袁店煤矿101、102采区10煤层开采底板灰岩水防治关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层底板突水问题成为煤矿开采的一个重大的安全隐患,带压开采已成为深部煤炭资源开发的主要开采方式。与此相适应,底板灰岩水的防治尤为重要。本文针对袁店煤矿101、102采区10煤层开采底板灰岩水防治关键技术进行了多方面研究。首先分析了研究区底板灰岩的水文地质特征,由灰岩的沉积特征、径流特征、抽水试验及水化学分析结果得出:对煤层开采影响的太原组1-四灰含水层处于相对的封闭水文地质单元,循环微弱,富水性弱-中等,灰岩水文地质条件中等-复杂。同时运用了灰色BP神经网络和有限元数值模拟预测了采动影响下底板破坏深度,两种预测结果相近,最大值为14.23m。其次利用分形理论研究了101、102采区10煤底板隔水层完整性,结合研究区内底板的岩性、隔水层厚度、岩层组合情况,得出底板隔水性能较好。利用数值模拟得出,在采动影响下101、102采区分界的F2断层未活化,说明研究区受此断层突水威胁较小,但仍存在受断层切割使10煤层与太灰对接现象,使可能发生突水。通过对研究区地质及水文地质条件,以及岩溶陷落柱形成条件研究,得出研究区不具备形成较大岩溶陷落柱的地质条件。并通过突水系数理论计算结果分析得出,研究区的灰岩含水层水压高、底板隔水层薄,处于承压水上“超限开采”状态,存在灰岩突水的可能性,但根据板模型理论计算结果可知,-500m浅部和深部-700m开采时底板突水的可能性不大。采用了“大井法”、Q-S法对研究区的涌水量进行了预算,得出正常涌水量244.17m3/h,突出涌水量399.27m3/h。最后运用灰色模糊综合评价法对10煤底板突水危险性进行评价,由评价结果可知,研究区内10煤底板突水危险性等级以突水相对安全区和突水威胁区为主,占整个研究区80%。安全区仅分布在101采区的东南,101采区以突水相对安全区为主;102采区以突水威胁区为主,该区是煤矿生产过程中应重点探查与预防区域,根据研究区内水文地质特征并结合评价分析结果,提出了具体的防治水方案,进行了太灰水工程综合勘探设计,为类似下组煤开采提供借鉴经验。
     图[33]表[31]参[个数]
The water-inrush problem from coal floor has become a major security hidden danger of coal mining. Mining has become the main mining way of the deep coal resources development. To adjust to this, the limestone water prevention of coal floor seems to be important. Based on the key technology of limestone water prevention used on the 10 coal seam of Yuandian Mine No.101 and No.102, this paper made a variety of studies. Firstly, hydrogeological character of study areas was analysed. The sedimentary character, runoff character, pumping test and hydrochemical analysed results of limestone showed that water-bearing stratum of Taiyuan No.1~4 rock stayed in a relatively closed hydrogeology units, recycle was lightly weak, and aquifer ability was weak-medium, and the hydrogeological conditions were medium-complicated. Meanwhile, Gray BP artificial neural networks and numerical simulation were used to predict the coal-floor's destroyed depth under the mining impact. Both of these two predictions showed the close result and the maximum was 14.23m. Secondarily, the 10 coal seam water-resisting layer integrity of Mine No.101 and No.102 was studied by using the Fractal Theory. Then combining with the floor lithology, the water-resisting layer thickness and the rock combinations, it made the conclusion that the floor's water-resisting ability was relatively good. Obtained by numerical simulation showed that demarcated F2 fault between No.101 and No.102 under the mining influence were not activated, which indicated that water-inrush of fault cased a little threat to the study areas. But there might happen to be the abutment caused by 10 coal seam and Tai limestone coals as to cut by fault, which might happen to water-inrush. According to the study of study areas'geology and hydrogeological conditions and the study of karst collapse column formation conditions, it made the conclusions that there were no geological conditions for the study areas to form the larger karst collapse column. And according to the analyses of water-inrush coefficient theoretical calculation, it found the results that on the study areas'limestone aquifer layer, the water pressure was high, the floor water-resisting layers were thin, and confined water was in a "overrun mining" condition, there was possibility of limestone water-inrush. But according to the calculated results of the plate model theory, it showed that there was a very little possibility of floor water-inrush on -500m shallow side and -700m deep side when mining. By using the "Large Diameter Well Method" and Q-S method to budget the water inflow of study areas, it made conclusions that the normal water inflow was 244.17 m3/h and inrush water inflow water was 399.27 m3/h. Finally, by using grey fuzzy comprehensive evaluation method to evaluate the inrush water risk of 10 coal floor, and according to the evaluated results, it showed that water-inrush risk level of 10 coal floor on the study areas were mainly deal with water-inrush relatively safe areas and water-inrush threatened areas, which occupied 80 percents of the whole study area. The safe areas were just distributed in the southeast part of No.101 mining area that were mainly water-inrush relatively safe area; No.102 mining area was mainly water-inrush threatened area that was needed to be explored and prevented importantly during coal mining productive process. According to the hydrogeological conditions of study areas and combining with comprehensive evaluation analytical results together, this paper presented the concrete preventing water scheme and made a comprehensive exploration design of limestone water engineering to provide the experience for mining the next similar coal layer.
