城市污水污泥热解实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥热解技术在环境保护、废弃物处理和可再生能源利用等领域受到关注。目前,尚缺少可推广应用的污泥热解工艺装置及宽温度范围的流化床热解产物特性分析数据,热解机理仍需进一步探索。
     本文对流化床污泥热解技术进行实验及理论研究。采用热重分析仪研究了反应气氛、升温速率、与煤混合等因素对污泥热解反应过程的影响规律,分析了气体析出特性和反应表观动力学参数。建立假设条件和传热模型,对污泥颗粒在流化床中的受热升温过程进行数值计算。搭建了完整的鼓泡流化床热解实验台,研究了宽温度范围的热解产物分布及产物特性,探讨了流化床污泥热解反应机理。
     污泥在不同气氛中反应过程的特征参数不同。提高升温速率有利于增加热解反应最大失重速率,对总失重率影响不大。污泥热解的不同反应阶段具有不同反应机理和动力学参数,反应表观活化能为60-100 kJ/mol。煤与污泥混合热解时,污泥和污泥灰中所含的无机化合物对煤热解反应起到催化作用,两种原料之间的相互作用与原料特性及混合比例有关。
     通过流化床污泥宽温度范围热解实验研究,获得了不同热解温度下的热解产物分布。随着热解温度升高,液体产率先增加后减小,550℃时达到最大值,为50.35%。热解气体产率随热解温度升高而增加,950℃时气体产率为51.58%。随热解温度升高半焦产率降低,950℃时半焦产率为36.92%。对热解产物进行分析,获得了流化床污泥低温和高温热解产物特性数据。
     污泥低温和高温热解气体成分含量及变化规律有所差异。随着热解温度升高,低温热解气体中CO2含量逐渐降低,H2、CH4和CO的含量增加。550℃之后,热解气体中各成分含量关系为CO>H2>CH4>CO2。高温热解气体热值为15.36-16.35 MJ/m3,各成分含量关系为H2>CO>CH4>CO2。污泥热解气体可作为合成气用于化学工业,或是燃烧利用其中的热能。
     污泥热解焦油中检测到多种化合物,其成分及含量随热解温度变化规律不同。550℃热解焦油中甲苯不溶物含量为36%左右,沥青质和正庚烷可溶物含量分别为37.04%和26.96%。该焦油中汽油馏分为2%左右,柴油馏分为18%左右,减压馏分占15%左右,渣油占65%。低温热解焦油的毒性较低,以烯烃、烷烃、酯类和羧酸等化合物为主,多环芳烃化合物在600℃时开始出现,在高温热解焦油中占绝大多数。污泥热解焦油具有燃料用油的潜力,精制提纯后可获得多种化工原料。
     污泥热解过程中半焦产物的成分及结构发生变化,并具有明显的孔隙特征。随着热解温度升高,污泥热解半焦中的固定碳和水分含量变化不大,灰分含量增大,挥发分含量降低。半焦结构中孔型多样,主要集中在3-5 nm的中孔。热解温度为450℃时,半焦的BET比表面积为35.872 m2/g。热解半焦可进一步燃烧,或经炭化、活化制备成本低廉、吸附容量大的吸附材料。
     本文进行了流化床污泥热解实验,研究了热解过程和反应机理,获得了大量的热解产物特性数据,为污泥热解技术的推广和发展提供参考。
The pyrolysis technology of sewage sludge has been greatly concerned in the fields of environmental protection, waste disposal and renewable energy, etc. Nowadays, practicable devices and product characteristics data of sewage sludge pyrolysis at wide temperature range are scarce. The pyrolysis mechanism of sewage sludge needs further research.
     In this thesis, a series of experiments were conducted in fluidized bed to explore the pyrolysis of sewage sludge with theoretic analysis. Thermogravimetric analysis was applied to investigate the effects of factors of reaction atmosphere, heating rate, and mixture of sewage sludge and coal on the pyrolysis reaction. The releasing characteristics of gases and apparent kinetics parameters were analyzed. The assumption condition and heat transfer model were established for numerical calculation of the heating process of sewage sludge particles in fluidized bed. A bubbling fluidized bed reactor was designed to study the products distribution and characteristics of sewage sludge pyrolysis at wide temperature range. The pyrolysis reaction mechanism of sewage sludge was discussed.
