水稻超高产栽培及调控措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是人类重要的粮食作物,世界上约50%的人口以稻米为主食。超高产水稻育种已经取得较大的进步,与之相匹配的水稻超高产栽培技术的研究越来越引起人们重视。本研究于2005-2009年在大田栽培条件下,通过采取不同的农艺措施,设计一系列的田间试验(秧苗素质试验、栽插密度试验、氮肥运筹试验、水肥互作试验、大面积高产示范试验),研究不同农艺措施对杂交水稻的生物学特性、养分吸收利用、水分利用效率、产量形成及稻米品质的影响,整理归纳超高产水稻的关键技术指标,构建不同产量水平结构的水稻群体,形成超高产栽培技术体系。主要研究结果如下:
     1、秧苗素质(单株带蘖数、秧龄)及栽插密度对水稻的生物学特性及产量的影响
     与单株带蘖数为2、3的秧苗相比,栽插单株带蘖数为4、5、6壮秧,可以显著增加水稻不同生育时期的干物质积累,提高水稻单位面积有效穗数和每穗总粒数、结实率,显著增加水稻的产量。移栽时秧苗秧龄越大(50天秧龄),水稻不同生育时期的叶面积指数越小,从而导致水稻生长后期积累的生物量显著降低和经济产量减少。大秧龄秧苗(秧龄大于50天)栽插时,增加栽插密度和每蔸基本苗数,可以显著增加水稻单位面积的穗数和经济产量。
     2、水肥互作对杂交水稻的产量、品质及水分利用效率的影响
     厢沟灌溉处理(W3)和干湿交替灌溉(W2)处理水稻的产量和单位面积有效穗数显著高于长期淹水灌溉(W1)。氮肥水平对水稻产量、有效穗、穗长、一次枝梗数、每穗总粒数、每穗实粒数、结实率的影响都达到显著或极显著水平,而对千粒重的影响不显著。水氮互作效应对水稻单位面积有效穗数产生极显著影响。
     不同灌溉模式对稻米的糙米率和胶稠度的影响达到显著水平。W3处理稻米的糙米率和胶稠度显著高于其它处理,值为76.25%和64.16 mm。在0-270 kg/hm2的范围内,稻米的糙米率、精米率、整精米率和蛋白质含量均随着氮肥水平的提高而显著增大,稻米的直链淀粉和胶稠度却与之相反。水分和氮肥水平互作效应对稻米的垩白粒率、蛋白质含量和胶稠度的影响达到显著水平。
     不同灌溉模式显著影响稻田灌溉水用量和水稻的水分利用效率。W2、W3处理稻田灌溉用水量显著低于W1处理,值分别为299.40、310.62、408.65 mm,而水分利用效率显著高于W1处理,值分别为1.56、1.60、1.21 kg/m3。氮肥处理水分利用效率也存在显著差异,其值介于1.06-1.96 kg/m3。施氮量(180 kg/hm2)处理水稻的水分利用效率显著高于其它处理,值为1.71 kg/m3。
     3、氮肥运筹对杂交水稻的生物学特性、产量、稻米品质及养分吸收利用的影响
     (1)氮肥运筹对杂交水稻的产量和品质的影响
     在0-330 kg/hm2施氮范围内,增施氮肥和采用基肥:分蘖肥:穗粒肥=30%:20%:50%的施氮比例,可以显著增加水稻孕穗期叶面积指数和齐穗期叶面积指数及高效叶面积率,增加水稻不同生育时期干物质积累总量以及花前干物质向籽粒的转移,提高花前干物质对籽粒产量的贡献率。水稻产量随着氮肥水平的提高先增加而后降低,在240 kg/hm2施氮水平下,采用基肥:分蘖肥:穗粒肥=30%:20%:50%的施氮比例,水稻单位面积有效穗数和每穗总粒数较多,产量较高,值分别为400.1×104穗/hm2、221.39粒/穗、10.31 t/hm2。
     在0-330 kg/hm2施氮范围内,提高氮肥水平可以显著增加稻米的糙米率、精米率、整精米率、蛋白质含量及垩白度。然而,却导致稻米的直链淀粉含量显著降低。采用基肥:分蘖肥:穗粒肥=30%:20%:50%的施氮比例,蛋白质含量显著提高,直链淀粉含量显著降低。稻米的糙米率与精米率、整精米率、蛋白质含量存在显著或极显著正相关关系,相关系数分别为0.6201、0.7213、0.5062。而稻米的蛋白质含量与直链淀粉含量存在显著的负相关关系,相关系数为-0.6003。
     (2)氮肥运筹对杂交水稻养分吸收积累和肥料氮素(15N)的影响
     在0-330 kg/hm2施氮范围内,提高氮肥水平可以显著增加水稻成熟期氮素积累总量(TNA)、磷素积累总量(TPA)和钾素积累总量(TKA),而且也显著增加了水稻对土壤氮和肥料氮的吸收及肥料氮(15N)在土壤中的残留数量。高氮处理(240kg/hm2)水稻吸收积累的氮素总量、土壤氮和肥料氮(15N)分别为176.15、150.09、110.25,显著高于中氮(150 kg/hm2)处理的100.13、65.91和49.97 kg/hm2,而且肥料氮(15N)在土壤中的残留数量也显著增加,值分别为32.69和24.92 kg/hm2。采用基肥:分蘖肥:穗粒肥=30%:20%:50%的施氮比例,可以显著增加水稻齐穗期和成熟期TNA,提高水稻的氮素吸收利用率和农学利用率,显著增加水稻吸收的肥料氮(15N),而且还可以显著提高肥料氮素(15N)的土壤残留率,降低氮素(15N)的损失率。
     (3)氮肥运筹对杂交水稻基施氮肥(15N)和追肥氮肥(15N)吸收利用的影响
     在0-330 kg/hm2施氮范围内,提高氮肥水平可以显著增加水稻吸收积累的基施氮肥(15N)和穗粒追肥(15N)。在高氮(330 kg/hm2)水平下,全部用作基肥施用的方法,水稻分蘖期、幼穗分化期和齐穗期吸收积累的基施氮肥(15N)显著高于其它处理,而采用基肥:分蘖肥:穗粒肥=30%:20%:50%的施氮比例,水稻吸收积累的穗粒追肥显著增多。水稻在分蘖盛期和成熟期吸收积累的基施追肥(15N)所占比值较少,分别为11.94%-26.12%和12.31%-27.82%,而幼穗分化期和齐穗期吸收积累的基施追肥(15N)所占比例较大,分别为30.36%-33.24%和27.78%-30.34%。
     (4)氮肥运筹对稻田水体氮素浓度的影响
     稻田田面水NH4+-N和TN的浓度与氮素水平存在显著的正相关关系,而渗漏液N03--N和TN的浓度和氮素水平也存在显著的正相关关系,相关系数均大于0.8105。采用基肥:分蘖肥:穗粒肥=30%:20%:50%的施氮比例,可以显著降低田面水NH4+-N浓度和渗漏液N03--N和TN的浓度。
     4、超高产水稻的主要群体特征
     与高产(产量约为9.0 t/hm2)水稻相比,超高产(产量≥12.0 t/hm2)水稻的主要生育特性可概括为以下几点:①产量构成方面:总有效穗数≥250×104穗/hm2,分蘖成穗率≥68.0%,结实率≥88.2%,千粒重≥29.0克。②叶面积指数(LAI)方面:分蘖盛期的LAI为3.0-3.5左右,幼穗分化期为6.5-7.2左右,齐穗期为8.5-8.9左右,灌浆期(齐穗后10天)为6.5-7.0左右。而且,齐穗期的高效叶面积比率(上3叶面积占有效叶面积的比率)为60.0-66.5%。③生物量积累方面(t/hm2):分蘖期为2.1-2.5,幼穗分化期为8.5-10.0,齐穗期为≥13.5,灌浆期≥15.0,成熟期为≥25.0。
Rice is the most important food crop, which is looked on as staple food by 50% of the population in the world. Breeding in rice have made great progress, while studies on super high yield cultivation are more and more paid attention. Therefore, there are some important meanings in improving nitrogen use efficiency and saving irrigation in rice by using suitable agronomic measures. Field experiments were conducted by taking different agronomic measures and designing a series of field experiments(such as the experiment on the qualities of rice seedling, transplanting density, nitrogen management, actions between water and nitrogen, super high yield in the large area) during 2005-2009. Rice population was constructed in different yield levels to study biology characteristics, nutrition absorption, water use efficiency, yields and grain qualities in rice. Main skill indexes are analyzed and plant systems are brought forward in super high yield cultivation of rice. Some main results are as follows,
