面向TFT-LCD制程的Mura缺陷机器视觉检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着液晶显示器(LCD)向大尺寸、轻薄化、低功耗、高分辨率的方向发展,玻璃基板及相关光学组件的尺寸逐渐增大、其厚度日益减小,致使液晶显示器产生各种显示不均匀缺陷(Mura)的几率大大增加,传统的人眼缺陷检测方法受人的主观因素以及外界环境的影响严重,对缺陷等级没有统一的判断标准,且由于LCD大尺寸高分辨率的趋势,使人工检测方法很难满足产品质量和生产效率的要求。因此,研究快速、不受外界环境干扰、符合人眼判断标准的自动机器视觉缺陷检测方法成为发展液晶显示技术的迫切要求。
     本文面向TFT-LCD生产制程,立足缺陷检测这一关键问题,开展Mura缺陷机器视觉检测方法的研究。Mura缺陷对比度低,边缘模糊或无明显边缘,图像背景复杂,是最难检测的显示缺陷之一,传统的边缘检测以及阈值分割等方法很难实现缺陷的可靠检测。本文针对Mura缺陷的检测难点,围绕纹理背景抑制、亮度不均匀校正、缺陷分割和缺陷量化四个关键点,通过理论研究、仿真分析和实验验证,研究符合人眼判断标准的自动机器视觉检测方法。主要工作及取得的成果如下:
     一、针对Mura缺陷图像具有重复纹理背景的特点,提出了基于实值Gabor小波滤波的纹理背景抑制方法,并研究了滤波器参数的设计准则。根据实际纹理特点和检测目的而设计的实值Gabor小波滤波器,可作为Blob检测器,能很好的消除纹理背景并增强待检测缺陷。与现有的常用背景抑制方法相比,Gabor小波滤波方法与人眼的视觉特性相似,能与人工检测的结果更好的吻合;能适应在线检测中图像背景不均匀以及旋转变形等复杂情况,具有较好的鲁棒性。
     二、在分析了LCD图像背景亮度不均匀产生原因的基础上,将各种因素引起的亮度不均统一看作乘性照度不均,采用同态变换的方法将乘性照度偏差场转换为加性,然后应用独立分量分析的方法对线性混合信号进行估计和分离,从而分离出缺陷信号,消除亮度不均匀信号。通过仿真分析,验证了所提出的方法可以在不掌握图像亮度先验信息的情况下,较好的消除图像背景的整体不均匀以及由于频率混叠而引起的莫尔条纹。
     三、在对LCD图像进行纹理背景抑制和亮度不均匀校正的基础上,研究Mura缺陷的分割方法。针对Mura缺陷对比度低、边缘模糊、图像整体亮度不均匀的特点,通过比较现有的基于边界和基于区域的主动轮廓模型的优缺点,采用改进的Chan-Vese主动轮廓模型和水平集方法对缺陷进行自动分割。与传统的边缘检测方法相比,改进的Chan-Vese主动轮廓模型能捕捉缺陷的模糊边界,可以减小图像整体亮度不均匀对Mura缺陷分割造成的影响。同时,根据SEMI标准中关于Mura缺陷的等级评定方法,直接应用分割时所得到的缺陷对比度和面积参数,对Mura缺陷进行量化评定。
     四、根据SEMI标准中关于Mura缺陷的测量规范,基于LCD缺陷检测平台,采集带有Mura缺陷的LCD图像作为实验样本,分别对LCD图像纹理背景抑制、亮度校正、Mura缺陷的分割及量化方法进行实验验证。(1)通过实验比较,分析了滤波器各个参数对纹理抑制效果的影响和参数选用原则,验证了所设计的实值Gabor小波滤波器能快速的消除LCD的纹理背景,有较好的鲁棒性,抑制效果符合人眼判断标准。(2)验证了与传统分割方法相比,改进的Chan-Vese主动轮廓模型和水平集方法适用于Mura缺陷分割。采用无条件稳定的AOS格式求解水平集方程可以增大时间步长、节省求解时间。同时,把分割中求出的缺陷对比度和面积参数直接应用到缺陷的量化中,方便地得出了Mura缺陷样本的量化实验结果。(3)验证了所提方法能较好的校正LCD亮度不均匀,通过比较实验,表明经过亮度校正,图像分割更易实现,分割结果更准确。(4)建立了Mura缺陷的自动检测算法流程并进行实验验证,对于50个缺陷样本,有48个被成功检测。
With the development of LCD toward large area, thin thickness and high resolution, the size of glass substrate increases rapidly and the thickness decreases gradually, which makes a remarkable occurrence probability of Mura defect. Due to high resolution, the traditional manual inspection method hardly satisfies the quality and efficiency of LCD manufactures, thus a fast and objective automatic machine vision inspection way that in accordance with the human criterion is very important to LCD insdustry.