     The reaction characteristic parameters of sewage sludge are different in different atmospheres. The maximum weight loss rate increases with the increase in heating rate, which has little influence on the total weight loss rate. In different reaction stages, there are different reaction mechanisms and kinetics parameters for sewage sludge with apparent activation energy within the range of 60-100 kJ/mol. In the co-pyrolysis of coal and sewage sludge, sewage sludge and the inorganic matters in sewage sludge ash play a catalytic role in coal pyrolysis, and the interaction between sewage sludge and coal is related to the characteristics of samples and the mixing ratio.
     The pyrolysis product distribution at wide temperature range is obtained by the pyrolysis experiments of sewage sludge in fluidized bed. With the increase in pyrolysis temperature, liquid production rate increases and then decreases. At 550℃, liquid production rate reaches the maximum,50.35%. With the increase in pyrolysis temperature pyrolysis gas production rate increases and reaches 51.58% at 950℃. With the increase in pyrolysis temperature char production rate decreace which is 36.92% at 950℃. The pyrolysis products are analyzed to obtain product characteristics data of sewage sludge pyrolysis at low temperature and high temperature.
     The compositions and content change trends of pyrolysis gas at low temperature and high temperature are different. With the increase in pyrolysis temperature, CO2 content of low temperature pyrolysis gases decreases, and the contents of H2、CH4 and CO incerease. After 550℃, The relation of gas compositions is CO>H2>CH4>CO2. The heating values of high temperature pyrolysis gases are 15.36-16.35 MJ/m3 and the relation of gas compositions is H2>CO>CH4>CO2. Sludge pyrolysis gas is used for chemical industry as syngas or burning application.
     Many kinds of compounds are identified in pyrolysis tars and the composition and content are different with pyrolysis temperature variation. Analysis results of pyrolysis tar made at 550℃show that the toluene insoluble is 36%, the contents of asphaltene and components dissolved in heptane account for 37.04% and 26.96%, respectivey. In this tar sample, gasoline fraction is 2%, diesel distillate fraction is 18%, vacuum distillate fraction is 15% and residue fraction accounts for 65%. The contents and quantity of single ring aromatic, aliphatic compounds, oxygen compounds, nitrogen compounds, nitrogen and sulfur heterocyclic compounds, steroid compounds and polycyclic aromatic hydrocarbons are different with pyrolysis temperature changes. Low temperature pyrolysis tasr are less toxic and the main compositions are alkanes, alkanes, esters,carboxylic acid compounds, etc. Polycyclic aromatic hydrocarbons appear at 600℃witch are the majority of high temperature pyrolysis tar. The tars can be potentially used as liquid fuel, from which many chemical raw materials can be extracted.
     The compositions and structures of chars change during sewage sludge pyrolysis which have distinct orous characteristics. Pyrolysis temperature affects the compositions and structural characteristics of char samples. With the pyrolysis temperature increases, in char samples, the fixed carbon and water contents change a little, ash contents increase, volatile contents decrease. There are various hole structures in char mainly with 3-5 nm micro-porous. The specific surface area of char at 450℃is 35.872 m2/g. The pyrolysis char of sewage sludge can be burned, and cheap absorption material can be preparated by carbonization and activation.
     According to the pyrolysis experiments of sewage sludge in fluidized bed, the pyrolysis process and reaction mechanism are studied, and the plenty of data on product characteristics can provide great reference for the promotion and development of sewage sludge pyrolysis technology.
引文
[1]中华人民共和国国家统计局.中华人民共和国2010年国民经济和社会发展统计公报[Online]. http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20110228_402705692.htm.
    [2]何品晶,顾国维,李笃中,等.城市污泥处理与利用[M].北京:科学出版社,2003.
    [3]尹军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2005.
    [4]徐强,张春敏,赵丽君.污泥处理处置技术及装置[M].北京:化学工业出版社,2003.
    [5]朱英,赵由才,李鸿江.城镇污水处理厂污泥填埋方法与技术分析[J].中国给水排水,2010,26(20):12-15.
