microRNA相关问题的计算分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
microRNA(miRNA)是一类长度约为22个核苷酸的内源性非编码RNA,它在动植物的生长发育等生命过程中起着重要的调控作用。近年来,miRNA的相关研究受到广泛关注,研究人员对miRNA在疾病的研究、诊断和治疗等方面的应用前景寄予厚望。本论文利用统计、模式识别等各种生物信息学方法对miRNA的调控机理这一重要问题展开了深入的探索,取得了一系列新的研究成果。主要包括以下四方面内容:
     (1)提出了高效的同源miRNA识别算法,可用于预测远同源的miRNA基因。在综合考虑miRNA成熟体序列保守和前体结构保守的特征的基础上,本论文提出了将RNA序列比对与结构比对相结合的miRNA同源基因识别方法。该方法达到了当时国际上公开发表的同类算法中最高的敏感性和特异性。
     (2)研究了miRNA在脊椎动物中的进化模式,为全面了解miRNA的功能及其在物种进化过程中的作用提供了新的视角。与当时普遍认为miRNA在漫长的物种进化过程中高度保守、一成不变的观点不同,本论文通过系统的分析和丰富的实例表明miRNA在物种进化过程中是非常活跃的,并且有着复杂的演化模式。
     (3)利用比较基因组学方法探索了miRNA的转录调控机制。miRNA的表达过程受到严格的调控,其中转录是最主要的控制环节。近期,对大量动、植物基因组的测序完成为我们利用比较基因组的方法研究基因转录调控机制提供了机遇。本研究提出了序列比对与motif识别相结合的保守序列调控元件分析方法,建立和提供了一套系统地分析保守调控元件的流程和计算平台,并成功用于分析果蝇miRNA的转录调控元件。
     (4)开发了新一代的基因核心启动子计算机识别方法,能成功预测出绝大部分已知的人类miRNA的核心启动子。基因启动子的识别是基因转录调控研究中的关键和难点问题。结合表观基因组学研究的最新进展,本论文提出了综合利用DNA序列信息和组蛋白修饰信息的人类基因核心启动子机识别算法。该方法在敏感性、特异性和分辨率等方面均优于国际上现有的启动子识别算法。
MicroRNAs (miRNAs) are a class of ~22 nt long endogenous small non-coding RNAs. During the last few years, these tiny molecules received wide attention due to their important regulatory roles in various biological processes and potential application in diagnosis and treatment of human diseases. In this dissertation, I studied miRNAs’identification, their evolutionary properties and transcriptional regulations using bioinformatics approaches. My work is mainly composed by the following four parts:
     (1) We developed a high performance miRNA prediction method, which can identify distantly related miRNA homolog genes. In the early days of miRNA research, only highly expressed miRNA genes can be easily detected by PCR or northern blot due to limitations of the techniques. For finding those low-expression or tissue-specific miRNA genes, computational prediction provides an efficient approach. We developed a miRNA prediction algorithm based on both sequence and structure alignment. Experiments show this approach has higher sensitivity and specificity than other reported homologue searching methods.
     (2) We studied the evolutionary patterns of miRNAs in vertebrates, and provided a new angle of view to study the function of miRNAs during the evolution. It was believed that most miRNAs are under intense purifying selection over evolutionary time and highly conserved. However, our observations and analysis suggested that miRNAs have complicated evolutionary patterns and may play very active roles in evolution.
     (3) We studied the transcriptional regulation mechanism of miRNAs using comparative genomic approaches. The regulation of miRNA transcription is largely unknown. Recently, the genome sequencing of diverse animal and plant species provides researchers a great opportunity to study gene transcriptional regulation mechanisms through comparative genomic approaches. In this thesis, we proposed a two-step strategy that takes the advantage of both alignment-based and motif-based methods to identify conserved DNA sequence elements and provided a systematic approach to analyze these elements. We successfully applied this method to analyze the miRNA cis-regulatory elements that are conserved across the Drosophila species.