     Figure 33 table 31 reference [amount]
引文
[1]ReibiecM.S., Hydrofracturing of rockas a method of water, mudmand gas inrush hazards in underground coalmining,4thIMWA,1991,1
    [2]B.斯列萨列夫,水体下安全采煤的条件(国外矿山防治水技术的发展和实践)[M].冶金矿山设计院,1983
    [3][波]M.鲍莱茨基,M.胡戴克著,于振海,刘天泉译.矿山岩体力学[M].北京:煤炭工业出版社,1985
    [4][苏].A.多尔恰尼诺夫,赵义译.构造应力与井巷工程稳定性[M].北京:煤炭工业出版社,1984.8
    [5]吴玉华等.矿井水综合防治技术研究[M].徐州:中国矿业大学出版社,2009.11:139-162
    [6]Show D.T., A parallel plates model of fractured permeable media, Ph D. Thesis.University of California, Berkcley,1996
    [7]Louis C.,Rock Hydraulics in Rock mechanics,edited by L.Muller,Verlay wien,New york,1974
    [8]Oda M.,An equivalent continuum model for coupled stress and fluid flow analysisin jointed rock masses,Water resources Research,1986(13)
    [9]FLAC-3D.Fast langrangian analysis of continua in 3 Dimensions,Version 2.1,user
    manuals[M].Minneapolis:Itasca Consulting Group,Inc,2002
    [10]李金铭.电法勘探方法发展概况[J],物探与化探,1996,20(4):250-258
    [11]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东科技大学学报,1999,18(4):]1-17
    [12]高延法.岩移“四带”模型与动态位移反分析[J].煤炭学报,1996,21(1):51-55
    [13]陈荣华,钱鸣高.注水软化法控制厚硬关键层采场来压数值模拟[J].岩体力学与工程学报2005,24(13):2266-2271
    [14]王延福,靳德武等.岩溶矿井煤层底板突水系统的非线性特征初步分析[J],中国岩溶,1998,17(04):331-341
    [15]王延福,庞西歧等.岩溶煤矿矿井煤层底板突水预测的相空间重构[J],中国岩溶,1999,18(03):219-227
    [16]武强,周英杰等.煤层底板断层滞后型突水时效机理的力学试验研究[J],煤炭学报,2003,28(06):561-565
    [17]李抗抗,王成绪.用于煤层底板突水机理研究的岩体原位测试技术[J],煤田地质与勘探,1997,25(03):31-34
    [18]周瑞光,成彬芳等.断层破碎带突水的时效特性研究[J1,工程地质学报,2000,8(04):411-415
    [19]李国敏.矿坑底板突水时不完整井流计算问题[J],勘察科学技术,1989(03)
    [20]王明玉,田开铭.多层含水层结构条件下矿井突水灾害的水文地质模型研究,中国地质灾害与防治学报[J],1991(02)
    [21]陈朝阳,李德安等.焦作矿区底板突水预报模型[J],煤田地质与勘探,1996(05):36-39
    [22]武强,黄晓玲等.评价煤层顶板涌(突)水条件的“三图-双预测法”[J],煤炭学报,2000,25(01):60-65
