuzina, O. Yu. Proceedings ofthe 4th International Conference on Permafrost. Washington, DC: National Academy Press, 1983
    [94] Zhou, Y. Environmental protection of permafrost regions. Journal of Engineering and Frozen Soil, 1985, pp. 87~91
    [95] Zhou, Y. ;Cheng, G. ;Guo, D, et al. Proceedings of 4th National Conference on Glaciology and Geocryology. Beijing: Science Press, 1990
    [96] Li, Dongqinga; Wu, Ziwanga; Fang, Jianhong, et al. Heat stability analysis of embankment on the degrading permafrost district in the East of the Tibetan Plateau, China. Cold Regions Science and Technology, 1998, 28(3):183~188
    [97] Yu, Wenbinga; Lal, Yuanminga; Zhang, Xuefu, et al. Laboratory investigation on cooling effect of coarse rock layer and fine rock layer in permafrost regions. Cold Regions Science and Technology, 2004, 38(1):31~42
    [98] Cheng, Guodonga; Zhang, Jianminga; Sheng, Yu, et al. Principle of thermal insulation for permafrost protection. Cold Regions Science and Technology, 2004, 40(1-2):71~79
    [99] Wu, Tonghua; Li, Shuxun; Cheng, Guodong, et al. Using ground-penetrating radar to detect permafrost degradation in the northern limit of permafrost on the Tibetan Plateau. Cold Regions Science and Technology, 2005, 41(3):211~219
    [100] Lai, Yuanming; Wang, Qiusheng; Niu, Fujun, et al. Three-dimensional nonlinear analysis for temperature characteristic of ventilated embankment in permafrost regions. Cold Regions Science and Technology, 2004, 38(2-3):165~184
    [101] Goering, Douglas J. ; Kumar, Pankaj Winter-time convection in open-graded embankments. Cold Regions Science and Technology, 1996, 24(1)):57~74
    [102] 周虎利.多年冻土地区铁路工程地质选线.铁道工程学报,2001(4):112~115
    [103] 程国栋,何平.多年冻土地区线性工程建设.冰川冻土,2001,23(3):213~217
    [104] Wei Ma, Guo-dong Cheng, Qing-bai Wu. Application on idea of dynamic design in Qinghai-Tibet Railway construction. Cold Regions Science and Technology, 2004, 41 (2005): 165~173
    [105] 盛煜,刘永智,张建明,等.青藏公路下伏多年冻土的融化分析.冰川冻土,2003,25(1):43~48
    [106] 王铁行,窦明健,胡长顺.多年冻土地区路基临界高度研究.土木工程学报,2003,36(4):94~98
    [107] 窦明健,胡长顺.多年冻土地区路基设计原则及其应用.冰川冻土,2001,23(4):402~406
    [108] 章金钊,武敬民,李祝龙.高原多年冻土地区公路修筑技术研究的回顾与展望.冰川冻土,1999,21(2):187~191
    [109] 彭华,高亮.高原多年冻土地区路基施工及其质量控制.铁路建筑技术,2001(6):23~26
    [110] 孟凡松,刘建平,刘永智.黑北公路冻土路基设计原则及病害特征.冰川冻土,2001,23(3):307~311