     (4) We provided a new gene core promoter prediction method which can accurately identify most of the known miRNA core promoters. The correct localization of gene transcription start site and core promoter is important for understanding the transcriptional regulation of genes. We integrated genome wide histone modification profiles and the DNA sequence features together to predict gene core promoters in the human genome. Our new predictor outperforms existing algorithms by providing significantly higher sensitivity, specificity and finer resolution. This method will greatly help us to identify and characterize core promoters of both coding and non-coding genes.
引文
[1] Cheng J, Kapranov P, Drenkow J et al. 2005. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 308(5725):1149-1154.
    [2] Birney E, Stamatoyannopoulos JA, Dutta A et al. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146):799-816.
    [3] Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297.
    [4] Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5):843-854.
    [5] Bushati N, Cohen SM. 2007. microRNA functions. Annu Rev Cell Dev Biol, 23:175-205.
    [6] Griffiths-Jones S, Grocock RJ, van Dongen S et al. 2006. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 34(Database issue):D140-144.
    [7] Mattick JS. 2005. The functional genomics of noncoding RNA. Science, 309(5740):1527-1528.
    [8] Michalak P. 2006. RNA world - the dark matter of evolutionary genomics. J Evol Biol, 19(6):1768-1774.
    [9] Reinhart BJ, Slack FJ, Basson M et al. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772):901-906.
    [10] Slack FJ, Basson M, Liu Z et al. 2000. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular cell, 5(4):659-669.
    [11] Pasquinelli AE, Reinhart BJ, Slack F et al. 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808):86-89.
    [12] Lee RC, Ambros V. 2001. An extensive class of small RNAs in Caenorhabditis elegans. Science, 294(5543):862-864.
    [13] Lau NC, Lim LP, Weinstein EG et al. 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543):858-862.
    [14] Lagos-Quintana M, Rauhut R, Lendeckel W et al. 2001. Identification of novel genes coding for small expressed RNAs. Science, 294(5543):853-858.
    [15] Reinhart BJ, Weinstein EG, Rhoades MW et al. 2002. MicroRNAs in plants. Genes Dev, 16(13):1616-1626.
    [16] Jones-Rhoades MW, Bartel DP. 2004. Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA. Molecular cell, 14(6):787-799.
    [17] Bonnet E, Wuyts J, Rouze P et al. 2004. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci U S A, 101(31):11511-11516.
    [18] Wang JF, Zhou H, Chen YQ et al. 2004. Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Res, 32(5):1688-1695.
    [19] Maher C, Timmermans M, Stein L et al. 2004. Identifying MicroRNAs in Plant Genomes. Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004):pp. 718-723.
    [20] Pfeffer S, Zavolan M, Grasser FA et al. 2004. Identification of virus-encoded microRNAs. Science, 304(5671):734-736.
    [21] Griffiths-Jones S. 2004. The microRNA Registry. Nucleic Acids Res, 32 Database issue:D109-111.
    [22] Borchert GM, Lanier W, Davidson BL. 2006. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 13(12):1097-1101.
    [23] Lee Y, Jeon K, Lee JT et al. 2002. MicroRNA maturation: stepwise processing and subcellular localization. Embo J, 21(17):4663-4670.
    [24] Bracht J, Hunter S, Eachus R et al. 2004. Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. Rna, 10(10):1586-1594.
    [25] Cai X, Hagedorn CH, Cullen BR. 2004. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna, 10(12):1957-1966.
    [26] Lee Y, Kim M, Han J et al. 2004. MicroRNA genes are transcribed by RNA polymerase II. Embo J, 23(20):4051-4060.
    [27] Kim YK, Kim VN. 2007. Processing of intronic microRNAs. Embo J, 26(3):775-783.
    [28] Lee Y, Ahn C, Han J et al. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956):415-419.
    [29] Yi R, Qin Y, Macara IG et al. 2003. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17(24):3011-3016.
    [30] Bohnsack MT, Czaplinski K, Gorlich D. 2004. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna, 10(2):185-191.