     This thesis makes studies of Mura defect inspection technique based on the key problem of vision inspection for TFT-LCD. Mura is local lightness variation with low contrast, blurry contour and complicated image background, so it is hard to be inspected with traditional thresholding or edge detection methods. This thesis is to study the automatic vision inspection way for Mura defect which in accordance with the human criterion, focusing on textural background suppression, uneven brightness adjustment, defect segmentation and quantification. The main contents and achievement are as follows:
     Firstly, considering the respective textural background of Mura defect, a background suppression method based on the real Gabor wavelet filter is proposed and the design principles of filters are studied. Designed according to the texture characteristics, the real Gabor wavelet filter can eliminate the background and enhance Mura defect, acting as an excellent blob detector. Comparing with usual background suppressin method, Gabor wavelet filter is similar with the vision characteristic of human eyes and can obtain good accordance with manual inspection results. And it’s robustness to adapt to the backgroud uneveness, image rotation and distortion.
     Secondly, through analyzing the reasons of uneven brightness, all uneven factors are treated as the multiplicative illuminance. The homomorphic filtering method is used to transform the multiplicative uneveness into additive one, and then the independent component analysis method is applied to the estimation and separation of mixed signals. Thus the uneven brightness signals are eliminated or lightened and the target defective singals are preserved. The simulation results show that the proposed method can realize blind separation of uneven brightness and moire fringe.
     Thridly, the segmentation method of Mura defet is studied after background suppression and brightness adjustment. By comparing the edge-based and region-based active contour models, a modified Chan-Vese active contour model together with the level set method is proposed to automatically segment the Mura defect, aiming at the characteristics of low contrast, blurry contour and background uneveness of Mura. The modified model can exactly trace the blurry contours and eliminate the influences of uneven background luminance. At the same time, the parameters of Mura contrast and area from segmentation are directly used in the defect quantification based on SEMI standard.
     Finally, the image samples of LCD with Mura defects are captured based on the regulations of SEMI standard, as well as, the background suppression,brightness adujstment and Mura segmentation method proposed above are verified. For real Gabor wavelet filter, the influences of parameters on the background suppression effects are compared and the design principles are proved through experiments. Results show that this method can eliminate the textural background of LCD rapidly and reliably. Further, for the modified Chan-Vese active contours model together with the level set method, it is appropriate and excellent to the Mura segmentaion. The unconditional stable AOS scheme can increase the time step and save the solution time of level set function. Then, with the parameters of Mura contrast and area from segmentation, the quantifiction experiments are carried out conveniently. In addition, the proposed method can realize good brightness adjustment of LCD images and the defect segmentation becomes easier and more exactly after adjustment. Finally, the automatic inspection process of Mura defect is set up. Inspection experiments show that for 50 samples with Mura, 48 samples are inspeced accurately.
引文
[1] Courses E., Surveys T., The World of Liquid-Crystal Display TVs—Past, Present, and Future, Display Technology, Journal of, 2007, 3(4): 351-360.
    [2]田民波,电子显示,北京:清华大学出版社. 2001:80.
