溶气气浮除污染效能及其运行稳定性强化措施
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于溶气气浮工艺对低温低浊水、高藻水、高色度水均有较好的处理效果,得到人们的高度关注。近年来我国水污染严重,水源水质较差,微污染水的处理成为急需解决的问题。而以往人们主要关注气浮工艺除颗粒物的效能,对于气浮除有机物的效果缺乏系统的研究工作。研究溶气气浮除污染效能并强化其运行的稳定性具有很重要的现实意义,使之能更好地应用于受污染水处理中。
     在溶气气浮除污染效能及影响因素的研究中,发现采用适当提高混凝剂投量、较短的絮凝时间及较强的絮凝强度、pH值为中性、投加Ca2+离子及少量高岭土等均可作为气浮工艺强化去除有机物的手段。溶气气浮对腐殖酸的去除率均在80%左右,对硝基苯的去除效果随着pH值和TOC值增加而降低,随着Ca2+离子浓度提高而增加,随着浊度升高先增加而后降低,最高去除率为50%。腐殖酸在水中的存在形态随水质特征而发生变化,进而影响其对硝基苯的吸附效果,也影响混凝阶段对气浮工艺去除硝基苯的效果。
     在研究气浮工艺处理有机物的机理过程中,利用三维荧光手段证明随着pH值增大,腐殖酸分子荧光强度发生变化,腐殖酸与铝离子络合反应减弱,更多铝盐水解成高分子聚合体,通过网捕作用使大量腐殖酸形成有利于气浮工艺去除的絮体。并且随着pH值升高,腐殖酸在云母表面的覆盖率明显降低,在酸性条件下观测到的分子半径相对于中性和碱性条件下较小,聚集体结构在碱性条件下较为松散。金属阳离子Ca2+在腐殖酸分子聚集方面发挥重要的作用,少量Ca2+离子(10mg/L CaCl2)的加入就会导致大的聚集现象发生,促进腐殖酸的吸附。扫描电镜检测结果进一步表明,随着pH值增大,絮体聚集现象明显,形成的絮体更容易与微气泡粘附形成密度小于1的泡絮结合体,靠浮力上升而被去除,进一步证明了三维荧光扫描中的结论。
     在优化分离区内部结构以提高气浮工艺运行稳定性的研究中,发现气浮池集水系统及分离区内加入的竖板装置均对气浮池运行效果和稳定性有一定影响,采用穿孔板集水系统及在分离区底部加入小板距竖板装置强化了气浮工艺的稳定性。使竖板气浮池随着水力负荷变化,出水效果基本不变,并且能够在水力负荷18m/h的情况下运行,与传统气浮池相比,浊度去除率提高50%,有机物去除率提高29%。并且竖板气浮池对回流比等参数变化的适应性很强,更利于运行管理。竖板气浮池对水质特点的改变也有很好的适应性,在低温低浊、低温中浊及低温高浊等几种情况下运行时,随着水力负荷的变化,出水中浊度及有机物的含量基本保持稳定,即使水力负荷达到18m/h,浊度及有机物的去除率依然保持在很高的水平上,没有出现恶化情况。竖板气浮池分离区内流场特性随运行水力负荷和回流比的变化而产生变化。随水力负荷和回流比的增大,气泡层厚度增加。水力负荷过大或者回流比过小时,分离区内出现三维漩涡,影响运行效果。
     提出了沉淀—溶气气浮高适应性联用工艺,并在某水厂进行了生产性试验。结果表明,沉淀—溶气气浮联用工艺对有机物、藻类、氨氮、嗅味等均有很好的处理效果。质谱分析结果表明,气浮工艺对水中烷类、酮、杂环类有机污染物有很好的去除效果。该技术解决了高藻水絮凝后产生絮体太轻不易沉降而堵塞后续滤池的问题,使藻类严重爆发期间滤池反冲洗周期从最短的四小时延长到十几小时,恢复了水厂正常的产水量,大大地降低了水厂的自用水量。该水厂原水的水资源费用为每吨1元,在生产性实验中发现,虽然加入气浮工艺有一部分耗电量的增加,但生产用水和投药量都有所降低,生产成本也降低。采用沉淀—溶气气浮联用工艺对平流沉淀池进行改造,具有工期短、工程简单,投资小而且出水效果好、产水量高等特点。解决了传统工艺处理高藻水难的问题。并且为将气浮池改造成气浮池分离区内部加入竖板装置的竖板气浮池的二期工程,以应对产水量进一步提高的实际情况做好了准备。
Water treatment process with dissolved air flotation is concerned because of its better treatment effectiveness on low temperature and low turbidity water, high algae-laden water and high-colour water. In recent years, the water pollution was critical while the water quality and quantity were worse in China. The treatment of micro-contaminated source water becomes an urgent problem. However, the ability of air flotation process to remove particulate matter was mainly concerned in the past, the research work on the enhanced treatment of organic matter was limited. In order to apply dissolved air flotation process in the treatment of micro-contaminated source water, the study on the pollutant removal efficiency and the enhancement of operation stability is of great practical significance.