    [31] Zeng Y, Cullen BR. 2004. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res, 32(16):4776-4785.
    [32] Kim VN. 2004. MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol, 14(4):156-159.
    [33] Hutvagner G, McLachlan J, Pasquinelli AE et al. 2001. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293(5531):834-838.
    [34] Ketting RF, Fischer SE, Bernstein E et al. 2001. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev, 15(20):2654-2659.
    [35] Hammond SM, Bernstein E, Beach D et al. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404(6775):293-296.
    [36] Papp I, Mette MF, Aufsatz W et al. 2003. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol, 132(3):1382-1390.
    [37] Wienholds E, Plasterk RH. 2005. MicroRNA function in animal development. FEBS Lett, 579(26):5911-5922.
    [38] Rhoades MW, Reinhart BJ, Lim LP et al. 2002. Prediction of plant microRNA targets. Cell, 110(4):513-520.
    [39] Yekta S, Shih IH, Bartel DP. 2004. MicroRNA-directed cleavage of HOXB8 mRNA. Science, 304(5670):594-596.
    [40] Brennecke J, Stark A, Russell RB et al. 2005. Principles of microRNA-target recognition. PLoS Biol, 3(3):e85.
    [41] Liu J, Valencia-Sanchez MA, Hannon GJ et al. 2005. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol, 7(7):719-723.
    [42] Wu L, Fan J, Belasco JG. 2006. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A, 103(11):4034-4039.
    [43] Behm-Ansmant I, Rehwinkel J, Doerks T et al. 2006. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev, 20(14):1885-1898.
    [44] Lewis BP, Burge CB, Bartel DP. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1):15-20.
    [45] Xie X, Lu J, Kulbokas EJ et al. 2005. Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature, 434(7031):338-345.
    [46] Giraldez AJ, Mishima Y, Rihel J et al. 2006. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 312(5770):75-79.
    [47] Poy MN, Eliasson L, Krutzfeldt J et al. 2004. A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432(7014):226-230.
    [48] Abelson JF, Kwan KY, O'Roak BJ et al. 2005. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science, 310(5746):317-320.
    [49] Lu J, Getz G, Miska EA et al. 2005. MicroRNA expression profiles classify human cancers. Nature, 435(7043):834-838.
    [50] O'Donnell KA, Wentzel EA, Zeller KI et al. 2005. c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435(7043):839-843.
    [51] Calin GA, Dumitru CD, Shimizu M et al. 2002. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 99(24):15524-15529.
    [52] He L, He X, Lim LP et al. 2007. A microRNA component of the p53 tumour suppressor network. Nature, 447(7148):1130-1134.
    [53] Calin GA, Croce CM. 2006. MicroRNA signatures in human cancers. Nat Rev Cancer, 6(11):857-866.
    [54]李金花. 2007. MicroRNA与肿瘤.国际病理科学与临床杂志, 27(1):11-14.
    [55] Johnston RJ, Jr., Chang S, Etchberger JF et al. 2005. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc Natl Acad Sci U S A, 102(35):12449-12454.
    [56] Cohen SM, Brennecke J. 2006. Developmental biology. Mixed messages in early development. Science, 312(5770):65-66.
    [57] Hamilton AJ, Baulcombe DC. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286(5441):950-952.
    [58] Fire A, Xu S, Montgomery MK et al. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669):806-811.
    [59] Kennerdell JR, Carthew RW. 1998. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 95(7):1017-1026.
    [60] Ngo H, Tschudi C, Gull K et al. 1998. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A, 95(25):14687-14692.
    [61] Sanchez Alvarado A, Newmark PA. 1999. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci U S A, 96(9):5049-5054.
    [62] Lohmann JU, Endl I, Bosch TC. 1999. Silencing of developmental genes in Hydra. Dev Biol, 214(1):211-214.
    [63] Wargelius A, Ellingsen S, Fjose A. 1999. Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem Biophys Res Commun, 263(1):156-161.