     1. The influences of seedling quality and transplanting density on biology characteristics and yield in rice.
     Compared by rice seedling with 2,3 tillers per plant, transplanting rice seedlings with 4,5,6 tillers per plant could increase biomass at different growth stage, improving productive panicle per m2 and the number of spikelets per panicle and seed setting rate, raising the yield in rice. When the age of transplanted seedlings were older, LAI at the growth stage were fewer, which could induce significantly fewer biomass at the late stage and lower yield in rice. Therefore, the old-age-seedlings(age≥50 days) were transplanted, productive panicle per m2 and yield were noticeably raised by increasing transplanting density and the numbers of seedling per hill in rice.
     2. The influences of actions between water and nitrogen fertilizer on yield, grain qualities and water use efficiency in rice.
     There were significant differences in the yield and productive panicle per m2 under different water regimes. Rice yield and productive panicle per m2 under alternate wetting and drying irrigation (W2) and raised-bed irrigation (W3) were higher than that under traditional flooding (W1). Remarkable differences were also found in the yield, panicle number, panicle length, the first branch, total spikelets per panicle, solid grain spikelets per pernicle and seed setting rate among nitrogen treatments. However, there was no significant difference in 1000-grain-weight. Furthermore, obvious effects of interaction were discovered between water and nitrogen on productive panicle per m2.
     There were remarkable differences in BRR and GC (Gel consistency) among different water regimes. BRR and GC were higher in W3 than other treatments, which were 76.25% and 64.16 mm, respectively. There were higher trends in BRR and MRR and HMR and PC as the increase of more nitrogen applied in the 0-270 kg N/hm2. Opposite trends were found in AM and GC. There were significant effects of interaction between water and nitrogen on rice CP and PC and GC.
     There were significant differences in the volume of irrigation water and water use efficiency. The volume of irrigation water was less in W2 and W3 than W1 treatment, which were 299.40,310.62 and 408.65 mm, respectively. And there were opposite trends in water use efficiency, which was 1.56,1.60 and 1.21 kg/m3, respectively. Significant differences were found in water use efficiency among nitrogen treatments, which were in ranges of 1.06-1.96 kg/m3. Water use efficiency was higher in the treatment of 180 kg N/hm2, which was 1.71kg/m3.
     3. The influences of nitrogen management on biology characteristics, yield, quality and nutrition use efficiency in rice.
     (1) The influences of nitrogen managements on yield and quality in rice.
     More nitrogen applied in the range of 0-330 kg N/hm2 could remarkably increase leaf area index (LAI) at panicle initiation stage (PI) and LAI and leaf areas of high efficiency ratio to population area at heading stage (H) in rice at a nitrogen ratio for basal fertilizer (BF):first topdressing fertilizer (FT):second topdressing fertilizer (ST)=30%:20%:50%. It was increased in total biomass at the growth stage and dry matter translocation before heading, then, contribution of pre-anthesis assimilates to seed was also raised. Rice yield was increased firstly and then dropped as the increase of nitrogen applied in the level of 0-330 kg/hm2. There was the maximum values in yield, productive panicle per m2, total number of spikelet per panicle and 1000-grain-weight, which were 10.31 t/hm2,400.1×104 panicle per hm2,221.39 spikelets per panicle and 29.78 g, respectively, by using BF:FF:SF=30%:20%:50% at 240 kg N/hm2.
     Increase of nitrogen application in the range of 0-330 kg N/hm2 could improve brown rice rate (BRR), milled rice rate (MRR), head milled rice rate (HMR), protein content (PC) and chalkyness (CN) in rice. However, there was opposite trend in amylase (AM). Compared by using BF:FT:ST=40%:30%:30%, PC was increased and amylase (AM) was decreased remarkably by using BF:FT:ST=30%:20%:50%. There were also distinctly positive correlations between BRR and MRR and HMR and PC, which were 0.6201,0.7213,0.5062, respectively. However, Remarkably negative correlation was found between PC and AM, which was-0.6003.
     (2) The influences of nitrogen managements on the absorption of nutrition and nitrogen(15N) derived from fertilizer (Ndff) by using label isotope urea(15N) in rice.
     Nitrogen applied could increase remarkably total nitrogen accumulation (TNA), total phosphorus accumulation (TPA) and total potassium accumulation (TKA) at maturity stage (M) in 0-240 kg N/hm2. Furthermore, the absorption of Ndff and nitrogen derived from soil (Ndfs) were also raised, too. There were TNA, Ndfs and Ndff in the treatment of 240 kg N/hm2 as for 176.15,150.09,110.25 kg/hm2, more than those of 100.13, 65.91 and 49.97, in 150 kg N/hm2. Moreover, the residual amount of Ndff in the soil was remarkably increased, which was 32.69 and 24.92 kg/hm2. Compared by using BF: FT:ST=40%:30%:30% treatment, TNA at H and M and nitrogen recovery efficiency and agronomic efficiency were obviously increased, as well as residual rate of Ndff in the soil by using BF:FT:ST=30%:20%:50% treatment. Unaccounted rate of Ndff was also decreased, too.
     (3) The influences of nitrogen management on the absorption of basal fertilizer (15N) and topdressing fertilizer (15N) in rice.