     The treatment efficiency and influencing factors of micro-polluted water by air flotation process were studied. It was found that appropriate increase in coagulant dosage, shorter flocculation time, stronger flocculation intensity, neutral initial pH value, addition of Ca2+ ions and small amount of kaolin added could be used as the means for enhanced coagulation of organic matter by air flotation process. The average humic acid removal by coagulation and air flotation was about 80%. The effectiveness of nitrobenzene removal by coagulation and air flotation process was decreased with the increase of initial pH value and TOC value, increased with the increase of Ca2+ ion concentration, firstly increased and then decreased with the increase of turbidity while the maximum removal rate was 50%. The occurrence of this phenomenon is a consolidated results,which depend on the variations of humic acid microstructure under different water conditions and the effectiveness of nitrobenzene adsorption and removal by air flotation process at coagulation stage was studied.
     The mechanism of organic matter treatment by air flotation process was studied. The three-dimensional fluorescence detection results showed that the humic acid molecule fluorescence intensity changed with the increase of initial pH value, the complexation reaction of humic acid with aluminum ion was weakened. It inferred that more aluminum salt decomposed into high polymer, a large number of humic acid formed conducive flocs for air flotation process with capture mechanism. With the increase of pH value, the coverage of humic acid on the mica surface decreased. Under acidic conditions, the observed molecular radius being smaller than neutral and alkaline conditions while aggregate structure was looser under alkaline condition. Ca2+ ion played an important role in humic acid molecular aggregation. A small amount of Ca2+ ions addition would result in great aggregation phenomenon to improve humic acid adsorption. Scanning electron microscopy results further showed that the phenomenon of floc clusters was obvious as the initial pH value was increased. The flocs were more easily adhered with micro-bubbles to form foam-floc combination, which could be removed by buoyant force because the density of combination was less than 1. It proved the conclusions in three-dimensional fluorescence scanning above.
     The effects of internal structure of optimized separation zone on air flotation process stability were studied. It was found that both the water collection system of air flotation tank and vertical plates in separation zone influenced the operation effectiveness and the stability of air flotation tank. By using perforated plates collection system and adding vertical plates with small space length in the bottom of separation zone, the stability of air flotation tank was enhanced. The effects of effluent water were basically constant with the variation of hydraulic loading for vertical plates air flotation tank which could operate at hydraulic loading of 18m/h. Under the same hydraulic loading conditions, the effect of the vertical plates air flotation tank was better than the traditional air flotation tank for both turbidity removal and organic matter removal. The vertical plates air flotation tank had a high adaptability with the variation of parameters such as recycled ratio and was easy for operation management. As well, the vertical plates air flotation tank also had a great adaptability with changes of water quality, operation under the conditions of low temperature low turbidity, low temperature medium turbidity and low temperature high turbidity achieved good results on the removal of turbidity and organic matter at hydraulic loading of 18m/h. The flow field feature of separation zone in vertical plates air flotation tank changed with the flow rate and recycled rate. As the hydraulic loading and recycled ratio increased, the bubble layer thickness increased. The three-dimensional vortex appeared in separation zone influenced the operation effect when the hydraulic loading was too large or recycled ratio was too small.
     Full scale experiment on the combined sedimentation with dissolved air flotation was performed. The experimental results showed that the effects of combined treatment technology on the removal of organic matter, algae, ammonia nitrogen and odor were excellent. Since the solution of problem in the difficulty of flocs settlement and the block of filter after the flocculation of high algae bearing water, the backwash cycle of filters extended from a minimum of four hours to more than ten hours during serious outbreak of algae, the water plant resumed normal production of water, greatly reduced the water consumption. It was found that the flotation part added the increase in power consumption, but the production water consumption and the coagulant dosage reduced, so that the cost of water production reduced. By using high adaptable technology combined sedimentation with dissolved air flotation, the sedimentation tank reformation had the advantages of low cost, low investment, high qualified water and high water production. This process could solve the water treatment difficulty in traditional high algae-laden seasons. The second phase project by adding vertical plates in separation zone of air flotation tank was prepared for the actual situation of further improvements in water production.
