诱变前后混合微生物对铜、锌硫化矿浸出能力比较及其纯种分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物浸矿是多种微生物共同作用的复杂生化过程。大部分浸矿微生物是化能自氧型,生长速度慢,浸矿效率低。如何提高它们对金属离子的浸出效率是工业应用的难题。目前,普遍的方法是从浸矿混合微生物中分离纯培养,对其诱变处理。但在工业生产中常常应用混合微生物,其中很大一部分的微生物得不到纯培养,因此单一菌种诱变方法来选育浸矿微生物有明显的局限性。
     本研究采用几种理化诱变剂及其组合,对从江西、云南、广东和台湾等不同地点采集的浸矿混合微生物进行单一或复合诱变,以获得生长快和浸矿效率高的混合培养物。同时,对诱变后的混合微生物进行了菌株分离与纯化、16S rDNA鉴定和微生物群落的生态分析。结果如下:
     通过混合微生物诱变和多次浸黄铜矿精矿实验,筛选得到了浸出Cu~(2+)能力较强的混合微生物A、B、C、D和E。
     ①在加入矿浆浓度为1%黄铜矿精矿的9K培养基中培养40 d,混合微生物A、B、C、D和E浸出的Cu~(2+)浓度比对照分别增加61.40%、125.57%、1.45%、58.98%和149.98%,浸出率分别提高17.56%、35.90%、0.41%、16.87%和42.88%。说明混合培养物诱变可提高微生物浸黄铜矿精矿的活性。
     ②在加入矿浆浓度为10%黄铜矿精矿的9K培养基中培养40 d,混合微生物A、B、C、D和E浸出的Cu~(2+)浓度比对照分别增加49.46%、71.68%、22.82%、44.85%和97.57%,浸出率分别提高3.65%、5.29%、1.69%、3.31%和7.20%。说明混合培养物诱变可提高微生物浸黄铜矿精矿的活性。
     ③在加入矿浆浓度为20%的黄铜矿精矿培养基中培养40 d,在9K和leathen培养基中,混合微生物E浸出Cu~(2+)浓度比对照分别增加87.22%和79.24%,浸出率分别提高3.60%和3.59%,表明混合微生物E的浸矿性能稳定。
     ④Cu~(2+)耐受实验表明,混合微生物E耐受Cu~(2+)能力明显提高,提示其具有工业应用的潜力。
     ⑤混合微生物A、B、C、D和E在9K培养基上生长到稳定期,它们的生长速度比未诱变的混合微生物快1-2d。混合微生物在含黄铜矿精矿的培养基中保存比在不加矿的培养基中保存,其生长到稳定期快1-2 d左右,表明加入选择性压力可以保持浸矿微生物的生长活性。
     从不同地点采集的微生物,经过黄铜矿和闪锌矿的长期驯化后,通过混合微生物的复合诱变,得到浸出闪锌矿精矿能力强的混合微生物B、D和E。
     ①在加入矿浆浓度为1%闪锌矿精矿的9K培养基中培养40 d,混合微生物A、B、C、D和E浸出的Zn~(2+)浓度比对照分别增加8.06%、85.97%、-2.39%、77.61%和117.01%;浸出率分别提高1.54%、16.43%、-0.46%、14.83%和22.37%。
     ②在加入矿浆浓度为10%闪锌矿精矿的9K培养基中培养40 d,混合微生物B、D和E浸出Zn~(2+)浓度比对照分别增加49.14%、44.86%和54.77%;浸出率分别提高2.27%、2.07%和2.53%。
     ③在加入矿浆浓度为20%闪锌矿精矿的9K培养基中培养40 d,混合微生物B、D和E在9K培养基中培养,Zn~(2+)浸出率分别提高2.10%、1.59%和2.24%;在leathen培养基中,Zn~(2+)浸出率分别提高2.03%、1.89%和2.56%
     ④B混合微生物适合在矿浆浓度4%-16%下生长,E混合微生物适合在4%-32%矿浆浓度下生长,说明混合微生物B、E耐受高矿浆浓度,有良好的工业应用前景。
     比较了诱变前后四个不同样品中微生物群落的多样性。结果表明,四个样品中微生物群落结构可以分为嗜铁钩端螺旋菌组、嗜酸氧化亚铁硫杆菌组和嗜酸氧化硫硫杆菌和喜温硫杆菌三大组。尽管随着培养条件的改变,样品中微生物的群落结构存在一定的变化,但在本实验条件下,微生物浸出体系中最主要的优势菌种仍然是嗜酸氧化亚铁硫杆菌和嗜酸氧化硫硫杆菌。
     诱变处理使混合微生物中的嗜酸氧化硫硫杆菌(2~#菌株)由原来的次要菌株变成主要菌株,在含黄铜矿和闪锌矿培养基中分别占微生物总数的69%和57%,可能在微生物浸矿中起主要作用。
     诱变前混合微生物中嗜酸氧化亚铁硫杆菌(1~#菌株)生长量最少,诱变处理显著提高了它在微生物群落中的数量。在含黄铜矿精矿和闪锌矿精矿培养基中培养时,它分别占微生物总数的20%和29%,可能在微生物浸矿中起重要作用。
     在混合微生物样品中,进行微生物单菌株分离实验:
     ①分离出一株最适生长温度40℃,最适生长起始pH值为1.5的螺旋菌,16S rDNA序列分析表明,该菌为Leptospirillum ferriphilum。
     ②分离出一株最适生长温度45℃,最适生长起始pH值为1.8的杆菌,16S rDNA序列分析表明,该菌为Acidithiobacillus caldus。
     ③分离出一株最适生长温度53℃,最适生长起始pH值为2.0的杆菌,16S rDNA序列分析表明,该菌为Sulfobacillus thermosulfidooxidans。
     ④分离出K1和K2菌株,经初步鉴定分别为嗜酸氧化亚铁硫杆菌和嗜酸氧化硫硫杆菌。
Bioleaching is a complicated biochemical process in which a number of microbial genera are involved.Most of bioleaching microorganisms are chemoautotrophic.They grow slowly and have low efficiency in metal -leaching.How to improve the leaching efficiency is a problem of industrial applications.Up to date,most popular strategy is mutation of single microorganism isolated from mixed microorganisms of bioleaching.However,microorganisms for bioleaching industry are always in mixed form,and mostly,their pure culture may not be obtained. Therefore,there are limitations on mutation breed of single microorganism.