     More fertilizer applied in 0-330 kg N/hm2 could increase remarkably basal fertilizer (15N) and topdressing fertilizer (15N) at the growth stage in rice. The amounts of basal fertilizer (15N) absorbed at mid-tillering stage (Mt) and PI and H were much higher in the treatment of 330 kg N/hm2 by using all fertilizer applied as basal fertilizer application than other treatments. There was more topdressing fertilizer (15N) absorbed by using BF:FT:ST=30%:20%:50% treatment than BF:FT:ST=40:30%:30%. The ratios of basal fertilizer (15N) absorbed at Mt and M were in ranges of 11.94%-26.12% and 12.31%-27.82%, respectively. However, the ratios of basal fertilizer (15N) absorbed at PI and H were in ranges of 30.36%-33.24% and 27.78%-30.34%, respectively.
     (4) The influence of nitrogen managements on the nitrogen concentration in the surface water and leachate from rice field.
     There were obviously positive correlations between nitrogen concentrations of NH4+-N and total nitrogen (TN) in the surface water, moreover, positive correlations were found between nitrogen concentrations of NO3--N and TN in the leachate. All correlation coefficients were more than 0.8105.Compared by using BF:FT:ST=40%:30%:30% treatment, the concentration of NH4+-N in the surface water and NO3--N and TN in the leachate were remarkably decreased by using BF:FT:ST=30%:20%:50% treatment.
     4. Main population indexes of super high-yield rice.
     There were some biology characteristics in super high yield rice (yield≥12.0 t/hm2) than high yield rice (yield>9.0 t/hm2). The first aspect:yield and its components. As productive panicles≥250×104 per hm2, productive tiller percentage>68.0%, seed setting rate≥88.2%,1000-grain-weight>29.0 g. The second aspect:LAI at different growth stage. LAI at Mt, PI, H and GF were 30.-3.5,6.5-7.2,8.5-8.9 and 6.5-7.0, respectively. Ratio of leaf area of high efficiency at H was about 60.0%-66.5%. The third aspect:total biomass. Total biomass at Mt, PI, H, GF and M was 21.-2.5,8.5-10.0,≥13.5,≥15.0 and≥25.0 (t/hm2), respectively.
引文
1. 敖和军,王淑红,邹应斌.超级杂交稻干物质生产特点与产量稳定性研究.中国农业科学,2008,41(7):1927-1936
    2. 曹兵,徐秋明,任军,边秀芝.延迟释放型包衣尿素对水稻生长和氮素吸收的影响.植物营养与肥料学报,2005,11(3):352-356
    3. 陈温福,徐正进,张龙步.水稻超高产育种研究进展与前景.中国工程科学,2002,4(1):31-35
    4. 陈新红,刘凯,徐国伟,王志琴,杨建昌.氮素与土壤水分对水稻养分吸收和稻米品质的影响.西北农林科技大学学报(自然科学版),2004,32(3):15-24
    5. 陈新红,刘凯,徐国伟,王志琴,杨建昌.结实期氮素营养和土壤水分对水稻光合特性、产量及品质的影响.上海交通人学学报(农业科学版),2004,22(1):48-53
    6. 陈新红,徐国伟,王志琴,杨建昌.结实期水分与氮素对水稻氮素利用与养分吸收的影响.干旱地区研究,2004,22(2):35-40
    7. 陈宗良,罗喜娜,杨特武,孙文强,傅立业.不同施肥水平对水稻生育进程中功能叶光合性能及水势变化的影响.华中农业大学学报,2007,26(6):759-765
    8. 程方民,钟连进.不同气候生态条件下稻米品质性状的变异及主要影响因子分析.中国水稻科学,2001,15(3):187-191
    9. 程建平,曹凑贵,蔡明历,汪金平,原保忠,王建漳,郑传举.不同灌溉方式对水稻生物学特性与水分利用效率的影响.应用生态学报,2006,17(10):1859-1865
    10.程建平,曹凑贵,蔡明历,原保忠,王建漳,郑传举.不同灌溉方式对水稻产量和水分生产率的影响.农业工程学报,2006,22(12):28-33
    11.池再香,杨桂兰,田楠,杨黎,杨锦,金玉荣.贵州山区超级稻不同秧龄移栽的影响效果分析.中国农业气象,2007,28(3):300-302
    12.崔玉亭,程序,韩纯儒,李荣刚.苏南太湖流域水稻经济生态适宜施氮量研究.生态学报,2000,20(4):659-662
    13.崔远来,李远华,吕国安,沙宗尧.不同水肥条件下水稻氮素运移与转化规律研究.水科学进展,2004,15(3):280-285
    14.樊红柱,曾祥忠,吕世华.水稻不同移栽密度的氮肥效应及氮素去向.核农学报,2009,23(4):681-685
    15.冯惟珠,苏祖芳.水稻灌浆期源质量与产量关系及氮素调控的研究.中国水稻科学,2000,14(1):24-30
    16.冯跃,王伯伦,王慧新,王一.不同施肥水平和种植密度对水稻根部性状的影响.沈阳农业大学学报,2007,38(4):467-471
    17.符建荣.控释氮肥对水稻的增产效应及提高肥料利用率的研究.植物营养与肥料学报,2001, 7(2):145-152
    18.付久才.不同播期对水稻秧苗素质影响的研究.黑龙江农业科学,2007,(3):32-34
    19.傅庆林,俞劲炎,陈营旭.氮素营养对对水稻干物质和氮分配的影响及氮肥需求量.浙江大学学报(农业与生命科学版),2000,26(4):399-403.
