水稻氮肥利用效率及其调控途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮肥利用率低是我国水稻生产中的突出问题。本研究从品种改良、实时实地氮肥管理、超高产水稻生长发育与养分吸收、土壤背景氮供应、品种源库特性、水分管理及强化栽培体系等方面研究了其对产量和氮肥利用率的影响,主要结果如下:
     1.中籼品种改良对水稻产量和氮肥利用率的影响 试验以我国60年以来不同时期的16个代表性中籼品种为材料,研究了品种演进对水稻产量和氮肥利用率的影响。结果表明:品种改良逐步提高了水稻产量。产量的提高主要是由于总颖花量的增加。由早期高秆品种到矮秆品种,生物产量与收获指数的共同增加提高了产量;由矮秆品种到现代超级稻品种,产量的提高则主要是生物产量的增加。品种改良提高了粒叶比、根重和根冠比,减小了顶三叶叶片的着生角度,使顶部叶片更加挺立。
     品种改良较大幅度地提高了现代品种的氮肥生理利用率、农学利用率和氮肥偏生产力,但没有明显提高氮肥吸收利用率。品种改良提高了抽穗前干物重和吸氮量以及抽穗后氮素向籽粒的运转。抽穗期吸氮量以及抽穗后氮素运转率与籽粒产量均呈显著正相关。穗分化期叶片中谷氨酰胺合成酶(GS)、硝酸还原酶(NR)和Fd-谷氨酸合成酶(GOGAT)以及灌浆初期籽粒中GS和NADH-GOGAT的活性对抽穗前干物质积累、氮素吸收以及抽穗后氮素运转起重要作用。水稻体内GS、NR和GOGAT等氮代谢主要酶类的活性明显受到氮肥的调节。提高穗分化期叶片和乳熟期籽粒中氮代谢酶的活性,可以增加抽穗前氮素和干物质积累、促进氮素向籽粒的运转并提高籽粒产量和氮素利用效率。
    刘立军:水稻氮肥利用效率及其调控途径
     2.高产水稻需氮供氮的叶色诊断指标水稻叶片的叶绿素测定仪(S PAD)
    值与叶绿素含量(gm一2)和含氮率(gm勺均呈极显著的正相关,叶色卡(LCC)
    读数与SPAD值也呈明显的线性相关关系。SPAD值或LCC读数可以反映稻株的
    氮素营养状况并可依此作为水稻氮肥动态管理的重要诊断指标。研究明确了叶片
    SPAD值35和37可作为江苏主要釉稻和粳稻品种关键生育期施氮的临界值。对应
    的LCC读数为3 .0。在生产上示范应用验证了这些指标值的适用性和可靠性。
     3.实时实地氮肥管理对水稻产量和氮肥利用率的影响依据土壤养分的有
    效供给量、水稻的目标产量、当季的氮肥利用率、主要生育期稻株需氮供氮的SPAD
    值和品种源库特征,建立了水稻实地实时氮肥管理模式(SSNM)。该模式在小面
    积上试验示范,施氮量较目前的习惯施肥法(CFP)减少了51 .9~56.3%,产量增
    加了0.2一9.3%,氮肥农学利用率提高了39.1一276.4%。2003一2004年在江苏省无锡
    市两村20户稻田中进行SSNM的示范,SSNM的施氮量较CFP降低了38.7~41.3
    %,产量提高了2.5~3.5%,氮肥农学利用率提高了88.3~117.7%。2004年在无
    锡、扬州和连云港市大面积示范推广,与CFP相比,SSNM的施氮量平均降低了
    42.0%,产量提高了3.2%,氮肥农学利用率提高了88.5%。
     4.超高产水稻的生长发育规律和养分吸收规律与高产水稻(产量在8.9~
    9.5tha’,)相比,超高产水稻(产量>l1tha’,)的分桑成穗率较高(80%以上),叶
    面积指数抽穗前增加较快,抽穗期为7.5左右,乳熟后下降慢。全生育期总光合势
    以及抽穗至成熟期光合势应分别大于510和220扩dm一。抽穗前水稻积累的干物
    质约占最终干物质重量的60~65%,抽穗后茎鞘物质输出率在9一17%,收获指
    数>0.5。研究明确了超高产水稻主要生育期的氮、磷、钾吸肥量,其吸收高峰均在
    拔节至抽穗期,此阶段各养分的吸收量约占最终总吸收量的40~48%。超高产水
    稻每生产lt稻谷所需吸收的N、PZos和从0分别为1 9.5~22.1、14.2~巧.1和29.4~
    31.8 kg,粳稻略高于粕稻。
     5.土壤背景氮供应对水稻产量和氮肥利用率的影响通过对前茬作物小麦
    设置施用氮肥与不施用氮肥处理研究其对土壤肥力及对后茬作物水稻产量和氮肥
    利用率的影响。结果表明,麦季氮肥的施用增加了稻季土壤全氮、钱态氮和硝态氮
    的含量,提高了土壤背景氮。与麦季不施氮(低土壤背景氮)相比,在高土壤背
    景氮下水稻产量对氮肥的反应明显降低,氮肥利用率的各个指标均有不同程度下
    降。表明在高的土壤背景氮下较高的氮肥施用量是水稻氮肥利用率低的重要原因
    之一。
Low fertilizer-nitrogen use efficiency (FNUE) is a serious problem in rice production in China. This study investigated possible approaches to increasing FNUE from various aspects of genetic improvement (GI), real-time and site-specific nitrogen (N) management, growth and development and nutrient uptake in super high-yielding rice (SHY), indigenous N supply of soil (INS), source-sink characteristics of cultivars, water management and the system of rice intensification (SRI). The main results were as follows:1. Effect of GI in mid-season indica rice on yield and FNUE With 16 representative mid-season indica cultivars during the past 60 years in China as materials, effect