引文
1翁焕新.城市水资源控制与管理.浙江大学出版社. 2000:3~7
    2 P. H. Gleick. The World’s Water 1998-1999: The Biennial Report on Freshwater Resources. Island Press. 1998: 12~21
    3 A. Agarwal. Water Resource Comprehensive Management. Global Water Partnership, 1998, Stockholm: 2~27
    4杨琦.全球性水危机与水工程投资国际化.给水排水. 1998, 24(5):71~74
    5 China Water Conservancy Delegation. The Present Status and Prospects of China Water Issues. The Second International Forum, 2000, Hague:1~5
    6李圭白,李星.水的良性社会循环与城市水资源.中国工程科学. 2001, 3(6):37~40
    7王建华,江东泽.水:21世纪的石油.世界科学. 1999, 5(9):29~32
    8中华人民共和国水污染防治法. 1996年5月15日修订版
    9 J. Stauffer. The Water Crisis. Earthscan Publications. 1998:1~20
    10 H. B. N. Hynies. The Biology of Polluted Waters. Liverpool University Press. 1960:3~7
    11 USEPA. Office of Pollution Prevention and Toxics. 1994 Toxics Release Inventory, Public Data Release, Executive Summary, June, EPA-745-S-96-001. Washington DC, 1996
    12国家环境保护总局. 2008年中国环境状况公报.北京, 2008
    13范延臻,时双喜,王宝贞.美国饮用水标准和最有效技术.给水排水. 2001, 127(14):18~20
    14许保玖.给水处理理论.中国建筑工业出版社. 2000:59, 464~465, 468
    15汪光焘,肖绍雍. 2000年城市供水行业技术进步发展规划.中国建筑工业出版社. 1998:18~19
    16中华人民共和国卫生部卫生法制与监督司.生活饮用水卫生规范. 2001, 6:8~112
    17钟淳昌,戚盛豪.给水处理技术的现状与发展.1999水工业学术研讨会.香港,1999: 2~4
    18吴正淮.低温低浊水净化技术的发展与趋向.地表水特种水质净化技术论文集(上).1991: 1~6
    19刘馨远.低温季节时的水质处理.地表水特种水质净化技术论文集(上).1991: 7~23
    20王永,杨硕,温欣.低温低浊水处理技术影响因素及分析.山西建筑,2009,35(22):181~182
    21付昆明,李冬,朱兆亮等.呼延水厂低温低浊水的絮凝试验研究.中国给水排水,2008,24(11):39~42
    22王雪松,黄继国,李绪谦等.高效混凝处理浑江微污染水的中试试验.吉林大学学报(工学版),2008,38(3):662~665
    23徐景颖,黄吉效,郭成.北方微污染水源强化常规混凝及试验原理.水工业市场,2007,4:6~12
    24李为兵,金雪中,张红春等.处理低温低浊水的混凝剂优选.中国给水排水,2006,22(13):49~52
    25郑蓓,李涛,葛小鹏等.典型低温低浊水体的混凝工艺条件研究.供水技术,2009,3(3):8~11
    26汪彩文,孙士权,任伯志等.降低低温低浊湘江原水中浊度试验研究.环境科学与技术,2008,31(12):63~66
    27王占生,刘文君.微污染水源饮用水处理.中国建筑工业出版社,1999:
    1~2
    28陈翼孙,胡斌编著.气浮净水技术的研究及应用.上海科学技术出版社,1985: 211~213
    29彭海清,谭章荣,高乃云等.给水处理中藻类的去除.中国给水排水.2002,18(2): 29~31
    30王学云,高乃云.水中藻类的嗅味及去除方法.净水技术.1999,67(1): 36~39
    31张跃军,赵晓蕾,李潇潇等.预氯氧化下AS/PDM对冬季太湖水的混凝除藻效果.南京理工大学学报(自然科学版). 2009,33(4):528~533
    32寻涛.高锰酸钾预氧化混凝去除水中颤藻的试验研究. 2009,16(4):45~48
    33刘海龙,杨栋,赵智勇.高藻原水预臭氧强化混凝除藻特性研究.环境科学. 2009,30(7):1914~1919
    34崔福义,范振强,马华.混凝沉淀工艺对不同优势藻类的去除特性研究.给水排水. 2009,35(6):9~13
    35王占生.给水深度处理研究技术总结.第二届给水深度处理学术交流会会议论文.1991: 1~3
    36王占生.中国饮用水的水质问题与水的深度处理.2001年中日水处理技术国际交流会.上海,2001: 1~6
    37马军.高锰酸钾去除与控制饮用水中有机污染物的效能与机理.哈尔滨建筑大学博士学位论文.1990: 86~98
    38石枫华.O3/H2O2和O3/Mn催化氧化工艺去除水中有机物的效能与机理.哈尔滨工业大学博士学位论文.2003: 5~12
    39李圭白,马军.用高锰酸钾去除和控制受污染水源水中的致突变物质.给水排水.1992,18(2): 15~18
    40刘福谅,韩式荆.超滤技术在环境工程中的应用现状.环境化学.1993,12(5): 420~425
    41郭三慎,苏萍,潘厚磊.微污染原水中有机物对混凝效果影响研究.西南给排水. 2008,30(4):6~7
    42曲久辉,贺泓,刘会娟.典型环境微界面及其对污染物环境行为的影响.环境科学学报. 2009,29(1):2~10
    43郑洪领,王龙,宗逸君.我国微污染水源饮用水处理技术应用进展.中国建筑大学学报. 2008,23(6):543~546
    44汪恂,宛海燕.微污染水源水处理技术的现状与发展.山西建筑. 2008,
    34(32):20~21