    20.高军,黄义德,陈金节,王合勤,李胜群,陈景道.不同播种密度和秧龄对杂交中籼稻新两优6号群体数量及产量的影响.中国农学通报,2007,23(9):231-236
    21.韩晓增,王守宇,宋春雨,乔云发.黑土区水田化肥氮去向的研究.应用生态学报,2003,14(11):1859-1862
    22.何文洪,陈惠哲,朱德峰.不同播种量对水稻机插秧苗素质及产量的影响.中国稻米,2008,3:60-62
    23.胡泓,王光火.施钾条件下杂交水稻氮磷养分吸收利用特点.土壤通报,2003,34(3):202-204
    24.黄才洪,孙锡发,王昌全,冯文强,秦鱼生,涂仕.尿素不同分施比例对稻田表层水中氮素动态变化特征的研究.西南农业学报,2008,21(4):1019-1023
    25.黄见良,邹应斌,彭少兵,Buresh R J.水稻对氮素的吸收、分配及其在组织中的挥发损失.植物营养与肥料学报,2004,10(6):579-58
    26.黄明蔚,刘敏,陆敏,等.稻麦轮作农田系统中氮素渗漏流失的研究.环境科学学报,2007,27(4):629-636
    27.黄耀祥.水稻丛化育种.广东农业科学,1983,1:1-6
    28.纪雄辉,郑圣先,鲁艳红,廖育林.施用尿素和控释氮肥的双季稻田表层水氮素动态及其径流损失规律.中国农业科学,2006,39(12):2521-2530
    29.江立庚,曹卫星,甘秀芹,韦善清,徐建云,董登峰,陈念平,陆福勇,秦华东.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响.中国农业科学,2004,37(4):490-496
    30.角田重三郎(黄湛节译).水稻生理生态译丛(1)北京:中国农业出版社,1992,108-109
    31.金洁,杨京平.高肥力稻田分次施氮对氮素淋失的影响.水土保持学报,2004,18(3):98-101
    32.金洁,杨京平,施洪鑫,陈俊,郑洪福.水稻田面水中氮磷素的动态特征研究.农业环境科学学报,2005,24:357-361
    33.金军,徐大勇,蔡一霞,胡署云,葛敏,朱庆森.施氮量对水稻主要米质性状及RVA谱特征参数的影响.作物学报,2004,30(2):154-158
    34.金正勋,秋太权,孙艳丽.氮素对稻米垩白及蒸煮食味品质特性的影响.植物营养与肥料学报,2001,7(1):31-35
    35.劳家柽,主编.土壤农化分析方法.北京:中国农业科技出版社,1999
    36.李成芳,曹凑贵,汪金平,潘圣刚,叶成,叶威,刘铠,曾金凤.稻鸭、稻鱼共作生态系统中稻田田面水的N素动态变化及淋溶损失.环境科学学报,2008,28(10):2125-2132
    37.李方敏,樊小林,陈文东.控释肥对水稻产量和氮肥利用效率的影响.植物营养与肥料学 报,2005,11(4):494-500
    38.李刚华,李德安,宁加朝,黄庆宇,顾伟,杨从党,王绍华,凌启鸿,丁艳锋.秧苗密度和施氮量对超高产杂交籼稻秧苗素质的影响.中国水稻科学,2008,22(6):610-616
    39.李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响.植物营养与肥料学报,2005,11(1):51-56
    40.李木英,石庆华,王涛,方慧铃,潘晓华,谭雪明.种植密度对双季超级稻群体发育和产量的影响.杂交水稻,2009,24(2):72-77
    41.李义珍,王朝祥.水稻高产工程研究(晚稻部分).福建农业科技,1979,4,11-17
    42.李义珍,王朝祥.水稻高产工程研究(早稻部分).福建农业科技,1979,1,1-9
    43.李义珍,杨高群,彭桂峰.两系杂交稻培矮64s/E32的超高产特性与栽培研究,超高产的植株性状.杂交水稻,2000,15(1):28-30
    44.李义珍,杨高群,彭桂峰.水稻超高产库源结构的研究.全国第八届水稻高产理论与实践学术研讨会论文,厦门,2001
    45.李云,张宁,邢文英.冬小麦磷肥利用率的主要影响因素的研究.植物营养与肥料学报,2002,8(4):424-427
    46.梁尹明,林贤青,孙永飞,朱德峰,石国安.水稻强化栽培下协优9308的产量及穗粒结构研究.中国农学通报,2004,20(3):84-86
    47.林贤青,周伟军,朱德峰,张玉屏,杨国花.强化栽培下水稻穗分化期叶片光合速率与水分利用率的研究.中国水稻科学,2005,19(2):132-136
    48.林贤青,周伟军,朱德峰,张玉屏.稻田水分管理方式对水稻光合速率和水分利用效率的影响.中国水稻科学,2004,18(4):333-338
    49.凌启鸿,过益先,费槐林.水稻栽培理论与技术兼作物栽培学的发展述评(上).中国稻米,1999,1,3-8
    50.凌启鸿,苏祖芳,张海泉.水稻成穗率与群体质量的关系及其影响因素的研究.作物学报,1995,21(4):463-469
    51.凌启鸿,张洪程,蔡建中.水稻高产群体质量及其优化控制探讨.中国农业科学,1993,26(6), 1-11
    52.凌启鸿,主编.作物群体质量.上海:上海科技出版社,2000
    53.凌启鸿.水稻精确定量栽培理论与技术.北京:中国农业出版社,2007:76-91
    54.刘德林,聂军,肖剑.N标记水稻控释氮肥对提高氮素利用效率的研究.激光生物学报,2002,11(2):87-92
    55.刘建,魏亚凤,徐少安.蘖穗肥氮素配比对水稻产量、品质及氮肥利用率的影响.华中农业大学学报,2006,25(3):223-227
    56.刘建丰,袁隆平,邓启云,陈立云,蔡义东.超高产杂交稻的光合特性研究.中国农业科 学2005,38(2):258-264
    57.刘立军,王志琴,桑大志,杨建昌.氮肥运筹对水稻产量及稻米品质的影响.扬州大学学报(农业与自然科学版),2002,23(3):46-50
    58.刘立军,桑大志,刘翠莲,王志勤,杨建昌,朱庆森.实时实地氮肥管理对水稻产量和氮素利用率的影响.中国农业科学,2003,36(12):1456-1461
    59.刘立军.水稻氮肥利用效率及其调控途径.扬州大学[博士毕业论文].扬州:扬州大学图书馆,2005
    60.刘运武.磷对杂交水稻生长发育及其生理效应影响的研究.土壤学报,1996,33(3):308-316
    61.柳武革,刘振荣,李曙光.不同栽培环境条件对优质杂交稻培杂双七稻米品质的影响研究.杂交水稻,2004,19(5):56-59
    62.卢景波.中国水稻产业-供需、流通与未来政策导向.中国稻米,2002,6:11-13
    63.陆景陵.植物营养学.北京:北京农业大学出版社,1994
    64.陆敏,刘敏,黄明蔚,等.大田条件下稻麦轮作土壤氮素流失研究.农业环境科学学报,2006,25(5):1234-1239
    65.鲁如坤,主编.水和废水分析方法.北京:中国环境科学出版社,2002
    66.罗兰芳,郑圣先,廖育林,等.控释氮肥对杂交水稻糙米蛋白质品质和氮代谢关键酶活性的影响.中国水稻科学,2007,21(4):403-410
    67.马洪文,陶立刚,张振海,殷延勃.水稻碾米品质统计及气象因子对其影响分析.种子,2004,23(8):59-61
    68.马均,陶诗顺.杂交中稻超多蘖壮秧超稀高产栽培技术的研究.中国农业科学,2002,35(1):42-48