of GI on grain yield and FNUE was studied. The results showed that GI increased grain yield gradually, and the increase in grain yield was due mainly to the increase of total spikelets per unit area. From early tall cultivars to dwarf cultivars, synchronous increase of biomass and harvest index increased grain yield; from dwarf cultivars to current super rice combination, the yield increase was attributed mainly to the biomass increase. GI increased spikelets per unit leaf area, root weight and the ratio of root to shoot, reduced the angle of top three leaves, leading to upper leaves more erect.GI significantly increased physiological efficiency (PE), agronomic efficiency (AE) and partial factor productivity (PFP) of N fertilizer of modern rice cultivars, but it did not increase recovery efficiency (RE). GI increased biomass and N uptake before heading stage and enhanced N remobilization after heading stage. N uptake at heading stage and N translocation efficiency were significantly correlated with the grain yield. Activities of glutamine synthetase (GS), nitrate reductase (NR) and Fd-glutamate synthase (GOGAT) in leaves at panicle initiation and GS and NADH-GOGAT in grains at early grain filling stage played important roles of biomass accumulation
    and N uptake before heading stage and N remobilization during grain filling. Activities of GS, NR and GOGAT in rice plant were significantly regulated by N application. Increase in activities of main enzymes involved in N metabolism at panicle initiation and early grain filling stage enhanced N uptake and biomass accumulation before heading stage, facilitated N remobilization from vegetative tissues to grains and increased the grain yield and N use efficiency.2. Leaf color diagnosis of high-yielding rice for N requirement and application SPAD (Soil and Plant Analysis Department) readings of leaves were significantly and positively correlated with chlorophyll content (g m-2) and N content (g m-2) in leaves. Significant correlation was also observed between leaf color chart (LCC) scores and SPAD values. SPAD values and LCC scores could reflect N nutrition status in rice plant and could be an important diagnosis index for dynamic N management in rice. SPAD values of 35 and 37 could be used as critical values for N application at key growth stages for most indica and japonica rice cultivars in Jiangsu, respectively, and the corresponding LCC score was 3.0. It was proved to be reliable and feasible in the demonstration and production of rice.3. Effects of real-time N management (RTNM) and site-specific N management (SSNM) on rice yield and FNUE SSNM model was established according to the available