    [64] Chuang CF, Meyerowitz EM. 2000. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 97(9):4985-4990.
    [65] Wianny F, Zernicka-Goetz M. 2000. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol, 2(2):70-75.
    [66] Tuschl T, Zamore PD, Lehmann R et al. 1999. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev, 13(24):3191-3197.
    [67] Zamore PD, Tuschl T, Sharp PA et al. 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101(1):25-33.
    [68] Tomari Y, Du T, Zamore PD. 2007. Sorting of Drosophila small silencing RNAs. Cell, 130(2):299-308.
    [69] Forstemann K, Horwich MD, Wee L et al. 2007. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell, 130(2):287-297.
    [70] Chang K, Elledge SJ, Hannon GJ. 2006. Lessons from Nature: microRNA-based shRNA libraries. Nat Methods, 3(9):707-714.
    [71] Lim LP, Lau NC, Weinstein EG et al. 2003. The microRNAs of Caenorhabditis elegans. Genes Dev, 17(8):991-1008.
    [72] Ohler U, Yekta S, Lim LP et al. 2004. Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. Rna, 10(9):1309-1322.
    [73] Lim LP, Glasner ME, Yekta S et al. 2003. Vertebrate microRNA genes. Science, 299(5612):1540.
    [74] Lai EC, Tomancak P, Williams RW et al. 2003. Computational identification of Drosophila microRNA genes. Genome Biol, 4(7):R42.
    [75] Wang XJ, Reyes JL, Chua NH et al. 2004. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol, 5(9):R65.
    [76] Gu J, Fu H, Zhang X et al. 2007. Identifications of conserved 7-mers in 3'-UTRs and microRNAs in Drosophila. BMC bioinformatics, 8:432.
    [77] Weber MJ. 2005. New human and mouse microRNA genes found by homology search. Febs J, 272(1):59-73.
    [78] Legendre M, Lambert A, Gautheret D. 2005. Profile-based detection of microRNA precursors in animal genomes. Bioinformatics, 21(7):841-845.
    [79] Bentwich I, Avniel A, Karov Y et al. 2005. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 37(7):766-770.
    [80] Jiang P, Wu H, Wang W et al. 2007. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res, 35(Web Server issue):W339-344.
    [81] Xue C, Li F, He T et al. 2005. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC bioinformatics, 6:310.
    [82] Nam JW, Kim J, Kim SK et al. 2006. ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res, 34(Web Server issue):W455-458.
    [83] Pfeffer S, Sewer A, Lagos-Quintana M et al. 2005. Identification of microRNAs of the herpesvirus family. Nat Methods, 2(4):269-276.
    [84] Thomassen GO, Rosok O, Rognes T. 2006. Computational Prediction of MicroRNAs Encoded in Viral and Other Genomes. J Biomed Biotechnol, 2006(4):95270.
    [85] Ruby JG, Jan C, Player C et al. 2006. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell, 127(6):1193-1207.
    [86] Berezikov E, Thuemmler F, van Laake LW et al. 2006. Diversity of microRNAs in human and chimpanzee brain. Nat Genet, 38(12):1375-1377.
    [87] Rajagopalan R, Vaucheret H, Trejo J et al. 2006. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev, 20(24):3407-3425.
    [88] Zhao T, Li G, Mi S et al. 2007. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev, 21(10):1190-1203.
    [89] Ambros V. 2004. The functions of animal microRNAs. Nature, 431(7006):350-355.
    [90] Pang KC, Frith MC, Mattick JS. 2006. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet, 22(1):1-5.
    [91] Alvarez-Garcia I, Miska EA. 2005. MicroRNA functions in animal development and human disease. Development (Cambridge, England), 132(21):4653-4662.
    [92] Sempere LF, Cole CN, McPeek MA et al. 2006. The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zoolog B Mol Dev Evol.