    69.潘圣刚,曹凑贵,蔡明历,汪金平,王若涵,原保忠,翟晶.不同灌溉模式下氮肥水平对水稻氮素利用效率、产量及其品质的影响.植物营养与肥料学报,2009,15(2):283-289
    70.潘圣刚,曹凑贵,蔡明历,谢运河.栽插密度及方式对杂交水稻“红莲优6号”产量和品质的影响.江西农业大学学报,2006,28(6):845-849
    71.彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Roland Buresh, Christian Witt.提高中国稻田氮肥利用率的研究策略,中国农业科学,2002,35(9):1095-1103
    72.钱银飞,张洪程,郭振华.壮秧剂不同用量对机插水稻秧苗素质及产量的影响.江苏农业科学,2008,4:82-87
    73.沈阿林,刘春增,张付申,陈永安.不同水分管理对水稻生长与氮素利用的影响.植物营养与肥料学报,1997,3(2):111-116
    74.沈建辉,邵文娟,张祖建.苗床落谷密度、施肥量和秧龄对机插稻苗质及大田产量的影响.作物学报,2006,32(3):402-409
    75.沈建辉,邵文娟,张祖建.水稻机插中苗双膜育秧落谷密度对苗质和产量影响的研究.作 物学报,2004,30(9):906-912
    76.石庆华,李木英,涂起红.杂交水稻根系生长优势与吸氮特性关系的初步研究.江西农业大学学报,1996,21(2):145-148
    77.石庆华.杂交水稻与大穗型品种根系生长特性影响产量形成的研究初报.江西农业大学学报,1984(2):71-80
    78.石玉,于振文,李延奇,王雪.施氮量和底追肥比例对冬小麦产量及肥料氮去向的影响.中国农业科学,2007,40(1):54-62
    79.宋勇生,范晓晖,林德喜,杨林章,周健民.太湖地区稻田氨挥发及影响因素的研究.土壤学报,2004,41:265-269
    80.苏祖芳,王辉斌,杜永林.水稻生育中期群体质量与产量形成关系的研究.中国农业科学,1998,31(5):19-25
    81.苏祖芳,张娟,王辉斌.水稻群体茎孽动态与成穗率和产量形成关系的研究.江苏农学院学报,1997,18(1):36-40
    82.苏祖芳,周培南,许乃霞,张亚洁.密肥条件对水稻氮素吸收和产量形成的影响.中国水稻科学,2001,15(2):281-286
    83.唐启源,邹应斌,米湘成,汪汉林,周美兰.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用.杂交水稻,2003,18(1):44-48
    84.田玉华,贺发云,尹斌,朱兆良.不同氮磷配合下稻田田面水的氮磷动态变化研究.土壤,2006,38(6):727-733
    85.田智慧,潘晓华.氮肥运筹及密度对超高产水稻中优752的产量及产量构成因素的影响.江西农业大学学报,2007,29(6):894-898
    86.田智慧,潘晓华.氮肥运筹及密度对中优752干物质生产及运转的影响.江西农业学报,2008,20(7):1-6
    87.汪德水.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,3-50
    88.汪华,杨京平,金洁,孙军华.不同氮素用量对高肥力稻田水稻—土壤—水体氮素变化及环境影响分析.水土保持学报,2006,20(1):50-54
    89.汪仁全,马均,童平,张荣萍,李艳,傅泰露,吴合洲,刘志彬.三角形强化栽培技术对水稻光合生理特性及产量形成的影响.杂交水稻,2006,21(6):60-65
    90.王德建,林静慧,孙瑞娟.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响.土壤学报,2003,40:426-432
    91.王家先,王代林,陈刘华.水稻秧龄和播种期对产量影响的试验研究.灌溉排水,2000,19(2):29-31
    92.王强,杨京平,陈俊,施洪鑫,许春峰.非完全淹水条件下稻田表面水体中三氮的动态变化特征研究.应用生态学报,2004,15(7):1182-1186
    93.王强盛,丁艳锋,严定春,赵长华,揭水通,黄丕生.不同施氮量对水稻旱育秧苗形态特征和生理特性的影响.南京农业大学学报,2004,27(3):11-14
    94.王绍华,曹卫星,丁艳锋,田永超,姜东.水氮互作对水稻氮吸收与利用的影响.中国农业科学,2004,37(4):497-501
    95.王维金,鲍隆清,徐竹生.杂交中稻“稀、控、重”栽培模式的特点与增产机理.湖北农业科学,1992,03:42-48
    96.王小治,朱建国,宝川靖和,封克.施用尿素稻田表层水氮素的动态变化及模式表征.农业环境科学学报,2004,23(5):852-856
    97.吴承和,胡华,曾长荣,廖普卫,苏利荣.两优培九氮肥基蘖肥与穗肥施用比例研究.作物研究,2007,4:431-434
    98.吴春赞,叶定池,林华,林辉,赖联赛.不同叶龄移栽对水稻产量和品质的影响.中国农学通报,2005,21(3):172-173
    99.吴文革,张洪程,吴桂成,翟超群,钱银飞,陈烨,徐军,戴其根,许珂.超级稻群体籽粒库容特征的初步研究.中国农业科学,2007,40(2):250-257
    100.吴文革,张四海,赵决建,吴桂成,李泽福,夏加发.氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响.植物营养与肥料学报,2007,13(5):757-764
    101.伍玉春,吴薇,牟锦武,陈惠查,游俊梅,阮仁超.早熟杂交水稻黔优107不同栽插方式和密度试验.贵州农业科学,2008,36(3):37-38
    102.熊远福,邹应斌,文祝友,江巨鳌,熊海蓉,唐启源.水稻种衣剂对秧苗生长、酶活性及内源激素的影响.中国农业科学,2004,37(11):1611-1615
    103.徐春梅,王丹英,邵国胜,章秀福.施氮量和栽插密度对超高产水稻中早22产量和品质的影响.中国水稻科学,2008,22(5):507-512
    104.徐大勇,杜永,方兆伟,潘启民,杨建昌,朱庆森.江淮稻区不同穗型粳稻品种主要农艺和品质特性的比较分析.作物学报,2006,32(3):379-384
    105.徐凤莉,李福军,刘恒吉.水稻优化栽插方式及其农田小气候效应研究初报.辽宁气象,1994,4:27-30
    106.徐国伟,王朋,唐成,王志勤,刘立军,杨建昌.旱种方式对水稻产量与品质的影响.作物学报,2006,132(11):112-117
    107.徐正进,陈温福,韩勇,邵国军,张文忠,马殿荣.辽宁水稻穗型分类及其与产量和品质的关系.作物学报,2007,33(9):1411-1418
    108.徐正进.日本水稻育种的现状与展望.水稻文摘,1990,9:5
    109.许仁良,戴其根,王秀芹,黄银忠,吕修涛.氮肥施用量、施用时期及运筹对水稻氮素利用率影响研究.江苏农业科学,2005,2:19-22
    110.许晓明,陆巍,张荣铣,陈国祥.超高产水稻协优9308的高效光合功能.南京师大学报(自 然科学版),2004,27(1):96-99
    111.闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响.土壤学报,2005,42(3):440-446