nutrient supply from soil, target grain yield, seasonal RE of N-fertilizer, SPAD values at main growth stages and source-sink characteristics of cultivars. Plot experiment showed that SSNM reduced amount of N application by 51.9-56.3%, increased grain yield by 0.2-9.3% and AE by 39.1~276.4%, respectively, relative to conventional fertilizer practice (CFP). SSNM was demonstrated in 20 farmers' fields in two villages during 2003-2004 in Wuxi, Jiangsu province. Compared with CFP, SSNM reduced N rate by 38.7-41.3%, increased grain yield by 2.5-3.5% and AE by 88.3-117.7%, respectively. In 2004, the demonstration on a large scale in Wuxi, Yangzhou and Liangyungang showed that SSNM reduced N rate by 42.0%, increased grain yi
引文
1.张国粱,章申.农田氮素淋失研究进展.土壤,1998,30(6):291~297
    2.张夫道.氮素营养研究中几个热点问题.植物营养与肥料学报,1998,4(4):331~338
    3.吕殿青,周延安,孙本华.氮肥施用对环境污染影响的研究.植物营养与肥料学报,1998,4(1):8~15
    4.松岛省三.稻作理论新技术.庞诚译,北京:农业出版社,1979
    5.张建才.水稻钾氮关系研究概况.水稻文摘,1988,6:1~5
    6.浙江农业大学等编.实用水稻栽培学.上海科学技术出版社,1981
    7.中国农业科学院主编.中国稻作学,农业出版社,1986
    8.单玉华,王余龙,黄建晔,等.中后期追施~(15)N对水稻氮素积累与分配的影响.江苏农业研究,2000,21(4):18~21
    9.丁克坚,黄义德,汪振华,等.氮肥、密度对水稻产量及纹枯病、褐飞虱发生程度的影响.安徽农业大学学报,1998,25(4):336~341
    10.陈恒喜,姚克兵.氮肥施用对稻曲病的影响初报.江苏农机与农艺.2000,4,15
    11.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1~6
    12.朱兆良.关于提高氮肥利用率的问题.肥料与农业发展国际学术讨论会论文集,中国农业科技出版社,1995,221~229
    13.蔡贵信.氨挥发.见朱兆良,文启孝主编:中国土壤氮素.南京:江苏科技出版社,1992,171~196
    14. Cai G X, Yang N C, Lu W F, et al. Gasous loss of nitrogen from fertilizers applied to a paddy soils in southeastern China. Pedosphere, 1992, 3: 209~217
    15. Cai G X, Peng G H, Wang X Z, et al. Ammonia volatilization from urea applied to acid paddy field in southern China and its control. Pedosphere, 1992, 4: 345~354
    16.田光明,曹金留,蔡祖聪.镇江丘陵地区稻田氨挥发损失研究.南京大学学报(自然科学版),1997(专辑),268~270
    17. Tian Guanming, Cao Jinliu, Cai Zucong, et al. Ammonia volatilization from winter wheat field top-dressed with urea. Pedosphere, 1998, 4: 331~336
    18.蔡贵信,朱兆良.稻田中化学氮的气态损失.土壤学报,1995,32(增刊):128~135
    19. Jayaweera G R. and Mikkelsen D S. Ammonia volatilization from flooded soil systems: A computer model. L Theoretical aspects. Soil Sci. Soc. Am. J, 1990, 54: 1447~1455
    20.曹金留,田光明,任立涛,等.江苏南部地区稻麦两熟土壤中尿素的氨挥发损失.南京农业大学学报,2000,23(4):51~54
    21. Jayaweera G R. and Mikkelsen D S. Ammonia volatilization from flooded soil systems: A computer model. I. Theoretical aspects. Soil Sci. Soc. Am. J, 1990, 54: 1447~1455
    22. Focht D. Microbial kinetics of nitrogen losses in flooded soils. In: Nitrogen and Rice. Los. Banos. Philippines, IRRI, 1979, 119~134
    23.李新慧.稻田土壤中硝化-反硝化机制的研究.博士学位论文,南京:中国科学院南京土壤研究所,1994
    24.邢光熹,颜晓光.中国农田N_2O排放的分析估算与减缓对策.农村生态环境,2000,16(4):1~6