    [111] 李东庆,吴紫汪,朱林楠.花石峡连续多年冻土区湿润性地段路基稳定性模拟分析.岩土工程学报,1999,21(1):17~20
    [112] 汪双杰,吴青柏,刘永智。沥青路面下冻土热稳定性和热融敏感性的变化.公路交通科技,2003,20(4):20~22
    [113] 黄小铭.论高原冻土区铁路路基的设计原则及其应用.中国铁道科 技,2001,22(1):23~31
    [114] 丁靖康,赫贵生.年平均气温临界值——设计青藏高原多年冻土区路堤临界高度的一个重要因素.冰川冻土,2000,22(4):333~339
    [115] 孙祥柱,李昶,李旭.浅谈多年岛状冻土路基施工.黑龙江交通科技,2003(2):24~25
    [116] 康巍,李庆军,吉红梅.浅谈公路多年冻土地区路基施工.黑龙江交通科技,2001(2):1~2
    [117] 章金钊,李祝龙,武 民.青藏公路冻土路基设计研究.公路,2000(2):13~17
    [118] 王永义.青藏铁路昆仑山口高含冰量冻土区路堑爆破施工工艺研究.冰川冻土,2003,25(1):100~105
    [119] 章金钊,姚翠琴.多年冻土地区隔热层路基研究.公路,1996(1):46~48
    [120] 汪双杰,李祝龙,武民.多年冻土地区公路筑路技术研究现状与新课题.冰川冻土,2003,25(4):471~476
    [121] 程淞.拼装式骨架护坡在青藏铁路路基边坡防护中的应用.铁道建筑,2003(10):69~71
    [122] 赖远明,张鲁新,张淑娟,等.气候变暖条件下青藏铁路抛石路基的降温效果.科学通报,2003,48(3):292~297
    [123] 胡力学,杨成永.青藏铁路安多至那曲岛状多年冻土特征及对策.西部探矿工程,2003(8):
    [124] 陈昌龙,刘建坤,房建宏.多年冻土区保温护坡路基的效果模拟.岩土工程界,2003,6(6):70~72
    [125] 令锋.多年冻土区路基热状况动态特征数值模拟研究的意义.西江大学学报,2000(2):1~6
    [126] 李祝龙,武民,章金钊.青藏公路钢纤维水泥混凝土路面的热学效应.2000,3(3):264~269
    [127] 潘卫东,赵肃菖,徐伟泽.热棒技术加强高原冻土区路基热稳定性的应用研究.冰川冻土,2003,25(4):432~438
    [128] 冯文杰,马巍,张鲁新,等.遮阳棚在寒区道路工程中的应用研究.岩土工程学报,2003,25(5):567~570
    [129] 章金钊.高原多年冻土地区涵洞工程研究.公路,2000(2):25~28
    [130] 章金钊.高原多年冻土地区桥涵设计与施工研究.中国铁道科学, 2001,22(4):40~46
    [131] 吴群慧.青藏铁路高原多年冻土地区桥涵施工技术研究.铁道建筑技术,2001(3):50~53
    [132] 王晓黎,陈频志,吴少海.青藏铁路桩基础形式的研究及应用.中国铁路,2003(1):66~68
    [133] 王引生,李永强.青藏高原多年冻土区桩基回冻时间的监测.甘肃科技,2003,19(5):66~68
    [134] 童武.多年冻土对输电线路杆塔基础的影响及处理措施.青海电力,2001(4):38~39
    [135] 乜凤鸣.寒冷地区铁路隧道排水沟的防冻问题.见:第二界全国冻土学术会议论文选集.兰州:甘肃人民出版社,1983.405~411
    [136] 苏联山岭铁路隧道的设计与施工经验.隧道译从,No.10
    [137] Nils I. Johansen, Scott L. Huang, Nolan B. Aughenbaugh. Alaska's CRREL permafrost tunnel. Tunnelling and Underground Space Technology, 1988, 3 (1): 19~24
    [138] 乜凤鸣.寒冷地区铁路隧道气温状态.冰川冻土,1988,10(4)
    [139] 乜风鸣,刘德福.多年冻土中隧道泄水洞热动态分析.低温建筑技术,2001(3):37~38
    [140] 黄双林,刘小刚.青藏铁路昆仑山隧道设计.中国铁路,2003(2):48~50
    [141] Xuefu Zhang, Yuaaming Lai, Wenbing Yu, et al. Forecast analysis for the re-frozen of Feng Huoshan permafrost tunnel on Qing-Zang railway. Tunnelling and Undergrotmd Space Technology, 2003, 19 (2004): 45~56
    [142] 贾翔军,翟大勤.高海拔寒冷地区隧道施工防冻胀技术.国外公路,1999,19(6):51~55
    [143] 吴应明.高原多年冻土隧道旌工技术.铁路标准设计,2003(1):5~9
    [144] 周晋筑.昆仑山隧道洞内防排水及衬砌隔热保温层施工技术.冰川冻土,2003,25(1):106~111
    [145] 江亦元,王星华.昆仑山隧道施工技术.中国铁道科学,2003,24(3):13~16