    112.晏娟,尹斌,张绍林,沈其荣,朱兆良.不同施氮量对水稻氮素吸收与分配的影响.植物营养与肥料学报,2008,14(5):835-839
    113.杨海生,张洪程,杨连群.依叶龄运筹氮肥对优质水稻产量与品质的影响.中国农业大学学报,2002,7(3):19-26
    114.杨建昌,陈忠辉,杜永.水稻超高产群体特征及其栽培技术.中国农业科技导报,2004,6(4):37-41
    115.杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究.中国农业科学,1996,29(4):58-66
    116.杨建昌,袁莉民,唐成,王志勤,刘立军,朱庆森.结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响.作物学报,2005,31(8):1052-1057
    117.杨沫.不同秧龄和密度条件下水稻生长特性及产量结构研究.长春:吉林农业大学出版社,2006
    118.杨守仁.水稻理想株型育种的理论和方法初论.中国农业科学,1984,1:6-13
    119.杨文钰和屠乃美,主编.作物栽培学各论,面向21世纪课程教材:中国农业出版社,2003
    120.杨泽敏,王维金,蔡明历.氮肥施用期及施用量对稻米品质的影响.华中农业大学学报,2002,21(5):429-434
    121.尤小涛,荆奇,姜东,戴廷波,周冬琴,曹卫星.节水灌溉条件下氮肥对粳稻稻米产量和品质及氮素利用的影响.中国水稻科学,2006,20(2):199-204
    122.余璐.不同栽培方式及密度和施肥条件对水稻产量的影响.贵州农业科学 2005,33(4):82-83
    123.袁继超,刘丛军,俄胜哲,杨世民,朱庆森,杨建昌.施氮量和穗粒肥比例对稻米营养品质及中微量元素含量的影响.植物营养与肥料学报,2006,12(2):183-187
    124.袁隆平,马国辉.超级杂交稻亩产800kg关键技术.中国三峡出版社,2006,11
    125.袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-6
    126.袁隆平.杂交水稻超高产育种.杂交水稻,2000,15(2):31-33
    127.张传胜,龙银成,周娟.不同产量类型釉稻品种氮素吸收利用特征的研究.扬州大学学报,2004,25(4):17-22
    128.张福锁,马文奇.肥料投入水平与养分资源高效利用的关系.土壤与环境,2000,9(2):154-157
    129.张桂莲,杜娟,刘国华,陈立云.不同育秧方式对陆两优996秧苗素质及产量性状的影响.湖南农业大学学报(自然科学版),2008,34(2):122-126
    130.张洪程,王秀芹,戴其根,霍中洋,许珂.施氮量对杂交稻两优培九产量、品质及吸氮特性的影响.中国农业科学,2003,36(7):800-806
    131.张玲,谢崇华,李伟,杨国涛.氮钾对杂交水稻B优827籽粒淀粉含量及淀粉合成酶活性的影响.中国水稻科学,2008,22(5):551-554
    132.张庆利,张民,田维彬.包膜控释和常用氮肥氮素淋失特征及其对土水质量的影响.土壤与环境,2001,10(2):98-103
    133.张圣喜,贺再新,李涛,陈湘国,肖宪龙,易稳凯.不同播种量与秧龄对中优281产量性状的影响.湖南农业科学,2009, (9):17-19
    134.张卫星,朱德峰,林贤青,徐一成,林兴军,陈惠哲,张玉屏.不同播量及育秧基质对机插水稻秧苗素质的影响.扬州大学学报(农业与生命科学版),2007,28(1):80-84
    135.张耀鸿,张亚丽,黄启为,徐阳春,沈其荣.不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较.植物营养与肥料学报,2006,12(5):616-621
    136.张瑜芳,张蔚榛,沈荣开.排水农田氮素运移、转化及流失规律的研究.水动力学研究及进展,1996,11(3):251-260
    137.张祖建,王君,郎有忠.机插稻超秧龄秧苗的生长特点研究.作物学报,2008,34(2):297-304
    138.郑克武,邹江石,吕川根.氮肥和栽插密度对杂交稻“两优培九”产量及氮素吸收利用的影响.作物学报,2006,32(6):885-893
    139.郑圣先,刘德林,聂军,戴平安,肖剑.控释氮肥在淹水稻田土壤上的去向及利用率.植物营养与肥料学报,2004,10(2):137-142
    140.郑小东,金再欣,刘小丽,王灵华.杂交水稻中浙优1号的秧龄适应性试验.浙江农业科学,2009,2:332-333
    141.钟旭华,黄农荣,郑海波,彭少兵,Roland J Buresh.水稻“三控”施肥技术规程.广东农业科学,2007,5:13-17
    142.周开达,马玉清,刘太清.杂交水稻亚种间重穗型组合选育-杂交水稻高产育种的理论与实践.四川农业大学学报,1995,13(4):403-407
    143.周明耀,赵瑞龙,顾玉芬,张凤翔,徐华平.水肥耦合对水稻地上部分生长与生理性状的影响.农业工程学报,2006,22(8):38-43
    144.周培南,冯惟珠,许乃霞,张亚洁,苏祖芳.施氮量和移栽密度对水稻产量及稻米品质的影响.江苏农业研究,2001,22(1):27-31
    145.周瑞庆,陈开铁,李合松,邹应斌.应用15N示踪技术研究水稻对氮素的吸收利用.湖南农学院学报,1991,17(4):665-669
    146.周瑞庆,萧光玉,汪大明.施肥量对水稻产量及产量构成因素的影响.作物研究,1991,6 (增刊):21-26
    147.朱德峰,林贤青,曹卫星.水稻深层根系对生长和产量的影响.中国农业科学,2001,34(4):429-432
    148.朱德峰,林贤青.超高产水稻品种的根系分布特点.南京农业大学学报,2000,23(4):5-8
    149.朱德峰.超级稻栽培技术.北京:金盾出版社,2006,pp 16-17
    150.邹应斌,敖和军,王淑红.超级稻“三定”栽培法研究Ⅰ概念与理论依据.中国农学通报,2006,22(5):158-162
    151.邹应斌,敖和军,王淑红.超级稻“三定”栽培法研究Ⅰ概念与理论依据.中国农学通报,2006,22(5):158-162
    152.邹应斌,唐启源,汪汉林.超级杂交水稻优化栽培技术研究.杂交水稻,2003,18(4):24-26
    153.邹应斌,周上游,唐起源.中国超级杂交水稻超高产栽培研究的现状与展望.中国农业科技导报,2003,5(1):31-35
    154.邹应斌.双季稻定产、定苗、定氮栽培技术.中国稻米,2008,5:5-8
    155. Andrew Borrell, Alan Garside, Shu Fukai. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Research,1997,52:231-248
    156. Atlin GN, Lafitte HR, Tao D, Laza M, Amante M, Courtois B. Developing rice cultivars for high-fertility upland systems in the Asian tropics. Field Crops Research,2006,97,43-52.