    45赵奎霞,潘东升,刘俊良.新型聚铝硅絮凝剂用于微污染原水的直接过滤研究. 2008,24(15):69~71
    46李爽,张晓健,刘文君等.控制饮用水处理工艺及配水管网中卤乙酸的研究.中国给水排水. 1999, 15(6):1~5
    47马军,李圭白,范萃苓等.高锰酸钾的氧化助凝效能研究.中国给水排水. 1992, 8(4):4~7
    48 Jun Ma, Graham N, Guibai Li. Effect of permanganate preoxidation in enhancing the coagulation of surface waters-laboratory case studies. Water SRT-A qua. 1997, 46(1): 1~11
    49 Jun Ma, Guibai Li. Laboratory and full-scale plant studies of permanganate oxidation as an aid in coagulation. Water Science and Technology. 1993, 27(11): 47~54
    50李伟光,时文歆,赵庆良.固定化生物活性炭处理低浓度甲醇废水的工程应用.给水排水. 2003, 29(12): 47~49
    51何文杰.安全饮用水保障技术.中国建筑出版社. 2006
    52李宁,李光明,赵建夫.光催化氧化降解水中有机污染物的研究进展.韶关学院学报(自然科学版). 2003, 24(12):100~107
    53 Ruben Miranda, Carlos Negro , Angeles Blanco. Internal Treatment of Process Waters in Paper Production by Dissolved Air Flotation with Newly Developed Chemicals. 1. Laboratory Tests. Ind. Eng. Chem. Res., 2009, 48 (4), pp 2199~2205
    54 A.H. Englert, R.T. Rodrigues,J. Rubio. Dissolved air flotation (DAF) of fine quartz particles using an amine as collector. Mineral Processing. 2009,90(1-4):27~34
    55 A.L. Macfarlane, R. Prestidge,M.M. Farid. Dissolved air flotation: A novel approach to recovery of organosolv lignin. Chemical Engineering.2009,48(1) 15~19
    56 Evangelia K.,Dafnopatidou,Nikolaos K. Lazaridis. Dyes Removal from Simulated and Industrial Textile Effluents by Dissolved-Air and Dispersed-Air Flotation Techniques. Eng. Chem. Res., 2008, 47 (15), 5594~5601
    57 Ruben Miranda a, Angeles Blanco,Elena de la Fuente. Separation of Contaminants from Deinking Process Water by Dissolved Air Flotation: Effect of Flocculant Charge Density. separation Science and Technology, 2009,43(14) 3732 ~3754
    58 Rita Henderson, Simon A. Parsons,Bruce Jefferson. The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Research. 2009,42(8-9) 1827~1845
    59 Byeong-Yong, SohnTae-Joon Park, Byung Soo Oh. A Case Study of the DAF-based Drinking Water Treatment Plant in Korea. Separation Science and Technology, 2009,43(15) 3873 ~3890
    60 Wang Yu-Heng,,Wang, Qi-Shan,Wu Yu-Bao. Treatment of high algae-laden water by step-recycle counter-current flotation. Environmental Science. 2009,29(11):3071~3076
    61 Richardson Desmond , Blom Lasse1 , Reeves Elizabeth. Pilot plant investigations into the feasibility of membrane treatment of paper machine and deinking plant filtrates. 62nd Appita Annual Conference and Exhibition. 2008:383~387
    62 R. Gergory, T. F. Zabel, J. K. Edzwald. Sedimentation and Flotation in Water Quality and Treatment. McGraw Hill. 2000:47~61
    63 T. Schofield. Dissolved Air Flotation in Drinking Water Production. WaterScience and Technology. 2001, 43(8):9~18
    64 T. F. Zabel. The Advantages of Dissolved Air Flotation for Water Treatment. Journal of the American Water Works Association. 1985, 77(5):42~46