    [3] Takeda S., Ezawa H., Kuromaru A., et al., Fine pitch TAB technology with straight side wall bump structurefor LCD panel, Consumer Electronics, IEEE Transactions on, 1989, 35(3): 343-351.
    [4] Morris J., Interconnection and assembly of LCDs, 1995: 66-71.
    [5] Xie B., Ding H., New challenges in design and understanding of chip-on-glass (COG) for LCD packaging by FEA, 2005: 79-85.
    [6]程军,COG工艺流程及其发展现状,现代显示,2006:20-22.
    [7] Joshi R., Chip on glass—interconnect for row/column driver packaging, Microelectronics Journal, 1998, 29(6): 343-349.
    [8] SEMI, Definition of Measurement Index (SEMU) for Luminance Mura in FPD Image Quality Inspection, in SEMI D31-1102. 2002.
    [9] Measurement Method of SEMI Mura in FPD Image Quality Inspection, in SEMI D41-0305. 2005.
    [10]屈惠明,TFT-LCD屏缺陷检测的研究,光电子技术,1997,17(2):102-109.
    [11] Kido T., In-processing inspection technique for active-matrix LCD panels, 1992: 795–799.
    [12] C.S. Lin, W.Z.W., T.L. Lay, M. W. Chang, A digital image-based measurement system for a LCD backlight module, Opt. Laser Technol., 2001, 33: 499-505.
    [13] Kido T., Kishi N., Takahashi H., Optical charge-sensing method for testing and characterizingthin-film transistor arrays, Selected Topics in Quantum Electronics, IEEE Journal of, 1995, 1(4): 993-1001.
    [14] HAWTHORNE J., Electro-optics technology tests flat-panel displays, Laser focus world, 2000, 36(5): 271-276.
    [15]张瑞显,应用线性回归诊断法于液晶显示器Mura缺陷自动化检测之设计与实现,国立成功大学,2005.
    [16] Pratt W., Hawthorne J., Machine vision methods for automatic defect detection in liquid crystal displays, ADVANCED IMAGING, 1998, 13(4): 52-54.
    [17] Liu Y., Huang Y., Lee M., Automatic inline defect detection for a TFT-LCD array process, Measurement Science and Technology, 2008, 19: 095501.
    [18] Terada S., Shono Y., Optical approach for LCD inspection, 1995: 105.
    [19] Athanas P., Abbott A., Cherbaka M., et al., A Custom Computing Solution to Automated Visual Inspection of Silicon Wafers, INSTITUTE OF ELECTRICAL ENGINEERS INC (IEEE), 1997: 315-319.
    [20] Wang C., Kuo W., Bensmail H., Detection and classification of defect patterns on semiconductor wafers, IIE Transactions, 2006, 38(12): 1059-1068.
    [21] Barth,M., Hirayama D., Beni G., et al., A color vision inspection system for integrated circuitmanufacturing, Semiconductor Manufacturing, IEEE Transactions on, 1992, 5(4): 290-301.
    [22] Shankar N., Zhong Z., Defect detection on semiconductor wafer surfaces, Microelectronic Engineering, 2005, 77(3-4): 337-346.
    [23] Giakos G.C., Medithe A., Sumrain S., et al., Surface Defect Imaging of Semiconductor Wafers, Microelectronics, and Spacecraft Structures, in Instrumentation and Measurement Technology Conference. 2005. p. 1129-1133.
    [24] Chen C., Cheng T., Wu W., et al., Machine vision algorithms for semiconductor wafer inspection: a project with Inspex, SPIE, 1998: 221.
    [25] Khalaj B., Aghajan H., Kailath T., Patterned wafer inspection by high resolution spectral estimation techniques, Machine Vision and Applications, 1994, 7(3): 178-185.
    [26] Guan S., Xie P., Li H., A golden-block-based self-refining scheme for repetitive patterned wafer inspections, Machine Vision and Applications, 2003, 13(5): 314-321.
    [27] Shankar N., Zhong Z., Rule-Based Inspection of Wafer Surface, 2003: 752-755.