     In present study,microbial samples were collected from acid mine drainage and spring of Jiangxi,Yunnan,Guangdong and Taiwan province, mixed and enriched.To obtain higher growth rate and higher leaching efficiency-mixed cultures,the mixed microorganisms were mutated using several physical and chemical mutagens and their combinations. Furthermore,single strain isolation,characterization of 16S rDNA,and ecological analysis were performed for the screened mixed cultures.The results are as follows:
     The mixed cultures with higher concentrations of leaching Cu~(2+), designated A,B,C,D and E,were screened after mutation and leaching tests of chalcopyrite.
     ①The concentrations of leaching Cu~(2+)for mixed culture A,B,C, D and E were increased by 61.40%,125.57%,1.45%,58.98%and 149.98%and the leaching rates of Cu~(2+)in the cultures were correspondingly 17.56%,35.90%,0.41%,16.87%and 42.88%higher compared with the control,40 d after leaching in 9K medium containing 1%chalcopyrite pulp.The results indicate that Cu~(2+)leaching activities of mixed organisms can be enhanced by physical and chemical mutations.
     ②The amount of leaching Cu~(2+)for mixed culture A,B,C,D and E was increased by 49.46%,71.68%,22.82%,44.85%and 97.57%, respectively,with 3.65%,5.29%,1.69%,3.31%and 7.20%higher than the control in Cu~(2+)leaching rates,40 d after leaching in 9K medium each containing 10%Chalcopyrite pulp,again indicating that physical and chemical mutations may improve Cu~(2+)leaching activities of mixed organisms.
     ③When added with 20%chalcopyrite pulp and inoculated in 9K and Leathen mediums for 40 d,mixed culture E extracted 87.22%and 79.24%more Cu~(2+)from chalcopyrite and had 3.6%and 3.59 higher Cu~(2+) leaching rates than the unmutated control,suggesting the acquired higher characteristics of Cu~(2+)-leaching is stable.
     ④Mixed culture E was more resistant to Cu~(2+)than the unmutated control,suggesting that it possesses potentials for industrial applications.
     ⑤The growth of mixed culture A,B,C,D and E in 9k medium was 1-2 d higher than that of the unmutated control and the mixed cultures conserved on chalcopyrite grew 1-2 d faster than those not conserved on chalcopyrite.These results indicate that growth activity of leaching microorganisms can be kept by selective stress.
     After three rounds of leaching tests on sphalerite,mixed cultures B, D and E with higher efficiency of Zn~(2+)-leaching were obtained from mixed microorganisms A,B,C,D and E mentioned above.
     ①Compared with the unmutated control,the concentrations of leaching Zn~(2+)in 9K medium added with 1%sphalerite pulp for mixed cultures A,B,C,D and E were increased by 8.06%、85.97%、-2.39%、77.61%and 117.01%,respectively,and the leaching rates of Zn~(2+)in the cultures were correspondingly 1.54%、16.43%、-0.46%、14.83%and 22.37%,indicating that mutation against mixed microorganisms may improve leaching effects.
     ②Compared with the unmutated control,the concentrations of leaching Zn~(2+)for mixed culture B,D and E inoculated in 9K medium with 10%sphalerite pulp were increased by 49.14%、44.86%and 54.77%, and the leaching rates of Zn~(2+)in the cultures were correspondingly 2.27%、2.07%and 2.53%,,respectively.