    25.徐华,邢光熹,蔡祖聪,等.土壤水分状况和氮肥施用及品种对稻田N_2O排放的影响.应用生态学报,1999,10(2):186~188
    26.陈刚才,甘露,王仕禄,等.土壤氮素及其环境效应.地质地球化学,2001,29(1):63~67
    27.张福珠,熊先哲,戴同顺.应用~(15)N研究土壤-植物系统中氮素淋失动态.环境科学,1984,5(1):231~24
    28. Starr J L. Broadbent F E, Nielsen D R. Soil Sci. Soc. Am. Proc. 1974, 38: 283~289
    29.王家玉,王胜佳,陈义.稻田土壤中氮素淋失的研究.土壤学报,1996,33(1):28~35
    30.李荣刚,翟云忠.江苏省武进市高产水稻田氮素渗漏损失研究.农村生态环境,2000,16(3):19~22
    31. Wang J Y, Wang S L, Chen Y. Study on leaching loss of nitrogen in dee fields by using large undisturbed monolith lysimeters. Pedospere, 1994, 4: 87~92
    32.张美良,吴建富,郭成志.应用~(15)N对稻田生态系统中氮素淋失和去向的研究.江西农业大学学报,1998,20(2):153~157
    33.刘忠翰,彭江燕.化肥氮素在水稻田中迁移与淋失的模拟研究.农村生态环境,2000,16(2):9~13
    34. Comly H R. Cyanosis in infants caused by nitrates in well water. JAMA. 1945: 129: 112~116
    35. Bergstrom, L. and N. Brink. Effects of differentiated application of fertilizer N on leaching losses and Distribution of inorganic N in the soil. Plant and Soil, 1986, 93(3): 333-345
    36. Bauder, J W; Schneider, R P. Nitrate-nitrogen leaching following urea fertilizations and leaching. Joumal Soil Science Society American, v. 43, 1979, p. 744-747
    37. Hergert, G W. Nitrate leaching through sandy soil as affected by sprinkler irrigation management. J. Environ. Qual, 1986, 15: 272-277
    38. Wild A. Nitrate Leaching Under a Bare Fallow at aSite in Northern Nigeria. J. Soil Sci, 1972, 23: 315~324
    39. Zantua, M I, LC DumeniI and J M Bremner. Relationship between soil urease activity and other soil properties. Soil Sci. Soc. Am. J. 1977, 41: 350-352
    40.李伟波,吴留秋,廖海秋.太湖地区高稻田氮肥施用与作物吸收利用的研究.土壤学报,1997,34(4):67~72
    41.崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究.生态学报,2000,4:659~662
    42.崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻氮肥利用率及氮肥淋洗量研究.中国农业大学学报,1998,3(5):51~54
    43.邹长明,秦道珠,陈福兴,等.水稻氮肥施用技术Ⅰ.氮肥施用的适宜时期与用量.湖南农业大学学报(自然科学版),2000,26(6):467~470
    44.朱彦博.淡灰钙土水稻氮肥施用量研究.甘肃农业科技,1997,6:28~29
    45.张绍林,朱兆良,徐银华,等.关于太湖地区稻麦上氮肥的适宜用量.土壤1988,20:5~9
    46.苏正义,韩晓日,李春全.氮肥深施对作物产量和氮肥利用率的影响.沈阳农业大学学报,1997,28(4):292~296
    47.伍泽康.水稻氮肥深施比较试验.贵州农业科学,1999,27(3):52~53
    48.朱兆良.稻田节氮的水肥综合管理技术的研究.土壤,1991,23:241~245
    49.吴敬民,姚月明.水稻氮肥机械化深施效果初探.土壤肥料,1997,4:17~19
    50.吴敬民,许学前,姚月明.基肥不同施用方法对水稻生长及稻田周围水体污染的影响.土壤通报,1999,30(5):232~234
    51.蔡贵信.农田生态系统中的氮素循环.赵其国主编,土壤圈物质循环与农业和环境.南京:江苏科技出版社,1995,8~24
    52.朱兆良.农田生态系统中化肥氮的去向和氮素管理.朱兆良,文启孝,中国土壤氮素,南京:江苏科技出版社,1992,213~249
    53.李光锐,陈培森,郭毓德,等.模拟机具追施碳酸氢铵对早作土壤中氮肥去向的影响.土壤肥料,1988,2:15~18
    54.周修冲,刘国坚,Sam Portch.平衡施肥在高产优质高效农业中的作用.肥料与农业发展国际学术讨论会论文集,中国农业科技出版社,332~338
    55.牟善积,何明华,卢树昌,等.重谈有机肥与化肥并重.天津农学院学报,2000,7(3):30~34
    56. Zhu Z L. Efficient management of nitrogen fertilizer for flooded rice in relation to nitrogen transformations in flooded soils. Pedosphere, 1992, 2: 97~114