    [28] Lin H., Chung C., A Wavelet-Based Neural Network Applied to Surface Defect Detection of LED Chips, LECTURE NOTES IN COMPUTER SCIENCE, 2007, 4492: 785.
    [29] Lin H., Automated detection of light-emitting-diode chip surface blemishes on two background textures, Optical Engineering, 2008, 47: 017201.
    [30] Wang M., Wu W., Hsu C., Automated post bonding inspection by using machine vision techniques, International Journal of Production Research, 2002, 40(12): 2835-2848.
    [31] Kolloor S., Balamurugan S., Machine vision for alignment and inspection in die bonder, SPIE, 1997: 2.
    [32] Tsai D., Lin P., Lu C., An independent component analysis-based filter design for defect detection in low-contrast surface images, Pattern Recognition, 2006, 39(9): 1679-1694.
    [33] Nakashima K., Hybrid inspection system for LCD color filter panels, 1994: 689-692.
    [34] Chang C., Chang H., Hsu C., An intelligent defect inspection technique for color filter, 2005: 933-936.
    [35] Wu M., Fuh C., Chen H., Defect inspection and analysis of color filter panel, Image and Recognition, 2000, 6(2): 74-90.
    [36] Tsai P., Defect Extraction and Classification for LCD Color Filters, 2008.
    [37] Kim W., Kwak D., Song Y., et al., Detection of Spot-Type Defects on Liquid Crystal Display Modules, Key Engineering Materials, 2004, 270: 808-813.
    [38] Oh J., Kwak D., Lee K., et al., Line Defect Detection in TFT-LCD Using Directional Filter Bank and Adaptive Multilevel Thresholding, Key Engineering Materials, 2004,270: 233-238.
    [39] Lu C., Tsai D., Automatic defect inspection for LCDs using singular value decomposition, The International Journal of Advanced Manufacturing Technology, 2005, 25(1): 53-61.
    [40] Tsai D., Hung C., Automatic defect inspection of patterned thin film transistor-liquid crystal display (TFT-LCD) panels using one-dimensional Fourier reconstruction and wavelet decomposition, International Journal of Production Research, 2005, 43(21): 4589-4607.
    [41] Jiang, B., Wang C., Liu H., Liquid crystal display surface uniformity defect inspection using analysis of variance and exponentially weighted moving average techniques, International Journal of Production Research, 2005, 43(1): 67-80.
    [42] Chan C., Pang G., Fabric defect detection by Fourier analysis, IEEE transactions on Industry Applications, 2000, 36(5): 1267-1276.
    [43] Zhou F., Feng J., Shi Q., Texture feature based on local Fourier transform, 2001.
    [44] Azencott R., Wang J., Younes L., Texture classification using windowed Fourier filters, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 148-153.
    [45] Daugman J., Two-dimensional spectral analysis of cortical receptive field profiles, Vision research, 1980, 20(10): 847.
    [46] De Valois R., Albrecht D., Thorell L., Spatial frequency selectivity of cells in macaque visual cortex, Vision Res, 1982, 22(5): 545-559.
    [47] Turner M., Texture discrimination by Gabor functions, Biological Cybernetics, 1986, 55(2): 71-82.
    [48] Weldon T., Higgins W., Dunn D., Efficient Gabor filter design for texture segmentation, Pattern Recognition, 1996, 29(12): 2005-2015.
    [49] Jain A., Farrokhnia F., Unsupervised texture segmentation using Gabor filters, PatternRecognition, 1991, 24(12): 1167-1186.
    [50] Mallat S., A theory for multiresolution signal decomposition: The wavelet representation, Fundamental Papers in Wavelet Theory, 2006: 494.
    [51] Arivazhagan S., Ganesan L., Texture classification using wavelet transform, Pattern Recognition Letters, 2003, 24(9-10): 1513-1521.
    [52] Perona P., Malik J., Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.
    [53] Torkamani-Azar F., Tait K., Image recovery using the anisotropic diffusion equation, IEEE Transactions on Image Processing, 1996, 5(11): 1573-1578.