    [93] Hertel J, Lindemeyer M, Missal K et al. 2006. The expansion of the metazoan microRNA repertoire. BMC Genomics, 7:25.
    [94] Maher C, Stein L, Ware D. 2006. Evolution of Arabidopsis microRNA families through duplication events. Genome Res, 16(4):510-519.
    [95] Zhang R, Peng Y, Wang W et al. 2007. Rapid evolution of an X-linked microRNA cluster in primates. Genome Res, 17(5):612-617.
    [96] Lu J, Shen Y, Wu Q et al. 2008. The birth and death of microRNA genes in Drosophila. Nat Genet, 40(3):351-355.
    [97] Farh KK, Grimson A, Jan C et al. 2005. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science, 310(5755):1817-1821.
    [98] Chen K, Rajewsky N. 2007. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet, 8(2):93-103.
    [99] Aboobaker AA, Tomancak P, Patel N et al. 2005. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci U S A, 102(50):18017-18022.
    [100] Zhou X, Ruan J, Wang G et al. 2007. Characterization and Identification of MicroRNA Core Promoters in Four Model Species. PLoS Comput Biol, 3(3):e37.
    [101] Sokol NS, Ambros V. 2005. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev, 19(19):2343-2354.
    [102] Kwon C, Han Z, Olson EN et al. 2005. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A, 102(52):18986-18991.
    [103] Biemar F, Zinzen R, Ronshaugen M et al. 2005. Spatial regulation of microRNA gene expression in the Drosophila embryo. Proc Natl Acad Sci U S A, 102(44):15907-15911.
    [104] Wang Y, Hindemitt T, Mayer KF. 2006. Significant sequence similarities in promoters and precursors of Arabidopsis thaliana non-conserved microRNAs. Bioinformatics, 22(21):2585-2589.
    [105] Megraw M, Baev V, Rusinov V et al. 2006. MicroRNA promoter element discovery in Arabidopsis. Rna, 12(9):1612-1619.
    [106] Wu J, Xie X. 2006. Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol, 7(9):R85.
    [107] Jegga AG, Chen J, Gowrisankar S et al. 2007. GenomeTrafac: a whole genome resource for the detection of transcription factor binding site clusters associated with conventional and microRNA encoding genes conserved between mouse and human gene orthologs. Nucleic Acids Res, 35(Database issue):D116-121.
    [108] Barad O, Meiri E, Avniel A et al. 2004. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res, 14(12):2486-2494.
    [109] Kawahara Y, Zinshteyn B, Sethupathy P et al. 2007. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science, 315(5815):1137-1140.
    [110] Rajewsky N. 2006. microRNA target predictions in animals. Nat Genet, 38 Suppl:S8-13.
    [111] Kertesz M, Iovino N, Unnerstall U et al. 2007. The role of site accessibility in microRNA target recognition. Nature Genetics, 39:1278 - 1284.
    [112] Grimson A, Farh KK, Johnston WK et al. 2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular cell, 27(1):91-105.
    [113] Huang JC, Babak T, Corson TW et al. 2007. Using expression profiling data to identify human microRNA targets. Nat Methods, 4(12):1045-1049.
    [114] He S, Liu C, Skogerbo G et al. 2008. NONCODE v2.0: decoding the non-coding. Nucleic Acids Res, 36(Database issue):D170-172.
    [115] Missal K, Zhu X, Rose D et al. 2006. Prediction of structured non-coding RNAs in the genomes of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Exp Zoolog B Mol Dev Evol, 306(4):379-392.
    [116] Liang RQ, Li W, Li Y et al. 2005. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res, 33(2):e17.
    [117] Li Z, Zhan W, Wang Z et al. 2006. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem Biophys Res Commun, 348(1):229-237.
    [118] Yang L, Liu Z, Lu F et al. 2006. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J, 47(6):841-850.
    [119] Wang JW, Wang LJ, Mao YB et al. 2005. Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 17(8):2204-2216.
    [120] Altschul SF, Gish W, Miller W et al. 1990. Basic local alignment search tool. J Mol Biol, 215(3):403-410.