    157. Azam F, Lodhi A, Farooq S. Response of flooded rice (Oryza sativa L.) to nitrogen application at two root-zone temperature regimes in a pot experiment. Biol Fertil Soils,2003,38:21-25
    158. Belder P, Bouman BAM, Cabangon R. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management,2004,65:193-210
    159. Belder, Bouman BAM, Spiertz JHJ. Crop performance, nitrogen and water use in flooded and aerobic rice. Plant and Soil,2005,273:167-182
    160. Borrell AK, Garside AL, Fukai S, Reid DJ. Season, nitrogen rate and plant type affect nitrogen uptake and nitrogen use efficiency in rice. Aust J of Agric Research,1998,49:829-843
    161. Bouman BAM, Ptuong T. Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management,2001,49:11-30
    162. Cai GX, Chen DL, Ding H. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutrient Cycling in Agroecosystems,2002,63:187-195
    163. Cassman KG, Gines GC, Dizon MA. Nitrogen-use efficiency in tropical low land rice systems: contributions from in digenous and applied nitrogen. Field Crops Research,1996,47:1-121
    164. Cassman KG, Pingali PL. Extrapolating trends from long-term experiments to farmers'fields:the case of irrigated rice systems in Asia. In:Barnett V ed., Agricultural Sustainability in Economic, Environmental and Statistical Terms.1995,63-68. John Wiley and Sons, Ltd, London, UK, Novoa R, Loomis R S. Nitrogen and plant production. Plant and Soil,1981,58:177-204
    165. Choudhury BU, Bouman BAM, Singh AK. Yield and water productivity of rice wheat on raised beds at New Delhi, India. Field Crops Research,2007,100:229-239
    166. Dang TH, Cai GX, Guo SL. Effect of nitrogen management on yield and water use efficiency of rainfed wheat and maize in northwest China. Pedosphere,2006,16(4):495-504
    167. Dingkuhn M, Penning de Vries FWT, De Datta SK. Concepts for a new plant type for direct seeded flooded tropical rice. Direct seeded flooded rice in the tropics. Int Rice Res Inst, Los Banos, Philippines,1991,17-38
    168. Dordas Christos. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations. European Journal Agronomy,2009,30:129-139
    169. FAO. Statistical databases. Food and Agriculture Organization(FAO) of the United Nations,2001
    170. Freney JR. Strategies to reduce gaseous emissions of nitrogen from irrigated agriculture. Nutrient Cycling in Agroecosystems,1997,48:155-160
    171. Gan YT, Lafond GP, May WE. Grain yield and water use:relative performance of winter vs. spring cereals in east-central Saskat chewan. Canadian Journa of Plant Science,2000,80: 533-541
    172. Hobbs P, Gupta RK. Rice-wheat cropping systems in the Indo-Gangetic Plains:issues of water productivity in relation to new resource-conserving technologies. In:Kijne, J.W., Barker, R., Molden,D. (Eds.), Water Productivity in Agriculture:Limits and Opportunities for Improvement. CABI Publishing, Wallingford, UK,2003, pp:239-253
    173. Haefele SM, Naklang K, Harnpichitvitaya D, Jearakongman S, Skulkhu E, Romyen P, Phasopa S, Tabtim S, Suriya-arunroj D, Khunthasuvon S, Kraisorakul D, Youngsuk P, Amarante ST, Wade LJ. Factors affecting rice yield and fertilizer response in rainfed lowlands of northeast Thailand. Field Crops Research,2006,98:39-51
    174. Horie H, Shiraiwa T, Homma K. Can yields of lowland rice resume the increases that they showed in the 1980s? Plant Prod Sci,2005,8:257-272
    175. Howell TA. Enhancing water use efficiency in irrigated agriculture. Agronomy Journal,2001,93: 281-289
    176. Hu RF, Cao JM, Huang JK. Farmer participatory testing of standard and modified site-specific nitrogen management for irrigated rice in China. Agric Syst,2007,94:331-340
    177. Huang JL, He F, Cui KH. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Research,2008,105:70-80
    178. Inthapanya P, Sipaseuth, Sihavong P, Sihathep V, Chanphengsay M, Fukai S, Basnayake J. Genotypic performance under fertilised and non-fertilised conditions in rainfed lowland rice. Field Crops Research,2000a,65:1-14
    179. Ji Xionghui, Zheng Shengxian, Lu Yanhong, Liao Yulin. Study of dynamics of floodwater nitrogen and regulation of its runoff loss in paddy field-based two-cropping rice with urea and controlled release nitrogen fertilizer application. Agricultural Sciences in China,2007,6(2): 189-19
    180. Jiang LG, Dong DF, Gan XQ, Wei SQ. Photosynthetic efficiency and nitrogen distribution under different nitrogen management and relationship with physiological N-use efficiency in three rice genotypes. Plant and Soil,2005,271:321-328
    181. Jiang Ligeng, Dai Tingbo, Jiang Dong, Cao Weixing, Gan Xiuqin, Wei Shanqing. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Research,2004,88,239-250
    182. Kosala Ranathunge, Ernst Steudle, Renee Lafitte. Control of water uptake by rice(Oryza sativa L.):role of the outer part of the root. Planta,2003,217(2):193-205
    183. Kukal SS, Humphreys E, Yadvinder Singh, Timsina J, Thaman S. Performance of raised beds in rice-wheat systems of northwestern India. In:Roth C, Fischer, A.R., Meisner, C. (Eds.), Evaluation and Performance of Permanent Raised Bed Cropping Systems in Asia, Australia and Mexico.Proceedings of an International Workshop. Griffith, NSW, March 1-3(ACIAR Proceedings, vol.121. ACIAR, Canberra, Australia),2005, pp.26-40
    184. Kumar R, Sarawgi AK, Ramos C. Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Research,2006,96:455-465
    185. LARS Bergstrom and NILS Brink. Effects of differentiated applications of fertilizer N on leaching losses and distribution of inorganic N in the soil. Plant and Soil,1996,93,333-345
    186. Li H, Liang XQ, Chen YX, Tian GM, Zhang ZJ. Ammonia volatilization from urea in rice fields with zero-drainage water management. Agricultural Water Management,2008,95:887-894
    187. Li H, Liang XQ, Chen YX, Tian GM, Zhang ZJ. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system. Journal of Environmental Sciences,2008,20:149-155
    188. Lin Xianqing, Weijun Zhou, Defeng Zhu, Huizhe Che. Nitrogen accumulation, remobilization and partitioning in rice (Oryza sativa L.) under an improved irrigation practice. Field Crops Research,2006,96:448-454
    189. Linquist B, and Sengxua P. Efficient and flexible management of nitrogen for rainfed lowland rice. Nutrient Cycling in Agroecosystems,2003,67:107-115
    190. Liu XB, Herbert SJ, Jin J. Response of photosynthetic rates and yield/quality of main crops to irrigation and manure application in the black area of Northeast China. Plant and Soil,2004,261: 55-60
    191. Liu XJ, Ai YW, Zhang FS. Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC). Nutrient Cycling in Agroecosystems,2005,71:289-299