     ③When added with 20%sphalerite pulp and inoculated for 40 d, mixed culture B,D and E had 2.10%、1.59%and 2.24%higher Zn~(2+) leaching rates in 9K medium and 2.03%、1.89%and 2.56%higher Zn~(2+) leaching rates in Leathen medium than the unmutated control.
     ④Mixed culture B could adjust to 4%-16%pulp of sphalerite,and mixed culture E could adjust to 32%pulp of sphalerite.These results indicate that B and E are more tolerant to high concentrations of sphalerite pulp,suggesting that they have brighter prospects on industrial applications than D.
     Diversity of microbial clones of CK,CKCu,Bcu and BZn were compared in this section.The results showed that the microbial populations of the four samples were categorized into three groups,i.e, Leptospirillum ferriphilum,Acidithiobacillus ferrooxidans,Thiobacillus thiooxidant and Acidithiobaeillus caldus.With the culture conditions varying,some changes may occur in the population structures of the mixed cultures.However,in the present study,the dominant microorganisms of the bioleaching systems were still Thiobacillus thiooxidant and Acidithiobacillus caldus.
     The growth quantity of Acidithiobacillus ferrooxidan among mixed microoganisms is the smallest before mutation.After mutation,its quantity ratio in the culture of chalcopyrite and sphalerite is 20%and 29%respectively of all microorganisms and it propably plays an important role in bioleaching
     The growth quantity of Thiobacillus thiooxidant among mixed microoganisms is small before mutation.After mutation,its quantity ratio in the culture of chalcopyrite and sphalerite is 69%and 57% respectively of all microorganisms and it propably plays an important role in bioleaching.
     ①A strain of Leptospirillum ferriphilum was isolated,and characterized by sequence analysis of 16S rDNA.Its optium growth temperature was 40℃,and its optium growth start pH was 1.5.
     ②A strain of Acidithiobacillus caldus was isolated,and characterized by sequence analysis of 16S rDNA.Its optium growth temperature was 45℃,and its optium growth start pH was 1.8.
     ③A strain of Sulfobacillus thermosulfidooxidans was isolated,and characterized by sequence analysis of 16S rDNA.Its optium growth temperature was 53℃,and its optium growth start pH was 2.0.
     ④No.1 strain of Acidithiobacillus ferrooxidans and No.2 strain of Thiobacillus thiooxidant were isolated.
引文
[1]王松森.细菌冶金[J].生物学通报,1994,29(4):2-3
    [2]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998
    [3]刘缨,林建群,颜望明.浸矿细菌-钩端螺旋菌属菌株研究进展[J].微生物学通报,2006,33(2):151-155
    [4]闰森,童雄.强化处理硫化铜矿物微生物浸出过程研究[J].国外金属矿选矿,2000,11:13-18
    [5]Arbiter N,Fletcher A W.Copper hydrometallurgy evolution and milestones[J].Mining Engineering.1994,(2):118-123.
    [6]Watling H R.The bioleaching of sulphide minerals with emphasis on copper sulphides B review[J].Hydrometallurgy,2006,84(2):81-108
    [7]Bartos P J.SX-EW copper and the technology cycle.Resources Policy,2002,28(3-4):85-94
    [8]National Research Council.Evolutionary and Revolutionary Technologies for Mining[M].National Academy Press,Washington DC,2001
    [9]Watling H R.The bioleaching of sulphide minerals with emphasis on copper sulphides A review[J].Hydrometallurgy,2006,84(1):81-108
    [10]Harrison J R.Genomic and physiological diversity amongst strans of T.f genomic comparison with T.t[J].Arch Microbiol,1982,131(1):68-76