    [6]D. Fytili, A. Zabaniotou. Utilization of sewage sludge in eu application of old and new methods-a review [J]. Renewable & Sustainable Energy Reviews,2008,12:116-140.
    [7]Wim Rulkens. Sewage sludge as a biomass resource for the production of energy:overview and assessment of the various options [J]. Energy & Fuels,2008,22(1):9-15.
    [8]Werther J, Ogada T. Sewage sludge combustion [J]. Progress in energy and combustion science,1999,25(1):55-116.
    [9]Mishra V S, Mahajani V V, Joshi J B. Wet Air Oxidation [J]. Industrial & Engineering Chemistry Research,1995,34(1):2-48.
    [10]万志强,邓建利,潘咸峰,张方银,邹宗海.炼油厂剩余污泥湿式氧化处理研究[J].工业水处理,2006,26(1):90-91.
    [11]杨晓奕,蒋展鹏.湿式氧化处理剩余污泥的研究[J].给水排水,2003,29(7):50-54.
    [12]邓文义,严建华,李晓东,王飞,岑可法.流化床内干化污泥燃烧污染物排放特性研究[J].浙江大学学报(工学版),2008,42(10):1805-1811.
    [13]王彬全,麻红磊,金余其,池涌,严建华,岑可法.污泥干化焚烧过程中的能量平衡及经济性分析[J].热力发电,2010,39(7)14-17.
    [14]邱天,张衍国,吴占松.城市污水污泥燃烧特性试验研究[J].热力发电,2003,3:21-28.
    [15]张衍国,奉华,邓高峰,吴占松.城市污水污泥焚烧过程中的重金属迁移特性[J].环境保护,2000,12:35-36.
    [16]侯凤云,吕清刚,矫维红,贺军.污泥颗粒与河砂混合流化特性的实验研究[J].过程工程学报,2007,7(2):223-228.
    [17]侯凤云,吕清刚,那永洁,矫维红,贺军.湿污泥颗粒的流化床干燥实验及模型[J].过程工程学报,2007,7(4):646-651.
    [18]矫维红,那永洁,郑明辉,吕清刚.城市下水污泥焚烧过程中二次污染物排放特性的试验研究[J].环境污染治理技术与设备,2006,7(4):74-77.
    [19]李云玉,吕清刚,朱建国,朱治平.循环流化床一体化污泥干化焚烧工艺的冷态实验研究[J].中国电机工程学报,2010,30(35):1-6.
    [20]负小银,吕清刚,那永洁,矫维红,贺军.循环流化床污泥焚烧一体化工艺的研究与应用[J].环境工程,2007,25(4):56-58.
    [21]Manya J J, Sanchez J L, Abrego J, et al. Influence of gas residence time and air ratio on the air gasification of dried sewage sludge in a bubbling fluidised bed [J]. Fuel,2006,85(14-15): 2027-2033.
    [22]Petersen I, Werther J. Three-dimensional modeling of a circulating fluidized bed gasifier for sewage sludge [J]. Chemical Engineering Science,2005,60(16):4469-4484.
    [23]Gross B, Eder C, Grziwa P, et al. Energy recovery from sewage sludge by means of fluidised bed gasification [J]. Waste Manage,2008,28(10):1819-1826.
    [24]Svanstrom M, Froling M, Modell M, et al. Environmental assessment of supercritical water oxidation of sewage sludge[J]. Resour Conserv Recycl,2004,41(4):321-338.
    [25]张钦明,王树众,沈林华,段百齐.污泥制氢技术研究进展[J].现代化工,2005,25(11):29-32.
    [26]任爱玲,王启山,贺君.城市污水处理厂污泥制活性炭的研究[J].环境科学,2004,25:48-51.
    [27]汪恂.污泥热化学处理的试验研究[J].武汉理工大学学报,2002,24(6):35-37.
    [28]李余增.热分析[M].北京:清华大学出版社,1987.
    [29]Font R, Fullana A, Conesa J. Kinetic models for the pyrolysis and combustion of two types of sewage sludge [J]. Journal Of Analytical And Applied Pyrolysis,2005,74(1-2): 429-438.