    [23]武强,庞炜等.煤层底板突水脆弱性评价的GIS与ANN耦合技术[J],煤炭学报,2006,31(03):314-319
    [24]尹尚先,武强,王尚旭.北方岩溶陷落柱的充水特征及水文地质模型[J],岩石力学与工程学报,2005,24(01):77-82
    [25]施龙青,韩进,宋扬.用突水概率指数法预测采场底板突水[J],中国矿业大学学报,1999,28(5):442-444
    [26]施龙青,韩进.底板突水机理及预测预报,徐州:中国矿业大学出版社[M],2004
    [27]范建明.地下水资源勘察中物探的作用[J],山西水利科技,2004,152(2):64-65
    [28]高建伟,李林辉.电超前探测法在矿井防治水中的应用[J],中州煤炭,2006,140(2):44-45
    [29]黄力军,陆桂福,刘瑞德.电性源瞬变电磁法在煤田水文地质调查中的应用[J],工程地球物理学报,2004,1(2):174-177
    [30]陈陆望,桂和荣,胡友彪,许光泉,袁文华.皖北矿区煤层底板岩溶水环境同位素判别模式[J].煤炭科学技术.2003(3):44-47
    [31]桂和荣,陈陆望.皖北矿区主要突水水源水文地质特征研究[J].煤炭学报.2004(6):323-327
    [32]郭文兵,邹友峰,邓喀忠.煤层底板采动导水破坏深度计算的神经网络方法[J].中国安全科学学报.2003(3):323-327
    [32]陈陆望,桂和荣,殷晓曦.深层地下水氢氧稳定同位素组成与水循环示踪[J].煤炭学报.2008(10):1107-1111
    [33]郭文兵,邹友峰,邓喀忠.煤层底板采动导水破坏深度计算的神经网络方法[J].中国安全科学学报.2003(3):34-37
    [34]于小鸽,韩进等.基于BP神经网络的底板破坏深度预测施龙青[J].煤炭学报,2009年,34(6):731-735
    [35]吴基文,樊成等.杨庄煤矿六煤底板采动效应研究[J],岩土力学2003,24(4)549-552
    [36]周维垣,岩体力学数值计算方法的现状与展望[J].岩石力学与工程学报,1993(1):84-88
    [37]刘洋.矿山压力对煤层底板破坏深度的数值分析[J].西安科技大学学报,2008,28(1):11-14
    [38]张友朝,吴秀仪等.老顶初次来压时工作面底板破坏深度研究[J],煤炭科技.2008,(1):61-64
    [39]李世峰,金瞰昆等.矿井地质与矿井水文地质[M],徐州:中国矿业大学出版社,2009.10:136-150
    [40]于喜东.地质构造与煤层底板突水[J],煤炭工程,2004,(12):34-35
    [41]韩玉英.构造断裂的分形分析[J].地质科学情报,1992,11(3):79-82
    [42]江东,王建华等.国家庄井田断裂构造的分形评价[J].煤田地质与勘探,1999.4:23-25
    [43]徐志斌,谢和平,王继尧.分维——评价矿井断裂复杂程度的综合性指标.中国矿业大学学报[J].1996,25(3):11-15
    [44]张金才.煤层底板突水预测的理论判据及其应用,力学与实践[J].1990(02)
    [45]王经明等.华北煤田陷落柱的地下水内循环形成机理[J].中国岩溶,2007,26(1):11-16
    [46]淮南煤田学院等.矿井地质及矿井水文地质[M].北京:煤田工业出版社,1979.05:199-211
    [47]张跃,邹寿平,宿芬.模糊数学方法及其应用[M].煤炭工业出版社,1992
    [48]刘思峰,郭大榜,党耀国.灰色系统理论及其应用[M].北京,科学出版社,1999
    [49]陈善成,姚多喜等.祁东煤矿61煤地质构造复杂程度定量评价[J].北京:煤炭科学技术,2010,38(3):101-103
    [50]汪宏志,胡宝林,徐德金.基于GIS技术的煤层底板突水危险性综合评价[J].煤炭科学与技术,2008,36(10):82—85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700