    [11]Izama H M,Sttzuki I J.Bacterial leaching of a sulphide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans shake flask studies[J].Bioeng,1988,32:110-116
    [12]Orris P R,Marsh R M,Linstrom E B.Growth of mesophilic and thermophilic acidophlic bacteria on sulfur and tetrathionate[J].Appl Biochem Biotechnol,1986,8:318-329
    [13]Schrenk M O,Edwards K J,Goodman R M,et al.Distribution of T.ferrooxidans and L.ferrooxidans:Implications for generation of acid mine drainage[J].Science,1998,279(6):1519-522
    [14]Tyson G W,Lo I,Baker B J,et al.Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp.nov.from an acidophilic microbial community[J].Appl Environ Microbiol,2005,71(10):6319-6324
    [15]Awlings D E.Mesophilic,autotrophic bioleaching bacteria:description,physiology and role.In:Rawlings,D.E.(Ed.),Biomining:Theory,Microbes and Industrial Processes.Springer Verlag,Berlin,1997,229-245
    [16]Orris P R.Thermophiles and bioleaching.In:Rawlings,D.E.(Ed.),Biomining:Theory,Microbes and Industrial Processes.Springer Verlag,Berlin,1997.247-258
    [17]Hallberg K B,Johnson D B.Biodiversity of acidophilic prokaryotes[J].Advances in Applied Microbiology,2001,49:37-84
    [18]Li Hong-Xu,Wang Dian-Zuo.Review of investigation on microorganism behaviors in ore bioleaching[J].Nonferrous metals,2003,55(2):59-63
    [19]Norris P R,Barr D B.Growth and iron oxidation by moderate thermophiles[J].FEMS Microbiol Lett,1985,28:221-24
    [20]Konig H,Skorko R J.Glycogen in thermoacidophlic archaebacteria of the genera Sulfolobus,Thermoproteus,Desulfurococcus and Thermococcus[J].Arch Microbiol,1982,132:297-303
    [21]Rawlings D E,Tributsch H,Hansford G S.Reasons why leptospirillum like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores[J].Microbiology,1999,145:5-13
    [22]Dopson M,Lindstorm E B.Potential role of Thiobacillus caldus in arsenopyrite bioleaching[J].Appl Environ Microbiology,1999,65:36-40
    [23]彭艳平,余水静.我国生物冶金研究的发展概况[J].矿业快报,2006,452(12):8-10
    [24]周吉奎,钮因健.硫化矿生物冶金研究进展[J].金属矿山,2005,346(4):24-30
    [25]周德庆.微生物学教程[M].北京:高等教育出版社,1993
    [26]傅建华.硫化铜矿浸矿细菌超微结构与吸附机理及SFORESE的纯化[D].中南大学博士学位论文,2004
    [27]Amman R,Ludwig I W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiol Rev,1995,59:143-169
    [28]Harrsion A P.Characteristics of Thiobacillus ferrooxidans and other ironoxidizing bacteria with emphasis on nucleic acid analysis[J].Biotechnology Applied Biochemistry,1986,8:249-257
    [29]Wood A P,Kelly D.Growth and sugar metabolism of a thermoacidophilic iron-oxidizing mixotrophic bacterium[J].J Gen Microbiol Lett,1984,130: 13-37
    [30]陈顺方,桑正林.生物技术在矿业上的应用[J].湿法冶金,1999,(2):1-4
    [31]Deng T L,Liao M X,Wang M H,et al.Investigations of accelerating parameters for the biooxidation of low grade refractory gold ores[J].Minerals Engineering,2000,13(14-15):1543-1553
    [32]Deng T L,Liao M X.Gold recovery from the refractory flotation concentrate combined biooxidation and thiourea leach[J].Hydrome- tallurgy,2002,63:249-257
    [33]汪模辉,邓天龙,廖梦霞.含砷金矿的磁场强化生物预氧化[J].应用化学,2000,17(4):362-365
    [34]廖梦霞,邓天龙,汪模辉,等.难处理含砷金精矿的生物预氧化工艺研究[J]矿产综合利用,1998,(6):17-20
    [35]廖梦霞.低品难处理原生金矿的生物预氧化-无氰法提金绿色工艺研究[D].成都理工大学硕士学位论文,1999
    [36]徐晓军,宫磊,孟云生,等.硫杆菌的化学诱变及对低品位黄铜矿的浸出[J].金属矿山,2004,(8):42-44
    [37]邹平,窦明民,杜强.应用氧化亚铁硫杆菌去除湿法炼锌浸出液中铁的研究[J].湿法冶金,2000,19(1):21-26
    [38]龙中儿,黄运红,蔡昭铃,等,耐低pH的氧化亚铁硫杆菌选育及其氧化硫酸亚铁的初步研究[J].过程工程学报,2002,2(5):415-420