    [30]Calvo L F, Otero M, Jenkins B M, et al. Heating process characteristics and kinetics of sewage sludge in different atmospheres [J]. Thermochim Acta,2004,409(2):127-135.
    [31]刘龙茂,陈建林,李娣,齐凯.污泥的热解动力学实验研究[J].环境保护科学,2008,34(5):33-35.
    [32]Scott S A, Davidson J F, Dennis J S, et al. The devolatilisation of particles of a complex fuel (dried sewage sludge) in a fluidised bed [J]. Chemical Engineering Science,2007,62(1-2): 584-598.
    [33]Scott S A, Dennis J S, Davidson J F, et al. Thermogravimetric measurements of the kinetics of pyrolysis of dried sewage sludge [J]. Fuel,2006,85(9):1248-1253.
    [34]Bedyk T, Nowicki L, Stolarek P, et al. Application of the tg-ms system in studying sewage sludge pyrolysis and gasification [J]. Polish Journal Of Chemical Technology,2008,10(1):1-5.
    [35]Wang Z Q, Guo Q J, Liu X M, et al. Low temperature pyrolysis characteristics of oil sludge under various heating conditions [J]. Energy & Fuels,2007,21(2):957-962.
    [36]王兴润,金宜英,王志玉,等.应用TGA-FTIR研究不同来源污泥的燃烧和热解特性[J].燃料化学学报,2007,35(1):27-31.
    [37]Lutz H, Romeiro G A, Damasceno R N, et al. Low temperature conversion of some brazilian municipal and industrial sludges [J]. Bioresource Technology,2000,74(2):103-107.
    [38]Inguanzo M, Dominguez A, Menendez J A, et al. On the pyrolysis of sewage sludge:the influence of pyrolysis conditions on solid, liquid and gas fractions [J]. Journal Of Analytical And Applied Pyrolysis,2002,63(1):209-222.
    [39]Kim Y, Parker W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil [J]. Bioresource Technology,2008,99(5):1409-1416.
    [40]Sanchez M E, Menendez J A, Dominguez A, et al. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge [J]. Biomass & Bioenergy,2009,33(6-7): 933-940.
    [41]Casajus C, Abrego J, Marias F, et al. Product distribution and kinetic scheme for the fixed bed thermal decomposition of sewage sludge [J]. Chemical Engineering Journal,2009,145(3): 412-419.
    [42]何品晶,顾国维,邵立明,李国建.污水污泥低温热解处理技术研究[J].中国环境科学,1996,16(4):254-257.
    [43]李海英.生物污泥热解资源化技术研究[D].天津:天津大学,2006.
    [44]李海英,张书廷,赵新华.城市污水污泥热解温度对产物分布的影响[J].太阳能学报,2006,27(8):835-840.
    [45]邵敬爱.城市污水污泥热解试验与模型研究[D].武汉:华中科技大学,2008.
    [46]翟云波,刘强,李彩亭,等.粒径对污水污泥低温热解产物油特性影响研究[J].湖南大学学报(自然科学版),2008,35(6):62-66.
    [47]Zhai Y B, Liu Q, Zeng G M, et al. Experimental study on the characteristics of sewage sludge pyrolysis under the low temperature conditions [J]. Environ Eng Sci,2008,25(8): 1203-1211.
    [48]林宗虎,魏敦崧,安恩科,等.循环流化床锅炉[M].北京:化学工业出版社,2004.
    [49]Cousins A, Zhuo Y, George A, et al. Development of a bench-scale high-pressure fluidized bed reactor and its sequential modification for studying diverse aspects of pyrolysis and gasification of coal and biomass [J]. Energy & Fuels,2008,22(4):2491-2503.
    [50]吕清刚,牛天钰,朱建国,那永洁.高温煤基燃料的燃烧特性及NOx排放试验研究[J].中国电机工程学报,2008,28(23):81-86.
    [51]李海滨,白秀钢,胡振,等.煤在流化床中的热解——实验研究及数学模型[J].煤化工,1998,2:28-33.
    [52]李海滨,房倚天,王洋,张碧江.煤在流化床反应器中的热解研究进展[J].煤炭转化, 1998,20 (4):9-14.