    [54] Niessen W., Vincken K., Weickert J., et al., Nonlinear multiscale representations for image segmentation, Computer Vision and Image Understanding, 1997, 66(2): 233-245.
    [55] Tsai D., Wu S., Chen M., Optimal Gabor filter design for texture segmentation using stochastic optimization, Image and Vision Computing, 2001, 19(5): 299-316.
    [56] Tsai D., Kuo C., Defect detection in inhomogeneously textured sputtered surfaces using 3D Fourier image reconstruction, Machine Vision and Applications, 2007, 18(6): 383-400.
    [57] Chen L., Kuo C., Automatic TFT-LCD mura defect inspection using discrete cosine transform-based background filtering and 'just noticeable difference' quantification strategies, Meas. Sci. Technol, 2008, 19(015507): 015507.
    [58] Tsai D., Chao S., An anisotropic diffusion-based defect detection for sputtered surfaces with inhomogeneous textures, Image and Vision Computing, 2005, 23(3): 325-338.
    [59] Linnett L., Carmichael D., Clarke S., Texture classification using a spatial-point process model, IEE Proceedings-Vision, Image, and Signal Processing, 1995, 142: 1.
    [60] Cohen F., Fan Z., Maximum likelihood unsupervised textured image segmentation,CVGIP: Graphical Models and Image Processing, 1992, 54(3): 239-251.
    [61] Cohen F., Fan Z., Patel M., Classification of rotated and scaled textured images using GaussianMarkov random field models, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(2): 192-202.
    [62] Van Hulle M., Tollenaere T., A modular artificial neural network for texture processing, Neural networks, 1993, 6(1): 7-32.
    [63] Haralick R., Shanmugam K., Dinstein I., Textural features for image classification, IEEE Transactions on systems, man and cybernetics, 1973, 3(6): 610-621.
    [64] Conners R., McMillin C., Lin K., et al., Identifying and locating surface defects in wood: Part of an automated lumber processing system, Links, 1983.
    [65] Escofet J., Garcia-Verela M., Abril H., et al., Inspection of fabric resistance to abrasion by Fourier analysis, 1998: 207.
    [66] Poelzleitner W., Schwingskakl G., Quality classification of wooden surfaces using Gabor filters and genetic feature optimization, 1999: 220.
    [67] Lambert G., Bock F., Wavelet methods for texture defect detection, 1997.
    [68] Manduchi R., Portilla J., Independent component analysis of textures, 1999
    [69] Tsai D., Tseng Y., Chao S., et al., Independent component analysis based filter design for defect detection in low-contrast textured images, IEEE Computer Society Washington, DC, USA, 2006: 231-234.
    [70] Lu C., Tsai D., Independent component analysis-based defect detection in patterned liquid crystal display surfaces, Image and Vision Computing, 2008, 26(7): 955-970.
    [71] Pizer S., Amburn E., Austin J., et al., Adaptive histogram equalization and its variations, Computer vision, graphics, and image processing, 1987, 39(3): 355-368.
    [72] Stark J., Adaptive image contrast enhancement using generalizations ofhistogram equalization, IEEE Transactions on Image Processing, 2000, 9(5): 889-896.
    [73] Chang D., Wu W., Image contrast enhancement based on a histogram transformationof local standard deviation, IEEE Transactions on Medical Imaging, 1998, 17(4): 518-531.
    [74] Sled, J., Zijdenbos A., Evans A., A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, 1998, 17(1): 87-97.
    [75] Chen S., Rahman Ramli A., Preserving brightness in histogram equalization based contrast enhancement techniques, Digital Signal Processing, 2004, 14(5): 413-428.
    [76] Kim Y., Contrast enhancement using brightness preserving bi-histogramequalization, IEEE Transactions on Consumer Electronics, 1997, 43(1): 1-8.
    [77] Wang Y., Chen Q., Zhang B., Image enhancement based on equal area dualistic sub-image histogramequalization method, IEEE Transactions on Consumer Electronics, 1999, 45(1): 68-75.