    [121] Gautheret D, Lambert A. 2001. Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol, 313(5):1003-1011.
    [122] Turner DH, Sugimoto N. 1988. RNA structure prediction. Annu Rev Biophys Biophys Chem, 17:167-192.
    [123] Zuker M, Stiegler P. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res, 9(1):133-148.
    [124] Hofacker I, Fontana W, Stadler P et al. 1994. Fast Folding and Comparison of RNA Secondary Structures. Monatshefte f Chemie, 125:167-188.
    [125] Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 31(13):3406-3415.
    [126] Hochsmann M, Toller T, Giegerich R et al. 2003. Local Similarity in RNA Secondary Structures. Proc IEEE Computational Systems Bioinformatics Conf:159-168.
    [127] Shapiro B A, K Z. 1990. Comparing multiple RNA secondary structures using tree comparison. CABIOS, 6:309-318.
    [128] Hochsmann M, Voss B, Giegerich R. 2004. Pure Multiple RNA Secondary Structure Alignments: A Progressive Profile Approach. IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,, 1(1):53-62.
    [129] Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22(22):4673-4680.
    [130] Hochsmann. M , Toller. T, Giegerich R et al. 2003. Local Similarity in RNA Secondary Structures. Proc IEEE Computational Systems Bioinformatics Conf:159-168.
    [131] Klein RJ, Eddy SR. 2003. RSEARCH: finding homologs of single structured RNA sequences. BMC bioinformatics, 4(1):44.
    [132] Yeates DK, Wiegmann BM. 1999. Congruence and controversy: toward a higher-level phylogeny of Diptera. Annu Rev Entomol, 44:397-428.
    [133] Gaunt MW, Miles MA. 2002. An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol, 19(5):748-761.
    [134] Tanzer A, Stadler PF. 2004. Molecular evolution of a microRNA cluster. J Mol Biol, 339(2):327-335.
    [135] Tanzer A, Amemiya CT, Kim CB et al. 2005. Evolution of microRNAs located within Hox gene clusters. J Exp Zoolog B Mol Dev Evol, 304(1):75-85.
    [136] Griffiths-Jones S, Moxon S, Marshall M et al. 2005. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res, 33(Database issue):D121-124.
    [137] Giraldez AJ, Cinalli RM, Glasner ME et al. 2005. MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308(5723):833-838.
    [138] Suh MR, Lee Y, Kim JY et al. 2004. Human embryonic stem cells express a unique set of microRNAs. Dev Biol, 270(2):488-498.
    [139] He L, Thomson JM, Hemann MT et al. 2005. A microRNA polycistron as a potential human oncogene. Nature, 435(7043):828-833.
    [140] Houbaviy HB, Murray MF, Sharp PA. 2003. Embryonic stem cell-specific MicroRNAs. Developmental cell, 5(2):351-358.
    [141] Houbaviy HB, Dennis L, Jaenisch R et al. 2005. Characterization of a highly variable eutherian microRNA gene. Rna, 11(8):1245-1257.
    [142] Voorhoeve PM, le Sage C, Schrier M et al. 2006. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 124(6):1169-1181.
    [143] Watanabe T, Takeda A, Mise K et al. 2005. Stage-specific expression of microRNAs during Xenopus development. FEBS Lett, 579(2):318-324.
    [144] Chen PY, Manninga H, Slanchev K et al. 2005. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev, 19(11):1288-1293.
    [145] Krek A, Grun D, Poy MN et al. 2005. Combinatorial microRNA target predictions. Nat Genet, 37(5):495-500.
    [146] Wang X, Zhang J, Li F et al. 2005. MicroRNA identification based on sequence and structure alignment. Bioinformatics, 21(18):3610-3614.
    [147] Levine M, Tjian R. 2003. Transcription regulation and animal diversity. Nature, 424(6945):147-151.