    [53]Gungor, A. Simulation of emission performance and combustion efficiency in biomass fired circulating fluidized bed combustors [J]. Biomass & Bioenergy,2010,34(4):506-514.
    [54]Schmidt H, Kaminsky W. Pyrolysis of oil sludge in a fluidised bed reactor [J]. Chemosphere,2001,45(3):285-290.
    [55]Shen L, Zhang D K. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed [J]. Fuel,2003,82(4):465-472.
    [56]贾相如,金保升,李睿.污水污泥在流化床中快速热解制油[J].燃烧科学与技术,2009,15(06):528-534.
    [57]贾相如,金保升,李睿.温度对污水污泥流化床热解油成分影响的GC-MS分析[J].热能动力工程,2009,24(5):656-660.
    [58]王俊宏,常丽萍,谢克昌.西部煤的热解特性及动力学研究[J].煤炭转化,2009,32(3):1-5.
    [59]赖艳华,吕明新,马春元,施明恒.程序升温下秸秆类生物质燃料热解规律[J].燃烧科学与技术,2001,7(3):245-248.
    [60]高文学,项友谦,王启,等.城市生活垃圾热解气化动力学参数的实验确定[J].天津大学学报,2010,43(9):834-839.
    [61]Conesa J A, Marcilla A, Prats D, et al. Kinetic study of the pyrolysis of sewage sludge [J]. Waste Management & Research,1997,15(3):293-305.
    [62]Shie J L, Chang C Y, Lin J P, et al. Resources recovery of oil sludge by pyrolysis:kinetics study [J]. Journal Of Chemical Technology And Biotechnology,2000,75(6):443-450.
    [63]奉华,张衍国,邱天,吴占松.城市污水污泥的热解特性[J].清华大学学报(自然科学版),2001,41(10):90-92.
    [64]Ischia M, Perazzolli C, Dal Maschio R, et al. Pyrolysis study of sewage sludge by tg-ms and TG-GC-MS coupled analyses [J]. Journal Of Thermal Analysis And Calorimetry,2007, 87(2):567-574.
    [65]Font R, Fullana A, Conesa J A, et al. Analysis of the pyrolysis and combustion of different sewage sludges by TG [J]. Journal Of Analytical And Applied Pyrolysis,2001, (58-59):927-941.
    [66]Thipkhunthod P, Meeyoo V, Rangsunvigit P, et al. Pyrolytic characteristics of sewage sludge [J]. Chemosphere,2006,64(6):955-962.
    [67]Liu N A, Fan W C, Dobashi R, et al. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere [J]. Journal Of Analytical And Applied Pyrolysis, 2002,63(2):303-325.
    [68]Otero M, Calvo L F, Gil M V, et al. Co-combustion of different sewage sludge and coal:a non-isothermal thermogravimetric kinetic analysis [J]. Bioresource Technology,2008,99(14): 6311-6319.
    [69]Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data [J]. Nature,1964, 201(491):68-69.
    [70]Ahuja P, Singh P C, Upadhyay S N, et al. Kinetics of biomass and sewage sludge pyrolysis:Thermogravimetric and sealed reactor studies [J]. Indian Journal Of Chemical Technology,1996,3(6):306-312.
    [71]Jankes G, Cvetkovic O, Milovanovic N, et al. Rapid pyrolysis of serbian soft brown coals [J]. Therm Sci,2009,13(1):113-125.
    [72]朱之培,高晋升.煤化学[M].上海:上海科学技术出版社,1984.
    [73]杨景标,蔡宁生.应用TG-FTIR联用研究催化剂对煤热解的影响[J].燃料化学学报,2006,34(6):650-654.
    [74]Biagini E, Lippi F, Petarca L, et al. Devolatilization rate of biomasses and coal-biomass blends:an experimental investigation [J]. Fuel,2002,81(8):1041-1050.
    [75]陈晓平,顾利锋,韩晓强,等.污泥及其与煤混合物的热解特性和灰熔融特性[J].东南大学学报(自然科学版),2008,38(6):1038-1043.
    [76]肖军,沈来宏,王泽明,仲晓黎.生物质加压热重分析研究[J].燃烧科学与技术,2005,11(5):415-420.