    65 H. Lundgren. Theory and practice of dissolved air flotation.
    66 S. H. Roh , D. H. Kwak , H. J. Jung. Simultaneous Removal of Algae and Their Secondary Algal Metabolites from Water by Hybrid System of DAF and PAC Adsorption. Separation Science and Technology, 43(1)113 ~131
    67 Alexandra Keegan, David Daminato, Christopher P. Saint. Effect of water treatment processes on Cryptosporidium infectivity. Water Research. 2008,42(6-7):1805~1811
    68 Rita K. Henderson, Simon A. Parsons,Bruce Jefferson. Surfactants as Bubble Surface Modifiers in the Flotation of Algae: Dissolved Air Flotation That Utilizes a Chemically Modified Bubble Surface. Environ. Sci. Technol., 2008, 42 (13), pp 4883~4888
    69 J. Haarhoff, L. V. Vuuren. A South African Guide for Dissolved Air Flotation. WRC Project No.332. Water Research Commission. 1993: 6~12
    70 J. Haarhoff, E.M. Rykaart. Rational design of packed saturators. Water Science and Technology.1995,31(3-4):179-190
    71 J. K. Edzwald. Principles and Applications of Dissolved Air Flotation. Water Science and Technology. 1995, 31(3/4):1~23
    72 Vítor Geraldes,Aykut Anil,Maria Norberta de Pinho. Dissolved air flotation of surface water for spiral-wound module nano-filtration pre-treatment. Desalination.2008,228(1-3) :191~199
    73 I.R. de Nardi, T.P. Fuzi,V. Del Nery. Performance evaluation and operating strategies of dissolved-air flotation system treating poultry slaughterhouse wastewater. Resources Conservation and Recycling 52(3): 533~544
    74 J.D. Plummer, J.K. Edzwald, M.B. Kelley. Removing Cryptosporidium by dissolved-air flotation. Journal of American Water Works Association,1995,87(9):85
    75 P.D. Schmidt, J.E. Tobiason, J.K. Edzwald. DAF treatment of a reservoir water supply comparison with in-line direct filtration and control of organic matter. Water Science and Technology,1995,31(3-4):103-111.