    [148] Elango N, Thomas JW, Yi SV. 2006. Variable molecular clocks in hominoids. Proc Natl Acad Sci U S A, 103(5):1370-1375.
    [149] Lai EC, Wiel C, Rubin GM. 2004. Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes. Rna, 10(2):171-175.
    [150] Khvorova A, Reynolds A, Jayasena SD. 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell, 115(2):209-216.
    [151] Schwarz DS, Hutvagner G, Du T et al. 2003. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115(2):199-208.
    [152] Kim VN. 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol, 6(5):376-385.
    [153] Okamura K, Phillips MD, Tyler DM et al. 2008. The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nat Struct Mol Biol, 15(4):354-363.
    [154] Drosophila_12_Genomes_Consortium. 2007. Evolution of genes and genomes on the Drosophila phylogeny. Nature, 450(7167):203-218.
    [155] Tagle DA, Koop BF, Goodman M et al. 1988. Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol, 203(2):439-455.
    [156] GuhaThakurta D. 2006. Computational identification of transcriptional regulatory elements in DNA sequence. Nucleic Acids Res, 34(12):3585-3598.
    [157] Fang F, Blanchette M. 2006. FootPrinter3: phylogenetic footprinting in partially alignable sequences. Nucleic Acids Res, 34(Web Server issue):W617-620.
    [158] Blanchette M, Tompa M. 2003. FootPrinter: A program designed for phylogenetic footprinting. Nucleic Acids Res, 31(13):3840-3842.
    [159] Van Hellemont R, Monsieurs P, Thijs G et al. 2005. A novel approach to identifying regulatory motifs in distantly related genomes. Genome Biol, 6(13):R113.
    [160] Prakash A, Tompa M. 2005. Discovery of regulatory elements in vertebrates through comparative genomics. Nat Biotechnol, 23(10):1249-1256.
    [161] Schwartz S, Kent WJ, Smit A et al. 2003. Human-mouse alignments with BLASTZ. Genome Res, 13(1):103-107.
    [162] Blanchette M, Tompa M. 2002. Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res, 12(5):739-748.
    [163] Yang Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci, 13(5):555-556.
    [164] Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol, 22(2):160-174.
    [165] Moses AM, Pollard DA, Nix DA et al. 2006. Large-scale turnover of functional transcription factor binding sites in Drosophila. PLoS Comput Biol, 2(10):e130.
    [166] Wingender E, Chen X, Fricke E et al. 2001. The TRANSFAC system on gene expression regulation. Nucleic Acids Res, 29(1):281-283.
    [167] Schones DE, Smith AD, Zhang MQ. 2007. Statistical significance of cis-regulatory modules. BMC bioinformatics, 8:19.
    [168] Yu X, Lin J, Masuda T et al. 2006. Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae. Nucleic Acids Res, 34(3):917-927.
    [169] Yu X, Lin J, Zack DJ et al. 2006. Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic Acids Res, 34(17):4925-4936.
    [170] Cutler G, Perry KM, Tjian R. 1998. Adf-1 is a nonmodular transcription factor that contains a TAF-binding Myb-like motif. Molecular and cellular biology, 18(4):2252-2261.
    [171] Berman BP, Nibu Y, Pfeiffer BD et al. 2002. Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc Natl Acad Sci U S A, 99(2):757-762.
    [172] Berman BP, Pfeiffer BD, Laverty TR et al. 2004. Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura. Genome Biol, 5(9):R61.
    [173] Pierstorff N, Bergman CM, Wiehe T. 2006. Identifying cis-regulatory modules by combining comparative and compositional analysis of DNA. Bioinformatics, 22(23):2858-2864.
    [174] Lee J, Li Z, Brower-Sinning R et al. 2007. Regulatory Circuit of Human MicroRNA Biogenesis. PLoS Comput Biol, 3(4):e67.
    [175] Li X, Carthew RW. 2005. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell, 123(7):1267-1277.
    [176] Poole RJ, Hobert O. 2006. Early embryonic programming of neuronal left/right asymmetry in C. elegans. Curr Biol, 16(23):2279-2292.