    [77]Liu Q R, Hu H Q, Zhou Q, et al. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis [J]. Fuel,2004,83(6):713-718.
    [78]白金锋,王勇,胡浩权,郭树才,陈国华.原位担载Fe2S3催化剂煤的热解动力学研究[J].燃料化学学报,2001,29(1):39-43.
    [79]Jones J M, Kubacki M, Kubica K, et al. Devolatilisation characteristics of coal and biomass blends [J]. Journal Of Analytical And Applied Pyrolysis,2005,74(1-2):502-511.
    [80]Meesri C, Moghtaderi B. Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes [J]. Biomass & Bioenergy, 2002,23(1):55-66.
    [81]Ndaji F E, Ellyatt W A T, Malik A A, et al. Temperature programmed combustion studies of the co-processing of coal and waste materials [J]. Fuel,1999,78(3):301-307.
    [82]吴文渊,杨励丹,周定,李静海.煤在热载体流化床中的热解模型[J].燃料化学学报,1994,22(4):406-411.
    [83]魏焕成.基于Matlab的煤发热量计算[J].煤炭技术,2007,26(2):112-114.
    [84]封富,石红红,徐春雨Matlab在工作面煤与瓦斯突出预测中的应用[J].辽宁工程技术大学学报,22:159-160.
    [85]郝称意,程珩.煤粒图像检测的Matlab实现[J].山西农业大学学报(自然科学版)2008,28(3):338-341.
    [86]Arlabosse P, Chitu T. Identification of the limiting mechanism in contact drying of agitated sewage sludge [J]. Drying Technology,2007,25(4-6):557-567.
    [87]Corella J, Orio A, Toledo J M. Biomass gasification with air in a fluidized bed: Exhaustive tar elimination with commercial steam reforming catalysts [J]. Energy & Fuels,1999, 13(3):702-709.
    [88]王同华,胡俊生,夏莉,曲新春.微波热解污泥及产物组成的分析[J].沈阳建筑大学学报(自然科学版),2008,24(4):662-666.
    [89]田禹,赵博研,左薇.传统热源与微波热源热解污泥特性的TG-FTIR分析[J].哈尔滨工业大学学报,2010,42(6):919-924.
    [90]Choung Y H, Cho K C, Choi W J, et al. Attrition of sewage sludge and sludge-based char in a fluidized bed reactor [J]. Korean Journal of Chemical Engineering,2007,24(4):660-663.
    [91]朱建国,吕清刚,牛天钰,宋国良,那永洁.煤粉高温空气燃烧与氮氧化物生成特性[J].工程热物理学报,2009,30(8):1411-1414.
    [92]吕清刚,刘琦,那永洁,赵科,贺军.双流化床中煤的热解特性试验研究[J].中国电机工程学报,2010,30(8):15-19.
    [93]滕海鹏,李诗媛,吕清刚.小麦秸秆流态化燃烧粘结特性实验研究[J].工程热物理学报,2010,31(3):511-514.
    [94]煤的葛金低温干馏试验方法,GB/T 1341-2001.
    [95]刘琦.双流化床中煤热解—气化工艺试验研究[D].北京:中国科学院研究生院,2009.
    [96]廖汉湘.现代煤炭转化与煤化工新技术新工艺实用全书[M].安徽文化音像出版社,2004:611-613.
    [97]白尚显,唐文俊.燃料手册[M].北京:冶金工业出版社,1994.
    [98]吕清刚,刘琦,那永洁,等.双流化床低温煤热解工艺探索[J].中国煤炭,2009,35(6):71-76.
    [99]刘梅华,范耀华.氧化铝活性对石油沥青四组分法分离影响的考察[J].石油沥青,1994,2:1-5.
    [100]肖瑞华.煤焦油化工学[M].北京:冶金工业出版社,2002.
    [101]寿得清,山红红.石油加工概论[M].东营:石油大学出版社,1996.
    [102]温利新, 卢纯青,刘宁,等.采用模拟蒸馏对原油馏分分布的色谱法测定[J].理化检验-化学分册,2010,46(6):630-633.