    [39]张广积,方兆珩.驯化氧化亚铁硫杆菌从镍黄铁矿中浸出镍[J].过程工程学报,2001,1(3):285-288
    [40]徐家振,金哲男,焦万丽.生物法贫化铜熔炼炉渣[J].有色矿冶,2001,17(1):28-30
    [41]熊英,胡建平,林滨兰,等.氧化亚铁硫杆菌的驯化与诱变选育[J],矿产综合利用,2001,(6):17-31
    [42]李宏煦,刘晓荣,邱冠周,等.驯化氧化亚铁硫杆菌浸出废铜矿中铜的研究[J]矿冶工程,2001,21(1):40-42
    [43]杨洪英,杨立,魏绪钧,等.耐热耐砷氧化亚铁硫杆菌(SH-1)的驯化和特性研究[J].有色金属,2000,52(3):55-57
    [44]Henry L E.Past,present and future of biohydrometallurgy[J].Hydrometallurgy,2001,59:127-139
    [45]陈世.生物浸出及其在有色金属冶金中的应用[J].上海有色金属,2000,21(3):137-146
    [46]李廷梁.俄罗斯难浸金矿的生物冶金技术[J].贵金属,1998,19(1):54-56
    [47]李俊萌.难处理金矿石预处理工艺研究与应用现状[J].有色矿山,2002,31(5):21-29
    [48]杨少华,杨凤丽,余新阳.难处理金矿石的细菌氧化机理及影响因素[J].湿法冶金,2006,25(2):57-61
    [49]王昌汉,童雄等,才锡民.矿业微生物与铀铜金等细菌浸出[M].长沙:中南大学出版社,2003
    [50]刘大星,蒋开喜.王成彦.铜湿法冶金技术的现状及发展趋势[J].有色冶炼,2002,29(4):1-5
    [51]孙业志,吴爱祥,黎建华.微生物在铜矿溶浸开采中的应用[J].金属矿山,2001,(1):3-6
    [52]杨红晓,周爱东,徐家振.生物浸出技术在铜工业中的应用[J].有色矿冶.2003,19(5):15-18
    [53]李宏煦,邱冠周,胡岳华,等.大宝山废铜矿细菌浸出铜的研究[J].矿产综合利用,2000,(5):31-33
    [54]中国有色金属报[N].2005-11-8
    [55]中国化工报[N]2005-8-17
    [56]徐家振,金哲男.重金属冶金中的微生物技术[J].有色矿冶,2001,(2):31-34
    [57]钟宏.生物药剂在矿物加工和冶金中的应用[J].矿产保护与利用,2002,(3):28-32
    [58]童雄.微生物浸矿的理论与实践[M].北京:冶金工业出版社,1997
    [59]王营茹,钟康年,魏以和.难浸金矿细菌氧化预处理工艺流程的优化[J].金属矿山,2003(10):40-42
    [60]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1997
    [61]王恩德.环境资源中的微生物技术[M].北京:冶金工业出版社,1997
    [62]王康林,汪模辉,蒋金龙.难处理金矿石的细菌氧化预处理研究现状[J].黄金科学技术,2001,9(1):9-23
    [63]王玉棉,李军强.微生物浸矿的技术现状及展望[J].甘肃冶金,2004,26(1):36-39
    [64]陶德宁.生物浸出和生物氧化技术在中国的研究与应用[J].湿法冶金,2003,22(1):56-56
    [65]刘陶安,周星火,吕俊文.某水冶厂技改设计复杂地形的改造与利用[J].铀矿冶,2004,23(2):93-96
    [66]樊保团,蔡春晖,刘建,等.抚州铀矿石细菌渗滤浸出扩大试验[J],铀矿冶,2006,25(3):127-132
    [67]蔡春晖.抚州矿铀矿石渗滤浸出工业性试验研究[J].铀矿冶,2002,21(2):85-88
    [68]钟平汝,李铁球,毛拥军,等.渗滤浸出法处理抚州铀矿石[J].铀矿冶,2004,23(1):13-17
    [69]肖芳欢.三二0铀矿床改用留矿淋浸采矿法可行性初探[J].铀矿开采,1990,(1):7-11
    [70]殷志勇,成海芳,张文彬.生物技术在湿法冶金领域的应用现状及研究趋势[J].湿法冶金,2006,25(3):113-116
    [71]王淀佐,李宏熙,阮仁满,等.硫化矿的生物冶金及其研究进展[J].矿冶,2002,11(增刊):8-12
    [72]刘建,樊保团,张传敬.抚州铀矿细菌堆浸半工业试验研究[J].铀矿冶,2001,20(1):15-27
    [73]Colmer A R,Hinke M E.The role of microorganisms in acid mining drainage.A preliminary report[J].Science,1947,106:253-256
    [74]Needham J,Gwei-Djen L.Science and civilization in China[A].In:Chemistry and Chemical Technology:Part Ⅱ.Spagyrical Discovery and Invention:Magisteries of Gold and Immortality vol.5,Univ.Press,Cambridge(1974)pp.25,250
    [75]Pesic B,Biohydrometallurgical Technologies[A].Volume I,ed,Torma,AE et al,A Publication of TMS 1993,545-560
    [76]廖辉伟.铜资源的利用及其发展[J].新技术新工艺,2002,(1):34-36
    [77]李浩然,冯雅丽.微生物冶金的新进展[J].冶金信息导刊,1999,(3):29-33
    [78]裘荣庆.微生物在采铜工业中的应用[J].应用微生物,1983,(6):23-30
    [79]Tiller-Jeffery R E,Watling H R,Browner R E,et al.Microbial versus chemical leaching of chalcopyrite concentrater quantitative mineralogical investigation.Proc.Bac-Min Conference(Bendigo).Aus.I.M.M,Melbourne,2004:57-62
    [80]杨红晓,周爱东,徐家振.生物浸出技术在铜工业中的应用[J].有色矿冶,2003,19(5):15-18
    [81]Henr Y I,Ehrhch.Past,present and future of biohydrometallurgy[J].Hydromctallury.2001,59:127-134
    [82]钟慧芳.浸锰微生物及其浸锰之研究[J].应用微生物,1986,(6):4-9
    [83]欧津,李维卿,钟慧芳.贫铀矿石细菌浸出的研究[J].微生物学报,1977,17(1):11-20
    [84]Silver M,Torma A E.Oxidation of metal sulfides by Thiobaeillus ferrooxodans grown on diggerent substrates[J].Can.J.Microbio,1974,(20):141-147
    [85]袁宗仪.应用矿业生物工程技术回收利用难选矿产资源[J].湿法冶金,1998,(3):6-13
    [86]Whittington B,Mcdonald R,Johnson J,et al.Pressure acid leaching of Bulong nickel laterite ore,PartⅠ:Effect of water quality[J].Hydrometallurgy,2003,70:31-46