    [146] 任少强.青藏铁路风火山隧道的施工.铁道建筑,2003(8):32~33
    [147] 齐康平,胡种新.青藏铁路昆仑山隧道综合施工技术.现代隧道技, 2003,40(4):41~45
    [148] 张德华,王梦恕.世界第一高隧青藏铁路风火山隧道施工新技术.工程地质学报,2003,11(2):213~216
    [149] 任少强,王永顺.以施工科技创新攻克世界第一高隧——青藏铁路风火山隧道.中国铁路,2003(9):50~52
    [150] 李方政,杨林生,王圣公.拉格朗日元法在地铁联络通道施工中的应用.煤炭科学技术,2000,28(10):16~19
    [151] 乔卫国,李大勇,吴祥祖.地铁联络通道冻结监测分析.岩土力学,2003,Vol.24(No.4):2666~669
    [152] 周晓敏,苏立凡,贺长俊,等.北京地铁隧道冻结法施工.岩土工程学报,1999,21(3):319~322
    [153] 马玉峰,苏立凡,徐兵壮,等.地铁隧道联络通道和泵站的水平冻结施工.建井技术,2000,21(3):39—41
    [154] 郭晓江.冻结法在广州地铁二号线暗挖隧道中的应用.煤炭工程,2001(12):27—29
    [155] 汪崇鲜,楼根达,马玉峰.繁华市区含水地层水平冻结及暗挖法施工.冰川冻土,2000,22(2):278~281
    [156] 赵建军,韩文峰,徐学祖,等.人工冻结法施工的冻土壁温度场数学模型.天津城市建设学院学报,1999,5(1):30~34
    [157] 臧桂茂,谭杰.谈巨野煤田冻结法凿井技术问题.建井技术,2001,22(4):1~4
    [158] 周国庆.间歇冻结抑制人工冻土冻胀机理分析.中国矿业大学学报,1999,28(5):413~416
    [159] 张克俊.昆仑山隧道冻土围岩稳定性因素分析.中国铁路,2003(2):51~54
    [160] Osterkamp, T. E. FREEZING AND THAWING OF SOILS AND PERMAFROST CONTAINING UNFROZEN WATER OR BRINE. Water Resources Research, 1987, 23(12): 2279~2285
    [161] Reid, R. L. ;Tennant, J. S. ;Childs, K. W. MODELING OFA THERMOSYPHON TYPE PERMAFROST PROTECTION DEVICE. American Society of Mechanical Engineers (Paper), 1974, n 74-HT-46, 9p
    [162] Volynets, A. Z. ;Ershov, E. D. ;Komarov, I. A. , et al. SUBLIMATION OF ICE IN COARSELY DISPERSED ROCKS SUBJECT TO QUASIISOTHERMAL CONDITIONS. Journal of Engineering Physics (English Translation of Inzhenemo-Fizieheskii Zhurnal), 1976, 30(4): 415~419
    [163] Baker, G. C. ;Osterkamp, T. E. IMPLICATIONS OFSALT FINGERING PROCESSES FOR SALT MOVEMENT IN THAWED COARSE-GRAINED SUBSEA PERMAFROST. Cold Regions Science and Technology, 1988, 15(1):45~52
    [164] Sevon, Douglass W. ;Gunn, Robert D. ;Krantz, William B. , et al. RAYLEIGH CONVECTION IN PERMAFROST SOILS: THE ORIGINS OF POLYGONAL STONE NETS. Annual Meeting-American Institute of Chemical Engineers, 1985, 39G, 32p
    [165] 中华人民共和国交通部.JTGD70-2004.公路隧道设计规范.北京:人民交通出版社,2004
    [166] 中华人民共和国铁道部.TB10204-2002.铁路隧道设计规范.北京:中国铁道出版社,2002
    [167] 中华人民共和国建设部.GB50157—2003.地铁设计规范.北京:中国计划出版社,2003
    [168] 徐学祖,王家澄,张立新.冻土物理学.北京:科学出版社,2001.86~86
    [169] 关宝树.隧道工程设计要点集.北京:人民交通出版社,2003.16~30
    [170] 铁道部建设管理司.青藏铁路高原多年冻土区工程施工暂行规定:2003.3
    [171] 孙钧.城市地下工程活动的环境土工问题及施工变形预测与控制的智能方法.地质与勘探,2003,第39卷,增刊:1~11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700