    [78]陈建乐,刘济林,叶建洪,多视点视频中基于局部直方图匹配的亮度和色差校正,中国图像图形学报,2007,12(11):1992-1999.
    [79] Styner M., Brechbuhler C., Szckely G., et al., Parametric estimate of intensity inhomogeneities applied to MRI, IEEE Transactions on Medical Imaging, 2000, 19(3): 153-165.
    [80] Taniguchi K., Ueta K., Tatsumi S., A mura detection method, Pattern Recognition, 2006, 39(6): 1044-1052.
    [81] LEE J., YOO S., Automatic Detection of Region-Mura Defect in TFT-LCD, IEICE TRANSACTIONS on Information and Systems, 2004, 87(10): 2371-2378.
    [82] Choi K., Park N., Yoo S., Image restoration for quantifying TFT-LCD defect levels, IEICE TRANSACTIONS on Information and Systems, 2008, 91(2): 322-329.
    [83] Oppenheim A., Schafer R., Homomorphic analysis of speech, IEEE Transactions on Audio and Electroacoustics, 1968, 16(2): 221-226.
    [84] Sen D., Swamy M., Ahmad M., Unbiased homomorphic system and its application inreducing multiplicative noise, IEE Proceedings-Vision, Image and Signal Processing, 2006, 153(5): 521-537.
    [85] Morris J., Lin F., Pommet D., et al., A homomorphic filtering method for imaging strongly scatteringpenetrable objects, IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1029-1035.
    [86] Adelmann H., Butterworth equations for homomorphic filtering of images, Computers in biology and medicine, 1998, 28(2): 169-181.
    [87] Campisi P., Yan J., Hatzinakos D., Signal-dependent film grain noise generation using homomorphicadaptive filtering, IEE Proceedings-Vision, Image and Signal Processing, 2000, 147(3): 283-287.
    [88] Solbo S., Eltoft T., Homomorphic wavelet-based statistical despeckling of SAR images, IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 711-721.
    [89] Zong X., Geiser E., Laine A., et al., Homomorphic wavelet shrinkage and feature emphasis for speckle reduction and enhancement of echocardiographic images, 1996: 658-667.
    [90]焦卫东,杨世锡,钱苏翔,乘性噪声消除的同态变换盲源分离算法,浙江大学学报(工学版),2006,40(4):581-584.
    [91] Ryu J., Oh J., Kim J., et al., TFT-LCD panel Blob-Mura inspection using the correlation of wavelet coefficients, 2004
    [92] Song Y., Choi D., Park K., Wavelet-based image enhancement for defect detection in thin film transistor liquid crystal display panel, Jpn J Appl Phys, 2006, 45(6A): 5069-5072.
    [93] CHEN S., CHOU S., TFT-LCD Mura Defect Detection Using Wavelet and Cosine Transforms, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2008, 2(3): 441-453.
    [94] Kirby R., Rosenfeld A., A note on the use of(gray level, local average gray level)space as an aid in threshold selection, 1979.
    [95] Otsu N., A threshold selection method from gray-level histograms, IEEE Trans. Sys., Man., Cyber, 1979, 9: 62-86.
    [96] Wong A., Sahoo P., A gray-level threshold selection method based on maximum entropyprinciple, IEEE Transactions on systems, man and cybernetics, 1989, 19(4): 866-871.
    [97] Niblack W., An introduction to digital image processing, Strandberg Publishing Company Birkeroed, Denmark, Denmark.1985
    [98] Canny J.F., A computational approach to edge detection, IEEE Trans. Pattern analysis and machine intelligence, 1986, 8: 679-714.
    [99] Bhandarkar S., Zhang Y., Potter W., An edge detection technique using genetic algorithm-based optimization, Pattern Recognition, 1994, 27(9): 1159-1180.
    [100] Saitoh F., Boundary extraction of brightness unevenness on LCD display usinggenetic algorithm based on perceptive grouping factors, 1999.