    [87]龚文琪,魏鹏,雷绍民.微生物技术及21世纪矿产资源开发[J].中国非金属矿工业导刊,2000,(5):25-28
    [88]张晓云.微生物在矿物与金属工业中的应用[J].矿业快报,2002,(4):19-21
    [89]李浩然,冯雅丽.微生物冶金的新进展[J].冶金信息导刊,1999,(3):29-33
    [90]廖梦霞,邓天龙.难处理硫化矿生物湿法冶金研究进展(Ⅰ)微生物氧化工艺技术研究[J].稀有金属,2004,28(4):767-770
    [91]Colmer A R,Temple K L,Hinkle M E.An iron-oxidizing bacterium from the acid mine drainage of some bituminous coal mines[J].Journal of Bacteriology,1950,59:317-328
    [92]Plumb J J,Gibbs B,Stott M B,et al.Enrichmentand characterrisation of thermophilic acidophiles for the bioleachingof mineral sulphides[J].Minerals Engineering,2002,15,787-794
    [93]Robertson W J,Kinnunen P H M,Plumb J J,et al.Moderately thermophilic iron oxidising bacteria isolated from a pyritic coaldeposit showing spontaneous combustion[J].Minerals Engineering,2002,15:815-822.
    [94]Keeling S E,Davies K L,Johnson J A,et al.Isolation and phenoltypic charaeterrization of Australian miningmicrobes from a spent heap[A].Proc.Bac Min Conference(Bendigo).Aus IMM,Melbourne,2004,35-39
    [95]Demergasso C S,Galleguillos P A,Escudero G,et al.Molecular characterization ofmicrobial populations in a low-grade copper ore bioleaching test heap[J].Hydrometallurgy,2005,80:241-253
    [96]Hallberg K B,Johnson D B.Novel acidophiles isolated frommoderately acidic mine drainage waters[J].Hydrometallurgy,2003,71:139-148
    [97]Dopson M,Baker-Austin C,Hind A.Characterization of ferroplasma isolates and Ferroplasma acidarmanus sp.Nov extreme Acidophiles from acid minedrainage and industrial bioleaching environments[J].Applied and Environmental Microbiology,2004,70:2079-2088
    [98]Gonzalez-Toril E,Llobet-Brossa E,Casamayor E O,et al.Microbial ecology of an extreme acidicenvironment,the Tinto River[J].Applied and Environmental Microbiology,2003,69:4853-4865
    [99]Okibe N,Gericke M,Hallberg K B,et al.Enumeration and characterization of Acidophilic microorganisms isolated from a pilot plant stirred tank bioleaching operation[J].Applied and Environmental Microbiology,2003,69:1936-1943
    [100]Atkinson T,Cairns S,Cowan D A,et al.A microbiological survey of Montserrat Islandhydrothermal biotopes[J].Extremophiles,2000,4:305-313
    [101]Burton N P,Norris P R.Microbiology of acidic,geothermalsprings of Montserrat:environmental rDNA analysis[J].Extremophiles,2000,4:315-320
    [102]Simmons S,Norris P R.Acidophiles of saline water at thermalvents of Vulcano,Italy[J].Extremophiles,2000,4:201-207
    [103]Hallberg K B,Johnson D B.Biodiversity of Acidophilic prokaryotes[J].Advances in Applied Microbiology,2001,49:37-84
    [104]Johnson D B,Bacelar-Nicolau P,Okibe N,et al.Role of pure and mixed cultures of Gram-positive eubacteria in mineral leaching.In:Ciminelli,V.S.T.,Garcia,O.(Eds.),Proc.Intl.Biohydrometallurgy Symposium(Ouro Preto).Part A[J].Elsevier,Amsterdam,2001,461-470
    [105]Okibe N,Johnson D B.Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH controlled bioreactors:significance of microbial interactions[J].Biotechnology and Bioengineering,2004,8:574-583
    [106]罗祖虞.微生物冶金历史、现状、展望[M].昆明理工大学真空冶金所学术报告会,2001
    [107]魏以和,王军.矿物生物技术的微生物学基本方法[J].国外金属矿选矿,1996,(1):14-27
    [108]Markosyan G E.A new iron-oxidizing bacterium Leptospiirillum ferrooxidans nov.gen.sp[J].Biol J Armenia,1972,25:26-29