    192. Michael J, Ottman, Nancey V. Nitrogen fertilizer movement in the soil as influenced by nitrogen rate and timing in irrigated wheat. Soil Sci Soc Am J,2000,64:1883-1892
    193.Mohanty SK, Singh U, Balasubramanian V, Jha KP. Nitrogen deep-placement technologies forproductivity, profitability, and environmental quality of rainfed lowland rice systems. Nutrient Cycling in Agroecosystems,1999,53:43-57
    194. Nader Pirmoradian, Ali Reza Saspaskhah, Manucher Maftoun. Effects of water-saving irrigation and nitrogen fertilization on yield and yield component of rices (Oryza Sativa L). Plant Prod Sci, 2004,7(3):337-346
    195. Novo Przulj, Vojislava Momcilovic. Genetic variation for dry matter and nitrogen accumulation and translocation in two-rowed spring barley I. Dry matter translocation. European Journal of Agronomy,2001,15:241-254
    196. Ntanos DA, Koutroubas SD. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Research,2002,74,93-101
    197. Paola Gioacchini, Anna Nastri, Claudio Marzadori. Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea. Biol Fertil Soils,2002,36:129-135
    198. Pasuquin E, Lafarge T, Tubana B. Transplanting young seedlings in irrigated rice fields:Early and high tiller production enhanced grain yield. Field Crops Research,2008,15:141-155
    199. Peng S, Cassman K, Kropff G. Relationship between leaf photosynthesis and nitrogen content of field-grown rice in the tropics. Crop Sci,1995,35:1627-1630
    200. Peng SB, Huang JL, Zhong XH. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agric Sci in China,2002,1(7):776-7851
    201. Peng Shaobing, Bouman, BAM, Visperas RM, Castan eda A, Nie Lixiao, Park Hong-Kyu. Comparison between aerobic and flooded rice:agronomic performance in a long-term (8-season) experiment. Field Crops Research,2006:96,252-259
    202. Qian Q, Cai ZH. Leaching of nitrogen from subtropical soils as affected by nitrification potential and base cations. Plant and Soil,2007,10:1107-1115
    203. Rasool Rehana, Kukal SS, Hira GS. Soil physical fertility and crop performance as affected by long term application of FYM and inorganic fertilizers in rice-wheat system. Soil & Tillage Research,2007,96:64-72
    204. Romeo J, Cabangon, To Phuc Tuong, Ernesto G, Castillo, Lang Xing Bao, Guoan Lu, Ruifa Hu, Jianmin Cao, Jikun Huang. Farmer participatory testing of standard and modified site-specific nitrogen management for irrigated rice in China. Agricultural Systems,2007,94:331-340
    205. SAS Institute,2003. SAS Version 9.1.2,2002-2003. SAS Institute, Inc., Cary, NC.
    206. Shaobing Peng, Roland J, Buresh, Jianliang Huang, Jianchang Yang, Yingbin Zou, Xuhua Zhong, Guanghuo Wang, Fusuo Zhang. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research,2006,96:37-47
    207. Sheehy JE, Mnzava M, Cassman KG, Mitchell PL, Pablico P, Robles RP, Ferrer A. Uptake of nitrogen by rice studied with a 15N point-placement technique. Plant and Soil,2004,259: 259-265
    208. Shen AL, Liu CZ, Zhang FS. Effects of different application rate of NPK on the growth of rice and N fertilizer utilization ratio under water leakage and non-leakage conditions. Chinese J of Rice Sci,1997,11(4):231-237
    209. Somjit Khunthasuvon, Satit Rajastasereekul, Prissana Hanviriyapant, Panya Romyen, Shu Fukai, Jaya Basnayake, Ekasith Skulkhu. Lowland rice improvement in northern and northeast Thailand 1. Effects of fertiliser application and irrigation. Field Crops Research,1998,59:99-108
    210. Takahashi S, Yagi A. Losses of fertilizer-derived N from transplanted rice after heading. Plant and Soil,2002,242:245-250
    211. Takeshi, Horie, Shiraiwa T, Homma K, Katsura K, Maeda S, Yoshida H. Can yields of lowland rice resume the increases that they showed in the 1980s? Plant Prod Sci,2005,8:257-272
    212. Tang QY, Peng SB, Roland J, Buresh, Zou Yingbin, Nancy P, Castilla, Twng W, Mewc, Zhong Xuhua. Rice varietal difference in sheath blight development and its association with yield loss at different levels of N fertilization. Field Crops Research,2007,102:219-227
    213. Timothy W, Walker, Steven W, Martin, Patrick D, Gerard. Grain yield and milling quality response of two rice cultivars to top-dress nitrogen application timings. Agron J,2006, 98:1495-1500
    214. ripathi BP, Ladha JK, Timsina J and Pascua SR. Nitrogen dynamics and balance in intensified rainfed lowland rice-based cropping system. Soil Sci Soc Am J,1997,61:812-821
    215. Wade LJ, Amarante ST, Olea A, Harnpichitvitaya D, Naklang K, Wihardjaka A, Sengar S S, Mazid MA, Singh G and McLaren CG. Nutrient requirements in rainfed lowland rice. Field Crops Research,1999:64,91-107
    216. Walker Timothy W, Steven W, Martin, Patrick D. Grain yield and milling quality response of two rice cultivars to top-dress nitrogen application timings. Agronomy Journal,2006,98:1495-1500
    217. Wang DJ, Liu Q, Lin JH, Sun RJ. Optimum nitrogen use and reduced nitrogen loss for production of rice and wheat in the Yangtse Delta region. Environmental Geochemistry and Health,2004,26: 221-227
    218. Wang Guangho, Cui Yuanlai, Bouman BAM, Li Yuanhua, Chen Chongde, Wang Jianzhang. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environ,2004, 2:195-206
    219. Wang Guanghuo, Zhang QC, Witt C, Buresh RJ. Opportunities for yield increases and environmental benefits through site-specific nutrient management in rice systems of Zhejiang province, China. Agricultural Systems,2007,94(3):801-806
    220. Wopereis-Pura MM, Watanabe H, Moreira J, Wopereis MCS. Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley. European Journal of Agronomy,2002,17:191-198
    221.Xie YX, Xiong ZQ, Xing GX. Assessment of nitrogen pollutant sources in surface waters of Taihu Lake region. Pedosphere,2007,17(2):200-208
    222. Xing GX, Zhu ZL. An assessment of N loss from agricultural fields to the environment in China. Nutrient Cycling in Agroecosystems,2002,57:67-73
    223. Yoichiro Kato, Akihiko Kamoshita, Junko Yamajishi and Jun Abe. Growth of three rice cultivars under upland conditions with different levels of water supply 1.Nitrogen content and dry matter production, Plant Prod Sci,2006,9(4):422-434
    224. Yoshida S, Coronel V. Nitrogen nutrition, leaf resistance, and leaf photosynthetic rate of the rice plant. Soil Sci Plant Nutr,1996,22:207-211
    225. Zhang LM, Lin S, Bouman BAM, Xue CY, Wei FT, Tao HB, Yang XG, Wang HQ, Zhao DL, Dittert K. Response of aerobic rice growth and grain yield to N fertilizer at two contrasting sites near Beijing, China. Field Crops Research,2009,114:45-53
    226. Zhu JG, Han Y, Liu G, Zhang YL, Shao XH. Nitrogen in percolation water in paddy fields with a rice/wheat rotation. Nutrient Cycling in Agroecosystems,2000,57:75-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700