    [101] D. Marr, H.K.N., Visual information processing: Artificial Intelligence and the sensorium of sight, Technology review, 1978, 81(1)
    [102] Kass M., Witkin A., Terzopoulos D., Snakes: Active contour models, International Journal of Computer Vision, 1988, 1(4): 321-331.
    [103] Osher S., Sethian J., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation: Jour. of Comp, Phys, 1988, 79: 12–49.
    [104] Yezzi Jr A., Kichenassamy S., Kumar A., et al., A geometric snake model for segmentation of medical imagery, IEEE Transactions on Medical Imaging, 1997, 16(2): 199-209.
    [105] L.D.Cohen, On active contour models and balloons CVGIP, Image Understanding, 1991, 53(2): 211-218.
    [106] Caselles V., Kimmel R., Sapiro G., Geodesic active contours, International Journal ofComputer Vision, 1997, 22(1): 61-79.
    [107] Chan T.F., Vese L., Active contours without edges, IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
    [108] Vese L., Chan T., A multiphase level set framework for image segmentation using the Mumford and Shah model, International Journal of Computer Vision, 2002, 50(3): 271-293.
    [109] Song Y., Choi D., Park K., Morphological Blob-Mura Defect Detection Method for TFT-LCD Panel Inspection, LECTURE NOTES IN COMPUTER SCIENCE, 2004: 862-868.
    [110] Taniguchi K., Ueta K., Onishi H., et al., A method of mura intensity quantification using multi-level sliced images, 2007: 63560E.
    [111] Mori Y., Tanahashi K., Tsuji S., Quantitative evaluation of visual performance of liquid crystal displays, SPIE, 2000: 242.
    [112] Quantitative evaluation of "mura" in liquid crystal displays, Optical Engineering, 2004, 43: 2696.
    [113] Mori Y., Yoshitake R., Tamura T., et al., Quantitative evaluation of luminance non-uniformity in liquid crystal displays based on sensory analysis, Algorithms and Systems for Optical Information Processing VI: 8-10 July, 2002, Seattle, Washington, USA, 2002.
    [114] MORI Y., TAMURA T., YOSHITAKE R., et al., Ergonomics Approach to Evaluate Minimum Perceivable Non-uniformity in Liquid Crystal Displays, 2002: 1315-1318.
    [115] Park N., Choi K., Yoo S., Quantification of line mura defect levels based on multiple characterizing features, SPIE., 2006: 606603.
    [116]张昱,基于机器视觉的TFT-LCD屏mura缺陷检测技术研究,哈尔滨工业大学博士学位论文,2006.
    [117] Gabor D., Theory of communication, J. IEE(London), 1946, Part III, 93(26): 429-457.
    [118] Daugman J.G., Two-dimensional spectral analysis of cortical receptive field profile, Vision Research, 1980, 20: 847-856.
    [119] A.B. Watson, H.B.B.a.J.G.R., What does eye see best, Nature, 1983, 302: 419-422.
    [120] Farrokhnia, A.K.J.a.F., Unsupervised texture segmentation using Gabor filters, Pattern Recognition, 1991, 24(12): 1167-1186.
    [121]黄贤武,苏鹏程,柏培权,基于方向滤波分割的指纹自动识别系统算法,中国图象图形学报A辑,2002,7(8)
    [122] Eckart C., Young G., The approximation of one matrix by another of lower rank, Psychometrika, 1936, 1(3): 211-218.
    [123] Smokelin D.C.a.J.S., Neural net design of macro Gabor wavelet filters for distortion-invariant object detection in clutter, Opt. Eng., 1994, 33(7): 2264-2271.
    [124] R. Malhotra, K.R.N.a.N.R., Gabor filter-based edge detection, Pattern Recognition, 1992, 25: 1479-1494.
    [125] AC Bovik, M.C.a.W.G., Multichannel texture analysis using localized spatial filters, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12: 55-73.