    [177] Chang S, Johnston RJ, Jr., Frokjaer-Jensen C et al. 2004. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature, 430(7001):785-789.
    [178] Fazi F, Rosa A, Fatica A et al. 2005. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell, 123(5):819-831.
    [179] Sylvestre Y, De Guire V, Querido E et al. 2007. An E2F/miR-20a autoregulatory feedback loop. The Journal of biological chemistry, 282(4):2135-2143.
    [180] Kouzarides T. 2007. Chromatin modifications and their function. Cell, 128(4):693-705.
    [181] Zhang Y, Reinberg D. 2001. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev, 15(18):2343-2360.
    [182] Fields S. 2007. Molecular biology. Site-seeing by sequencing. Science, 316(5830):1441-1442.
    [183] Barski A, Cuddapah S, Cui K et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell, 129(4):823-837.
    [184] Mikkelsen TS, Ku M, Jaffe DB et al. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153):553-560.
    [185] Abeel T, Saeys Y, Bonnet E et al. 2008. Generic eukaryotic core promoter prediction using structural features of DNA. Genome Res, 18(2):310-323.
    [186] Zhang MQ. 1998. Identification of human gene core promoters in silico. Genome Res, 8(3):319-326.
    [187] Bajic VB, Tan SL, Suzuki Y et al. 2004. Promoter prediction analysis on the whole human genome. Nat Biotechnol, 22(11):1467-1473.
    [188] Bajic VB, Brent MR, Brown RH et al. 2006. Performance assessment of promoter predictions on ENCODE regions in the EGASP experiment. Genome Biol, 7 Suppl 1:S3 1-13.
    [189] Zhao X, Xuan Z, Zhang MQ. 2007. Boosting with stumps for predicting transcription start sites. Genome Biol, 8(2):R17.
    [190] Xie Z, Allen E, Fahlgren N et al. 2005. Expression of Arabidopsis MIRNA genes. Plant Physiol, 138(4):2145-2154.
    [191] Gu J, He T, Pei Y et al. 2006. Primary transcripts and expressions of mammal intergenic microRNAs detected by mapping ESTs to their flanking sequences. Mamm Genome, 17(10):1033-1041.
    [192] Saini HK, Griffiths-Jones S, Enright AJ. 2007. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci U S A, 104(45):17719-17724.
    [193] Carninci P, Sandelin A, Lenhard B et al. 2006. Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet, 38(6):626-635.
    [194] Cavin Perier R, Junier T, Bucher P. 1998. The Eukaryotic Promoter Database EPD. Nucleic Acids Res, 26(1):353-357.
    [195] Wakaguri H, Yamashita R, Suzuki Y et al. 2008. DBTSS: database of transcription start sites, progress report 2008. Nucleic Acids Res, 36(Database issue):D97-101.
    [196] Xuan Z, Zhao F, Wang J et al. 2005. Genome-wide promoter extraction and analysis in human, mouse, and rat. Genome Biol, 6(8):R72.
    [197] Hastie T, Tibshirani R, Friedman J. 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
    [198] Breiman L, Friedman J, Olshen R et al. 1984. Classification and Regression Trees. CA: Wadsworth Internetional Group.
    [199] Friedman J, Hastie T, Tibshirani R. 2000. Additive Logistic Regression: a Statistical View of Boosting. Ann Stat, 28:337-407.
    [200] Ohler U, Niemann H, Liao G et al. 2001. Joint modeling of DNA sequence and physical properties to improve eukaryotic promoter recognition. Bioinformatics, 17 Suppl 1:S199-206.
    [201] Fukao T, Fukuda Y, Kiga K et al. 2007. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell, 129(3):617-631.
    [202] Rodriguez A, Griffiths-Jones S, Ashurst JL et al. 2004. Identification of mammalian microRNA host genes and transcription units. Genome Res, 14(10A):1902-1910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700