    57.孙德芳,霍现英,车爱萍,等.冬小麦应用长效尿素的增产效果及施用技术.山东农业科学,1993,6:42~46
    58.孙小凤.尿素为氮源的缓释肥中氮素转化速率研究.西北农业学报,1998,7(2):67~69
    59.张志明,毕庶春,李继云,等.长效碳铵特性与应用效益研究.科学通报,1997,42(8):874~878
    60.夏建国,李廷轩,王应贵,等.不同浓度双氰胺对土壤铵态氮变化的影响.四川农业大学学报,1999,17(4):444~447
    61.许前欣,赵振达,李振云.稻田水面分子膜对提高氮肥利用率的研究.农业环境保护,1998,17(5):216~218
    62.庄舜尧,尹斌,朱兆良.表面分子膜抑制稻田氨挥发的模拟研究.土壤,2001,2:60~63
    63.任军,闫晓艳.日本施肥现状及发展趋势.土壤肥料,1996,(3):20~22
    64.任祖淦,唐福钦.缓效氨肥的增产效应研究.土壤通报,1997,28(1)22~24
    65.张春伦,米兴明,胡思农.缓释尿素的肥效及氮素利用率研究.土壤肥料,1998(6):17~20
    66.吴平宵,廖宗文,毛小云.改性碳酸氢铵的肥效及淋溶特性初探.华南农业大学学报,2000,21(3):94
    67.吴平宵,廖宗文,毛小云.改性尿素的肥效及淋溶特性初探.土壤环境,2000,9(1):75~76
    68.曾思坚,林翠兰,李小玲.几种水稻深层专用肥一次性施用的肥效试验.土壤与环境,2000,9(6):75~76
    69.何绪生,李素霞,李旭辉,等.控效肥料的研究进展.植物营养与肥料学报,1998,4(2):97~106
    70.蒋永忠,刘海琴,张永春.高效尿素提高氮利用的机理.江苏农业学报,2000,16(3):180~184
    71.姚应槐,何振立,黄昌勇.矿质氮素和有机碳源物配合使用提高氮素利用效率的机制.浙江农业大学学报,1998,24(6):617~618
    72.严力蛟,杜建生,郑志明,等.作物生产动态模拟模型的研究与应用.作物研究,1996,10(2):1~5
    73.郑志明,严力蛟,姚建龙.作物生产系统模拟模型研究进展.严力蛟等主编.生态研究与探索.北京:中国环境科学出版社,1992,92~97
    74.严力蛟,郑志明,王兆骞,等.水稻氮肥计算机优化管理模拟模型的验证与应用.浙江农业学报.1998,10(1):7~11
    75.郑志明,严力蛟,王兆骞,等.水稻氮行为模拟模型和数学程序结合在氮肥运筹中的应用.生态学报.1998,18(4):446~448
    76.王胜佳,王家玉,陈义.稻田土壤氮素淋失的形态及其在剖面分布的特征.浙江农业学报,1997,9(2):57~61
    77.石庆华,Ten Beige H F M,潘晓华.稻田氮素管理优化系统的应用研究.江西农业大学学报,1998,20(3):287~290
    78.潘剑君,房世波,孙维侠,等.利用土壤信息系统进行水稻施氮量决策初探.南京农业大学学报,2000,23(3):53~56
    79.姚丽贤,黄志武,卢仁骏,等.有机碳源物对水稻生长和氮素有效性的影响.土壤肥料,1997,6:27~31
    80.卢仁骏,黄志武.尿素配施有机碳源对水稻生长的吸收氮素的影响.华南农业大学学报, 1992, 13(4): 26~31
    81. Smith C J, Delaune R D. Effect of rice plants on nitrification-denitrification loss of nitrogen under green house conditions. Plant and soil, 1984, 79: 287~290
    82.黄志武,卢仁骏.稻杆和尿素单施或混施水稻对标记的氮的吸收与~(15)N的去向.华南农业大学学报,1995,16(4):58~63
    83.黄东迈.有机无机肥对提高土壤氮素肥力的作用及其配合施用.土壤通报,1985,16(5):197~201
    84.张夫道.有机-无机肥料配合是现代化施肥技术的发展方向.土壤肥料,1984,1:16~19
    85.朱兆良,蔡贵信,徐银华,等.种稻下氮肥的氮挥发及其在氨素损失中的重要性研究.土壤学报,1985,22(3):320~327
    86.杨震,朱兆良,蔡贵信,等.表面成膜物质抑制水稻田氨挥发的研究.土壤学报,1995,32(增刊2):160~166
    87. Yin B, Shen R F, Zhu Z L. Use of new water soluble surface film-forming material to reduce ammonia loss from water solution. Pedosphere, 1996, 6(4): 329-334
    88.尹斌,沈仁芳,朱兆良.农田施氮对环境的影响和有效施氮的措施.南京大学学报(自然科学版),1997,33(专辑):265~267
    89.尹斌,沈仁芳,朱兆良.水面分子膜对提高氮肥利用率及水稻产量的影响.红壤生态系统研究,1998,5:192~195
    90. Buresh R J. De Datta S K. Samson M Z et al. Dinitrogen and nitrious oxide flux from urea basely applied to puddled rice soils. Soil Sci. Soc. Am. J, 1991, 55: 268~273
    91. De Datta S K. Buresh R J. Samson M Z et al. Direct measurement of ammonia and denitrification fluxes from urea applied to rice. Soil Sci. Soc. Am. J, 1991, 55: 543~548