    [109]Coram N J,Rawlings D E.Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp.nov.dominates South African commercial biooxidation tanks that operate at 40℃[J].Appl Environ Microbiol,2002,68:838-845
    [110]Gene W.Tyson,Ian L O,Allen E E,et al.Banfield genome directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp.nov.from an Acidophilic microbial community[J].Appl Environ Microbiol,2005,71(10):6319-6324
    [111]Barreto M,Quatrini R,Bueno S,et al.Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence[J].Hydrometallurgy,2003,71:97-105
    [112]Holmes D S,Barreto M,Valdes J,et al.Whole genome sequence of Acidithiobacillus ferrooxidans:metabolic reconstruction,heavy metal resistance and other characteristics.In:Ciminelli,V.S.T.,Garcia,O.(Eds.),Biohydrometallurgy:Fundamentals,Technology and Sustainable Development Part A.Elsevier,Amsterdam,2001.237-251
    [113]Leduc L G,Ferroni G D.The chemolithotrophic bacterium Thiobacillus ferrooxidans[J].FEMS Microbiology Reviews,1994,14:103-120
    [114]Quatrini R,Veloso F,Jedlicki E,et al.A model for iron uptake in Acidithiobacillus ferrooxidans based upon genome analysis.In:Tzesos,M.,Hatzikioseyan,A.,Remoundaki,E.(Eds.),Biohydrometallurgy:A Sustainable Technology in Evolution(Athens,2003)[M].National Technical University of Athens.Athens,2004:989-995
    [115]Rawlings D E.The molecular genetics of mesophilic,acidophilic,chemolithotrophic,iron or sulfur-oxidizing microorganisms.In:Amils,R,Ballester,A.(Eds.),Proc.Intl.Biohydrometallurgy Symposium(Madrid,Spain),Part B[J].Elsevier,Amsterdam,1999.3-20
    [116]Rawlings D E.The molecular genetics of Thiobacillus ferrooxidans and other mesophilic,acidophilic,chemolithotrophic,iron- or sulfur-oxidizing bacteria[J].Hydrometallurgy,2001,59:187-201
    [117]Rawlings D E,Kusano T.Molecular genetics of Thiobacillus ferrooxidans[J].Microbiological Reviews,1994,58:39-55
    [118]Valdes J,Jedlicki e,Holmes D S.Sulfur assimilation in Acidithiobacillus ferrooxidans.In:Tzesos,M.,Hatzikioseyan,A,Remoundaki,E.(Eds.),Biohydrometallurgy:A Sustainable Technology in Evolution(Athens,2003)[M].National Technical University of Athens,Athens,2004:1187-1194
    [119]裘荣庆.微生物冶金的应用和研究现状[J].国外金属矿选矿,1994,31(8):45-49
    [120]李学亚,叶茜.微生物冶金技术及其应用[J].矿业工程,2006,4(2):49-51
    [121]张东晨,张明旭,陈清如.脱硫微生物氧化亚铁硫杆菌遗传特性的分子生物学试验[J].煤炭学报,2006,31(1):104-107
    [122]徐晓军,孟运生,宫磊等.氧化亚铁硫杆菌紫外线诱变及对低品位黄铜矿的浸出[J].矿冶工程,2005,25(1):34-36
    [123]赵清,刘相梅,詹杨,等.一株高效抗砷喜温硫杆菌工程菌的构建[J].微生 物学报,2005,45(5):675-679
    [124]刘清,徐伟昌,聂春龙.我国浸矿微生物研究的发展概况[J].南华大学学报,2003,17(1):21-24
    [125]Peng J B.Expression of heterogenous arsenic resistance gens in the obigately autotrophic biomining bacterium Thiobacillus ferroxidans[J].Appl Eniviron Microbiol,1994,60(7):2653-2656
    [126]Peng J B.Solid medium for genetic manipulation of Thibacillus ferrooxidans [J].J Gen Appl Microbiol,1994,40(1):243-253
    [127]刘振盈,颜望明,徐海岩,等.氧化亚铁硫杆菌质粒pTf-52限制图谱和嵌合质粒pSDF-1的构建[J].山东大学学报,1990,25(3):389-394
    [128]刘振盈,颜望明.氧化亚铁硫杆菌Tf-55基因文库的构建[J].山东大学学报,1993,28(3):358-364
    [129]刘振盈,颜望明.多能硫杆菌RubisCO基因的同源性分析[J].微生物学报,1997,37(3):179-183
    [130]徐海岩,刘振盈.抗砷载体的构建及其在氧化亚铁硫杆菌中的表达[J].应用与环境生物学报,1995,1(3):238-243
    [131]李宏煦,王淀佐.生物冶金中的微生物及其作用[J].有色金属,2003,55(2):58-63
    [132]柳建设,王兆慧,耿梅梅.微生物浸出中微生物一矿物多相界面作用的研究进展[J].矿冶工程,2006,26(1):40-44
    [133]Franzmann P D,Haddad C M,Hawkes R B,et al.Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea:application of the Ratkowsky equation[J].Minerals Engineering,2005,18:1304-1314