    76 H. J. Kiuru. Development of Dissolved Air Flotation Technology from the First Generation to the Newest (Third) One (DAF in Turbulent Flow Conditions).Water Science and Technology. 2001, 43(18):1~7
    77王毅力,汤鸿霄.气浮净水技术研究及进展.环境科学进展. 1999, 7(6): 94~103
    78 G. L. Collins, G. J. Jameson. Experiments on the Flotation of Fine Particles. Chemical Engineering Science. 1976, 31:985~991
    79 T. Matthew. Particle Removal by Flotation and Filtration: Pretreatment Effects. Journal of the American Water Works Association. 1996, 86(12):35~47
    80 R. H. Yoon, G. H. Luttrell. The Effect of Bubble Size on Fine Particle Flotation. Mineral Processing and Extractive Metallurgy Review: An International Journal. 1989:101~102
    81 M. Loe wenberg and R. H. Davis. Flotation Rates of Fine Spherical Particles and Droplets. Chemistry Engineer Science. 1994,49(23): 3923~3941
    82 R. A. Hyde, D. G. Miller, R. F. Packham. Water Clarification by Flotation. Journal of the American Water Works Association. 1997, 69(7): 369~377
    83 N. Tambo, K. Fukushi. An Analysis of Air Bubble Attachment Process of Dissolved Air Flotation. Journal of the American Water Works Association. 1985, 6 (10): 2~11
    84 K. Fukushi, N. Tambo. An Experiment Evaluation of Kinetic Process of Dissolved Air Flotation. Journal of the American Water Works Association. 1985, 607:32~41
    85 M. Han, W. Kim, S. Dockko. Collision Efficiency Factor of Bubble and Particle in DAF: Theory and Experimental Verification. Water Science and Technology. 2001, 43(8):139~144
    86 T. F. Zabel. Flotation in Water Treatment. Innovations in Flotation Technology. Kluwer Academic Publishers. 1992: 25~46
    87 J. G. Janssens. Developments in Coagulation, Flocculation and Dissolved Air Flotation. Water Engineering and Management. 1992, 139(1):26~31
    88 H.Φdegaard. Optimization of Flocculation/Flotation in Chemical Wastewater Treatment. Water Science and Technology. 1995, 31(3-4):73~82.
    89王毅力,汤鸿霄,宋乔健等.絮凝-DAF中试工艺处理密云水库低温低浊水的影响因素.环境科学. 2001, 22(1):27~31
    90 A. Vlaski, A. N. Van Breemen, G. J. Alaerts. The Role of Particle Size and Density in Dissolved Air Flotation and Sedimentation. Water Science and Technology. 1997, 36(4):177~189.
    91 D. M. Leppine, S. B. Dalziel, P. F. Linden. Modelling The Global Efficiency of Dissolved Air Flotation. Water Science and Technology. 2001, 43(8):159~166
    92 K. Fukushi, Y. Matsui, N. Tambo. Dissolved Air Flotation: Experiments and Kinetic Analysis. Journal of Water Supply: Research and Technology-AQUA. 1998, 47(2): 76~86
    93 J. Haarhoff, J. K. Edzwald. Modelling of Floc-bubble Aggregate Rise Rates in Dissolved Air Flotation. Water Science and Technology. 2001, 43(8): 175~184
    94 Y. Matsui, K. Fukushi, N. Tambo. Modeling, Simulation and Operational Parameters of Dissolved Air Flotation. Journal of Water Supply: Research and Technology-AQUA. 1998, 47(1): 9~20
    95 N. S. J. Fawceet. The Hydraulics of Flotation Tanks: Computational Modeling. Proceedings of Dissolved Air Flotation conference, 1997, London:51~72
    96 M. Lundh, J. Lennart, J. Dahlquist. Experimental Studies of the Fluid Dynamics in the Separation Zone in Dissolved Air Flotation. Water Research. 2000, 34(1):21~30
    97 M. Lundh and L. Jonsson.The Flow Structure in the Separation Zone a DAF Pilot Plant and the Relation with Bubble Concentration. Water Science and Technology. 2001, 43(8):185~194
    98 C. T. Ta, J. Beckley, A. Eades. A Multiphase CFD Model of DAF Process. Water Science and Technology. 2001, 43( 8):153~157
    99 K. Park, J. M. Cho. Experimental and Modeling Evaluation of Upward and Downward Velocities in the Coaxial Flotation Column. Water Science and Technology. 2001, 43( 8):195~201.