    [103]温利新,梁结虹,蔡明招.色谱模拟蒸馏方法测试渣油的馏分分布[J].分析测试学报,2007,26(2):270-273.
    [104]张玉贵,李凡,谢克昌,文鹏.煤焦油气相色谱模拟蒸馏的研究[J].焦作工学院学报(自然科学版),2002,21(2):157-160.
    [105]张振华,汪华林, 陈于勤,等.有机固体废弃物的热解处理研究[J].环境污染与防 治,2007,29(11):816-819.
    [106]Bassilakis R, Carangelo R M, Wojtowicz M A. TG-FTIR analysis of biomass pyrolysis [J]. Fuel,2001,80(12):1765-1786.
    [107]吴国光,王祖讷.低阶煤的热重-傅里叶变换红外光谱的研究[J].中国矿业大学学报,1998,27(2):181-184.
    [108]Fonts I, Juan A, Gea G, et al. Sewage sludge pyrolysis in a fluidized bed,2:Influence of operating conditions on some physicochemical properties of the liquid product [J]. Industrial & Engineering Chemistry Research,2009,48(4):2179-2187.
    [109]陈汉平,邵敬爱,杨海平,等.一种生物污泥热解半焦孔隙结构特性[J].中国电机工程学报,2008,28(26):82-86.
    [110]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    [111]Dumpelmann R, Richarz W, Stammbach M R. Kinetic-studies of the pyrolysis of sewage-sludge by TGA and comparison with fluidized-beds [J]. Canadian Journal of Chemical Engineering,1991,69(4):953-963.
    [112]李传统.新能源与可再生能源技术[M].南京:东南大学出版社,2005.
    [113]谭洪.生物质热裂解机理试验研究[D].杭州:浙江大学,2005.
    [114]刘军.有机化学[M].武汉:武汉理工大学出版社,2009.
    [115]Jegers H E, Klein M T. Primary and secondary lignin pyrolysis reaction pathways [J]. Industrial & Engineering Chemistry Process Design and Development,1985,24(1):173-183.
    [116]Adrian M. Cunliffe, Paul T. Williams. Composition of oils derived from the batch pyrolysis of tyres [J]. Journal of Analytical and Applied Pyrolysis,1998, (44):131-152.
    [117]李海英,张书廷,赵新华,等.城市污水污泥热解实验及产物特性[J].天津大学学报,2006,39(6):739-744.
    [118]Fonts I, Juan A, Gea G, Et al. Sewage sludge pyrolysis in fluidized bed,1:Influence of operational conditions on the product distribution [J]. Industrial & Engineering Chemistry Research,2008,47(15):5376-5385.
    [119]Fonts I, Azuara M, Gea G, et al. Study of the pyrolysis liquids obtained from different sewage sludge [J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):184-191.
    [120]王素兰,张全国,李继红.生物质焦油及其馏分的成分分析[J].太阳能学报,2006,27(7):647-651.
    [121]编委会.煤焦油生产新工艺新技术与操作安全及质量检验标准规范实用手册[M].北京:北方工业出版社,2007.
    [122]董美玉,何亦华,朱子彬,等.煤快速加氢热解焦油组成的分析[J].华东理工大学学报,2000,26(3):309-314.
    [123]尤孝方,李晓东,严建华,等.流化床焚烧塑料垃圾多环芳烃的生成特性[J].燃烧科学与技术,2003,9(4):376-380.
    [124]赵承美,余国忠,孙俊民,等.燃煤电厂烟气降温过程中多环芳烃分布特征[J].中国环境监测,2010,26(5):65-69.
    [125]刘强.污水污泥热化学特性分析及低温热解产物研究[D].长沙:湖南大学,2008.
    [126]尹炳奎.污泥活性炭吸附剂材料的制备及其在废水处理中的应用[D].上海:上海交通大学,2007.
    [127]Pietrzak R. Carbonaceous materials obtained from sewage sludge for NO2 removal under wet conditions at room temperature [J]. Acta Physica Polonica A,2010,118(3):487-492.
    [128]Deng L Y, Xu G R, Li G B. Surface properties and adsorption characteristics to methylene blue and iodine of adsorbents from sludge [J]. Water Science and Technology,2010, 62(8):1705-1712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700