    92. Jensen K Revsbech N P and Nielsen L P. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor of nitrate. Appl Environ. Microbio. 1993, 59: 3287~3296
    93. Katyal J C. Xarter M E and Viek P L G. Nitrification activity in submerged soils and its relation to denitrification loss. Biol. Fertil. Soils. 1998, 7: 16~22
    94. Fillery I R P. Biological denitfification. In: Freney J R & Simpson J Reds. Gaseous loss of nitrogen from plant soil systems. Martinus Nijhoff, 1983: 33~64
    95.俞慎、李振高.稻田生态系统生物硝化.反硝化作用与氮素损失.应用生态学报,1999,10(5):630~634
    96.姚丽贤,黄志武,张壮塔.有机碳源物对淹水土壤中氮素转化的影响.热带亚热带土壤科学,1997,6(2):82~87
    97. Firestone M K. Biological denitrification. In: Stevenson F J eds. Nitrogen in agricultural soils. ASA. CSSA & SSSA, Madison, Wisconsin, 1982, 22: 289~326
    98.邢文英.大力推进平衡配套施肥工作.肥料与农业发展国际学术讨论会论文集,中国农业科技出版社,101~104
    99.李书琴,江瀑,冯庆凤.提高化肥利用率促进农业生发展.肥料与农业发展国际学术讨论会论文集,中国农业科技出版社,105~107
    100.宋健.在国际水稻大会开幕式上的致辞.国际水稻大会,北京:2002.9
    101.徐匡迪,沈国舫.依靠稻作科技革新,推动中国水稻产业发展.在首届国际水稻大会上作的主题报告.北京:2002.9
    102. FAO. Statistical databases, Food and Agriculture Organization (FAO) of the United Nations. 2004
    103.张福锁,马文奇.肥料投入水平与养分资源高效利用的关系.土壤与环境,2000,9(2):154~157
    104.刘立军,桑大志,刘翠莲,等.实时实地氮肥管理对水稻产量和氮素利用率的影响.中国农业科学,2003,36(12):1456~1461
    105. Witt C, Dobermann, A, Abdulrachman S. et al. Imemal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Res. 1999, 63: 113~138
    106. De Datta, S. K. and Buresh, R. J. Integrated nitrogen management in irrigated flee. Adv. Agron., 1989, 10: 143~169
    107.朱兆良.我国土壤供氮和化肥氮去向研究的进展.土壤,1985,17(1):2~9
    108.李庆逵.中国农业可持续发展中的肥料问题.江西:江西科学技术出版社,1997
    109.李荣刚.高效农田氮素肥效与调控途径—以江苏太湖区稻麦两熟农区为例推及全省.北京:中国农业大学博士学位论文,2000
    110. De Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. Fertilizer Res. 1986, (9): 171~186
    111. FLAR. Annual report. CIAT, Cali, Colombia, 2001
    112. Peng, S. Gareia, F. V., Laza, R.C. et al. Increased N-use efficiency sue a chlorophyll meter on high-yielding irrigated rice, Field Crops Res, 1996, 47: 243~252
    113. Yoshida S. Fundamentals of rice crop science. International Rice Research Institute, Los Banos, Philippines, 1981, 1~269
    114. Cassman K G, Gines G C, Dizon M A, et al. Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen. Field Crops Res. 1996, 47: 1~12
    115.林葆.提高作物产量,增加施肥效应.见:中国土壤学会.中国土壤科学的现状与前景.江苏:江苏科学技术出版社,1991:29~36
    116. Craswell E. T. and Vlek, P. L. G. Fate of fertilizer nitrogen applied to wetland rice. In: Nitrogen and Rice. International Rice Research Institute, Los Banos, Philippines, 1979, 175~192
    117. Cassman, K. G., Kropff, M. J., Gaunt, J. et al., Nitrogen use efficiency of rice reconsidered: What are the key constraints? Plant Soil, 1993, 155/156: 359~362