    100 D. L. Widrig, K. A.Gray, K. S. McAuliffe. Removal of Algal-derived Organic Material by Preozonation and Coagulation: Monitoring Changes of Organic Quality by Pyrolysisi-GC-MS. Water Research. 1996, 30(11):2621~2632
    101 E. T. Gjessing, J. J. Alberts, A. Bruchet, et al. Multi-Method Characterization of Natural Organic Matter Isolated from Water: Characterization of Reverse Osmosis-isolates from Water of Two Semi-identical Dystrophic Lakes Basins in Norway. Water Research. 1998, 32(10):3108~3124
    102 J. B. Christensen, T. H. Christensen. The Effect of pH on the Complexation of Cd, Ni and Zn by Dissolved Organic Carbon from Leachate-polluted Groundwater. Water Research. 2000, 34(15):3743~3754
    103傅平青,刘丛强,万鹰昕等.水环境中腐殖酸对重金属吸附行为的影响.矿物岩石地球化学通报. 2002, 21(4):277~281
    104傅平青,刘丛强,吴丰昌.水环境中腐殖质-金属离子键合作用研究进展.生态学杂志. 2004, 23(6):143~148
    105 C. T. Chiou, R. L. Malcolm, T. I. Brinton, et al. Water Solubility Enhancement of Some Organic Pollutants and Pesticides by Dissolved Humic and Fulvic Acids. Environmental Science Technology. 1986, 20(5):502~508
    106 C. T. Chiou, D. E. Kile, T. I. Brinton, et al. Comparison of Water Solubility Enhancements of Organic Solutes by Aquatic Humic Materials and Commercial Humic Acids. Environmental Science Technology. 1987, 21(12):1231~1234
    107郑淑娟,王炳建,高宝玉.新型混凝剂聚合硅酸铝铁处理模拟水样后的残余铝含量研究.精细石油化工进展. 2003, 4(12):23~26
    108李明,曾光明,张盼月等.应用强化混凝过程控制水中的剩余腐殖酸与残留铝.环境科学. 2006, 27(10):2057~2060
    109 C. Huang, H. Shiu. Interact Ions Between Alum and Organics in Coagulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1996, 113(2):155~163
    110 A. Vilge-Ritter. Removal of Natural Organic Matter by Coagulation-Flocculation: A Pyrolysis-GC-MS Study. Environmental Science Technology. 1999, 33(17):3027~3032.
    111周勤,肖锦.氯化钙对聚合氯化铝混凝去除腐植酸的影响作用研究.重庆环境科科学. 2000, 22(4):50~52
    112 J. K. Edzwald, J. P. Malley, C. Yu. A Conceptual Model for Dissolved Air Flotation in Water Treatment. Water Supply. 1990, 8:141~150
    113 H.Φdegaard. Optimization of Flocculation/Flotation in Chemical Wastewater Treatment. Water Science and Technology. 1995, 31(3-4):73~82.
    114赵华章,杨宏伟,蒋展鹏等.混凝沉淀过程中铝系混凝剂的形态转化规律.中国环境科学. 2005, 25(2):183~187
    115 Au K.K, Penisson A.C, Yang S. Natural organic matter at oxide/water interfaces:complexation and conformation. Geochim. Cosmochim. Acta, 1999,63:2903~2917
    116 Elissa M. L, Kelly M. Fluorescence charcterization of the interaction of Al3+ and Pd2+ with Su wannee River fulvic acid in the absence and presence of the herbicide 2,4-dichloro-phenoxyancetic acid. Journal of Inorganic Biochemistry, 2003,97:32~45
    117 M. Plaschke, J. R?mer, R. Klenze, et al. In Situ AFM Study of Sorbed Humic Acid Colloids at Different pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999, 160:269~279
    118 E. Balnois, K. J. Wilkinson, J. R. Lead, et al. Atomic Force Microscopy of Humic Substances: Effects of pH and Ionic Strength. Environmental Science Technology. 1999, 33(21):3911~3917
    119 E. Balnois, K. J. Wilkinson. Sample Preparation Techniques for the observation of Environmental Biopolymers by Atomic Force Microscopy. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 2002, 207,229~242
    120 A. Liu, R.C. Wu, E. Eschenazi, et al. AFM on Humic Acid Adsorption on Mica. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000, 174:245~252
    121 R. R. Engebreison, R. V. Wandruszka. Microorganization in Dissolved Humic Acids. Environmental Science Technology. 1994, 28(11):1934~1941
    122 K. Namjesnik-Dejanovic, P. A. Maurice. Conformations and Aggregate Structures of Sorbed Natural Organic Matter on Muscovite and Hematite. Geochimica et Cosmochimica Acta. 2000, 65(7):1047~1057
    123梁好,韦朝海,盛选军.高铁酸盐去除水中消毒副产物前体物的研究.环境科学与技术. 2004, 27(2): 66~68
    124关继海,徐学颖,韩超.侧向流斜板浮沉池的设计.给水排水. 1999, 5:32~34
    125 J. P. Jr. Malley. A Fundamental Study of Dissolved Air Flotation for Treatment of Low Turbidity Waters Containing Natural Organic Matter, PhD Thesis, University of Massachusetts, Amherst, MA, 1998:34~38
    126上海市政工程设计院.给水排水设计手册.中国建筑工业出版社, 1986, 3(626~629), (726~729)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700