    [126] Valois R L De, A.D.G.a.T.L.G., Spatial Frequency Selectivity of Cells in Macaque Visual Cortex, Vision Res., 1982, 22: 545-559.
    [127] Pohl C., Van Genderen J., Multisensor image fusion in remote sensing: concepts, methods and applications, International Journal of Remote Sensing, 1998, 19: 823-854.
    [128] Burt P., The pyramid as a structure for efficient computation, Rensselaer Polytechnic Institute, 1983
    [129] Escofet J., Navarro R., Garcia-Verela M., et al.,Detection of local defects in textile webs using Gabor filters, 1996: 163.
    [130] Fries R., Modestino J., Image enhancement by stochastic homomorphic filtering, IEEE Transactions on Acoustics, Speech and Signal Processing, 1979, 27(6): 625-637.
    [131] Guillemaud R., Uniformity correction with homomorphic filtering on region of interest, 1998: 872–875.
    [132]夏文静,傅行军,基于ICA在强背景噪声振动信号中的去噪研究,汽轮机技术,2006,48(2):121-123,155.
    [133] Hoyer P., Independent component analysis in image denoising, Master's Thesis, Helsinki University of Technology, 1999.
    [134] Hyvarinen A., Hoyer P., Oja E., Sparse code shrinkage: Denoising by nonlinear maximum likelihood estimation, Advances in Neural Information Processing Systems, 1999: 473-479.
    [135] Hyvarinen A., Oja E., Hoyer P., et al., Image feature extraction by sparse coding and independent componentanalysis, 1998
    [136] Antonini G., Popovici V., Thiran J., Independent component analysis and support vector machine for face feature extraction, Lecture notes in computer science, 2003: 111-118.
    [137] Hurri J., Hyvarinen A., Karhunen J., et al., Image feature extraction using independent component analysis, 1996
    [138] Serdaroglu A., Ertuzun A., Ercil A., Defect detection in textile fabric images using wavelet transforms and independent component analysis, Pattern Recognition and Image Analysis, 2006, 16(1): 61-64.
    [139] Sezer O., Ertiizun A., Ercil A., Independent component analysis for texture defect detection, PATTERN RECOGNITION AND IMAGE ANALYSIS C/C OF RASPOZNAVANIYE OBRAZOV I ANALIZ IZOBRAZHENII., 2004, 14(2): 303-307.
    [140] Whittaker E., On the functions which are represented by the expansions of the interpolation-theory, Edinburgh University.1915
    [141]汪宏志,陈浙泊,徐进,基于插值法对可编程成像系统中莫尔条纹的处理研究,光学仪器,2007,29(5):31-33.
    [142] Hyvarinen A., Karhumen J., Oja E., Indepent component analysis, 2001
    [143] Hyvarinen A., Oja E., A fast fixed-point algorithm for independent component analysis, Neural computation, 1997, 9(7): 1483-1492.
    [144] Independent component analysis: algorithms and applications, Neural networks, 2000, 13(4-5): 411-430.
    [145]王爱民,沈兰荪,图像分割研究综述,测控技术,2000,19(5):1-6.
    [146] Sethian J., Level set methods and fast marching methods. Cambridge Monograph on Applied and Computational Mathematics, Cambridge University Press, 1999, 1(2): 3.
    [147] Sethian J.A., Level set methods and fast marching methods, 1999.
    [148] Sethian J., A fast marching level set method for monotonically advancing fronts. 1996, National Acad Sciences. p. 1591-1595.
    [149] Osher S., Paragios N., Geometric level set methods in imaging, vision, and graphics, Springer, 2003
    [150] Chop D.L., Computing minimal surfaces via level set curvature flow, Journal of Computational Physics, 1993, 106(1): 77-91.
    [151] Weickert J., Kuhne G., Fast method for implicit active contour models, in Geometric level set methods in image vision, and Graphics. 2003. p. 43-57.
    [152] Hecht S., The visual discrimination of intensity and the Weber-Fechner law, J. Gen. Physiol, 1924, 7: 241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700