    [134]Tributsch H.Direct versus indirect bioleaching[J].Hydro-metallurgy.2001,59:177-185
    [135]Edel-Hermann V,Dreumont C,Perez-Piqueres A,et al.Terminal restriction fragmentlength polymorphism analysis of ribosomal RNA genes to assess changes in fungalcommunity structure in soils[J].FEMS Microbiology Ecology,2004,47(3):397-404
    [136]刘维平.湿法冶金新技术进展[J].矿冶工程,2003,23(5):39-471
    [137]和致中,彭谦,陈俊英.高温菌生物学[M].北京:科学出版社,2001
    [138]嗜酸氧化亚铁硫杆菌及其活性的基因芯片检测方法.省级标准
    [139]李浩然,冯雅丽.微生物冶金的新进展[J].冶金信息导刊.1999(3):29-33
    [140]Arpad E,Torma.Challenges in Mineral Processing[M].Littlcton,Colorado.1989.P:550-563
    [141]方兆衍.生物氧化浸矿反应器的研究进展[J].黄金科学技术,2002,10(6):1-7
    [142]闫森,童雄.强化难处理硫化铜化物微生物浸出过程的研究[J].矿物工程,2000,(11):13-19
    [143]Y.科西尼,周廷熙,李长根.嗜热嗜酸Ab酸杆菌浸出硫化锌精矿[J].国外金属矿选矿,2000,9:31-35
    [144]刘晓荣,李宏煦,胡岳华,等.生物浸矿的电化学催化[J].湿法冶金,2000,(9):22-27
    [145]赵由才,牛冬杰.湿法冶金污染控制技术[M].北京,冶金工业出版社,2003
    [146]方兆珩.生物氧化浸矿反应器的研究进展[J].黄金科学技术,2002,10(6):1-7
    [147]池秀文,田金华.改进层次分析法在采矿方法选择中的应用[J].武汉理工大学学报,2003,25(5):28-30
    [148]汪恂,龚文琪.微生物学在浸矿技术中的应用研究[J].武汉理工大学学报,2005,27(3):56-58
    [149]Sitthipan C,Saipin C,Anwarul H,et al.Viability of the Nonculturable Vibrio cholerae O1 and O139[J].Systematic and Applied Microbiology,2001,24(3):331-341
    [150]周长春,周志坚,刘炯天,等.微生物在煤炭脱硫中的应用[J].选煤技术,2003.2:6-9
    [151]沈萍.微生物学实验[M].北京:高等教育出版社,2007
    [152]Horton T R,Bruns T D.The molecular revolution in ectomycorrhizal ecology:Peeking into the black-box[J].Molecular Ecology,2001,10:1855-1871
    [153]Ogram A.Discussion soil molecμgar microbial ecology at age 20:Methodological challenges for the future[J].Soil Biology & Biochemistry.2000,32:1499-1504
    [154]Bridge P,Brian S.Soil fungi:Diversity and detection[J].Plant and Soil.2001,232:147-154
    [155]Dunbar J,Ticknor L O,Kuske C R I.Assesment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis[J].Appl Environ Microbial.2000,66:2943-2950
    [156]Tiedje J M,Asuming-Brempong S,Nusslein K,et al.Opening the black box of soil microbial diversity[J].Applied Soil Ecology.1999,13:1109-1122
    [157]Ward D M,Weller R,Bateson M M.16S rRNA sequences reveal numerous unculturated microorganismsin stnatural community[J].Nature,1990,345:63-65
    [158]马万里.土壤微生物多样性研究的新方法[J].土壤学报,2004,41(1):103-107
    [159]Norris P R,Barr,D W,Hinson,D.Iron and mineral oxidation by acidophilic bacteria:affinities for iron and attachment to pyrite.In:Norris,P.R.,Kelly,D.P.(Eds.),Biohydrometallurgy:Proc.Intl.Symposium(Warwick,UK,1987).Science and Technology Letters,Kew.1988,43-59
    [160]Hansford G S.Recent developments in modeling the kinetics of bioleaching.In:Rawlings,D.E.(Ed.),Biomining:Theory,Microbes and Industrial Processes.Springer Verlag,Berlin,1997.153-175
    [161]Schrenk M O,Edwards K J,Goodman R M,et al.Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:implications for generation of acid mine drainage[J].Science,1998,279:1519-1522
    [162]Vasquez M,Espejo R T.Chemolithotrophic bacteria in copper ores leached at high sulfuric acid concentration[J].Applied and Environmental Microbiology.1997.63:332-334
    [163]Rawlings D E,Tributsch H,Hansford GS.Reasons why Leptospirillum like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidising bacteria in many commercial processes for the biooxidation of pyrite and related ores[J].Microbiology,1999,145:5-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700