    118. A Dobermann, G C Simbahan, P F Moya, et al. Methodology for socioeconomic and agronomic on-farm research in the RTDP project. In: A. Dobermann, C Witt and D Dawe eds: Increasing productivity of intensive rice systems through site-specific nutrient management. International Rice Research Institute, Los Banos, Philippines, 2004
    119.高如嵩,张嵩平.稻米品质气候生态基础研究.西安:陕西科学技术出版社,1994
    120.程方民,朱碧岩.气象生态因子对稻米品质影响的研究进展.中国农业气象,1998,19(5):39~45
    121.蔡一毁,朱庆森,王志琴,等.结实期土壤水分对稻米品质的影响.作物学报,2002,28(5):601~608
    122.蔡一霞,王维,张祖建,等.水旱种植下多个品种蒸煮品质和稻米RVA谱的比较性研究.作物学报,2003,29(4):508~513
    123.蔡一霞,朱庆森,徐伟,等.结实期土壤胁迫对水稻强弱势粒主要米质性状及淀粉粘滞谱特征的影响.作物学报,2004,30(2):145~151
    124.金军,徐大勇,蔡一霞,等.施氮量对主要米质性状及RVA谱特征参数的影响.作物学报,2004,30(2):154~158
    125.陈新红,徐国伟.结实期氮素营养和土壤水分对水稻光合特性、产量及品质影响.上海交通大学学报(农业科学版),2004,22(1):48~53
    126.韩春雷,侯守贵.栽培技术对稻米品质的作用及其数量关系研究.辽宁农业科学,1997,1:18~21
    127.金正勋,秋太权,孙艳丽,等.氮肥对稻米垩白及蒸煮食味品质特性的影响.植物营养与肥料学报,2001,7(1):31~35
    128. Hong T P. Influence of fertilizer levels and cultivated regions on changes of chemical components in rice grains. RDA Journal of Agriculture Science, 1994, 36(1): 38~51
    129. Cheong J L, Park H K, Choi Y W. Effects of slow-release fertilizer application on rice grain quality at different culture methods. Korean Journal of Crop Science, 1998, 41 (3): 286~294
    130.周瑞庆.施肥对稻米品质和产量影响的研究.湖南农学院学报,1989,15(3):1~6
    131.封晋.影响优质水稻米质的环境条件及高产栽培技术.湖南农业科学,1991,3:4~6
    132.湖南省优质稻生产技术体系及其应用理论研究协作组.施肥对稻米和产量影响的研究.湖南农学院学报,1989,3:1~5
    133.平宏和.影响米饭食味的因素.国外农学一水稻,1986,4:29~31
    134.周培南,冯惟珠,许乃霞,等.施氮量和移栽密度对水稻产量及稻米品质的影响.江苏 农业研究,2001,22(1):27~31
    135. Asif M, Chaudhary F M, Saeed M. Influence of NPK levels and split N application on grain filling and yield of fine rice. International Rice Research Notes, 1999, 24(1): 30~31
    136.田代一亨.稻米腹白形成机制的研究.Ⅳ.抽穗期施氮对腹白形成的影响.日本作物学会记事.1972,48:99~106
    137.吕川根,徐耀垣.氮素影响稻米品质的机理初探.江苏农业学报,1990,6(2):64~65
    138.程建峰.潘晓云,刘宣柏.不同灌溉和施肥条件对杂交早稻品质的影响.江西农业学报,2000,13(1):15~19
    139.陈亚琴,刘喜,董国忠.不同断水期对水稻产量和品质的影响.中国农学通报,1998,14(6):80~81
    140.阙金华,张洪程,戴其根,等.氮肥对稻米品质影响的研究进展.江苏农业科学,2002,6(1):14~16
    141. Umemoto T, Nakamura Y, Ishikura N. Activity of starch synthase and the amylose content in rice endosperm. Phytochemistry, 1995, 40(6): 1613~1616
    142. Broadbent, F E, S K de Datta, E V Laurles. Measurement of nitrogen utilization efficiency in rice genotype. Agron Journal, 1987, 79: 786~791
    143. de Datta, S K, F E Broadbent. Methodology for evaluating nitrogen utilization efficiency by rice genotypes. Agron Journal, 1988, 80: 793~798
    144. de Datta, S K, F E Broadbent. Nitrogen-use efficiency of 24 rice genotypes on a deficient soil. Field Crops Res, 1990, 23: 81~92
    145. de Datta, S K, F E Broadbent. Development changes related to nitrogen-use efficiency in rice. Field Crops Res, 1993, 34: 127~143
    146. Tirol-padre, A, J K Ladha, U Singh. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res, 1996, 46: 127~143
    147. U Singh, J K ladha, E G Castillo, et al. Genotypic variation in nitrogen use efficiency in medium-and long-duration rice. Field Crops Res, 1998, 58: 35~53
    148. P Inthapanya, Sipaseuth, P Sihavong, et al. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilized conditions. Field Crops Res, 2000, 65: 57~68
    149.张云桥,吴荣生,蒋宁.水稻的氮素利用效率与品种类型的关系.植物生理学通讯,1989,2:45~47
    150. Wu P, Q N Tao. Genotypic response and selection pressure on nitrogen-use efficiency in rice under different nitrogen regimes. Journal of Plant Nutrition, 1995, 3: 487~500
    151.单玉华,王余龙,山本由德,等.常规籼稻与杂交籼稻氮素利用效率的差异.2001,1:12~15
    152.朴钟泽,韩龙植,高熙宗.水稻不同基因型氮素利用效率差异.中国水稻科学,2003,17(3):233~238
    153.江立庚,王维金,徐竹生.籼型水稻品种物质生产与产量演变规律的研究.华中农业大学学报,1995,14(6):549~554
    154.马忠玉,吴永常.我国水稻品种遗传改进在增产的贡献分析.中国水稻科学,2000,14(2):112~114
    155. Hussain F, Bronson K F, Yadvinder-Singh, Bijiay-singh, Peng S. Use of chlorophyll meter suffciency indices for nitrogen management of irrigated rice in Asia. Agron Journal. 2000, 92: 875~879
    156. Balasubramanian V, Morales A C, Cruz R T, Abdulrachman S. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice system. Nutrient Cycling in Agroecosystems, 1999, 53 (1) : 59~69
    157.郑克武,邹江石,吕川根,等.氮肥和密度对两系亚种间杂交稻“两优培九”产量及产量结构的影响.江苏农业学报,2001,17(1):19~23
    158.王一凡,华泽田,周毓珩主编.节水稻作研究与应用.北京:中国农业科学技术出版社,2002
    159.王一凡,周毓珩主编.北方节水稻作.辽宁:辽宁科学技术出版社,2000
    160.苏祖芳,周培南,许乃霞,等.密肥条件对水稻氮素吸收和产量形成的影响.中国水稻科学,2001,15(4):281~286
    161.郑寨生,刘新华,吴吉祥,等.施肥方法和栽培密度对水稻品种间产量和品质的影响.上海农业学报,1995,11 (3):81~86
    162.崔一龙,朴仁哲,朴哲,等.不同的密度和移栽期对水稻产量构成因素的影响.延边农学院学报,1995,17 (1):21~28
    163.金学泳,蔡承一,金官植.水稻高产栽培密度研究.黑龙江农业科学,1997,3:9~11
    164.李熙英,黄世臣,权成武.施肥量和密度对水稻产量影响的研究.吉林农业科学,2002,27(6):34~37
    165.周培南,冯惟珠,许乃霞,等.施氮量和移栽密度对水稻产量及稻米品质的影响.江苏农业研究,2001,22 (1):27~31
    166.凌启鸿,张洪程,丁艳峰,等.水稻高产技术的新发展—精确定量栽培.中国稻米,2005,1:3~7
    167.凌启鸿主编.作物群体质量.上海科学技术出版社,2000,154~196
    168. Dobermann A C, Witt D, Dawe S, et al. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 2002, 74: 37~66
    169. Witt C and A Dobermann. Towards a decision support system for site-specific nutrient management p. 359~395 in increasing productivity of intensive rice systems through site-specific nutrient management, edited by A Dobermann, C Witt, and D Dawe et al: Science Publishers, and Los Banos, Philippines: International Rice Research Institute, 2004
    170. Yang W H, S Peng, J Huang, et al. Using leaf color charts to estimate leaf nitrogen status of rice. Agronomy Journal, 2003,95: 212-217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700