基于油中溶解气体分析的电力变压器故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力变压器是电力系统中最关键的设备之一,它承担着电压变换、电能分配与传输,并提供电力服务。因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证,必须最大限度防止和减少变压器故障和事故的发生。对电力设备进行在线监测与故障诊断,是实现设备预知性维修的前提,是保证设备安全运行的关键。
     变压器油中溶解气体的成分和含量则能有效体现运行变压器内部的绝缘故障情况。论文分析讨论了常规油色谱和在线油色谱分析时,不同取样点对变压器油色谱分析的影响,特别对变压器在线油色谱分析在确定和选择取样点时,一定要考虑变压器油循环方式、运行状态、变压器结构及油流分布、故障部位及严重程度等情况。详细介绍了在变压器内部故障或异常情况下,油中溶解气体的特征及含量、故障严重程度、故障类型同特征气体含量的关系。
     虽然变压器油中溶解气体分析是变压器绝缘监督的一个重要手段,但放电和过热两类故障共存时的故障难分辨会导致诊断正判率较低。本文对多种故障类型作了详细分析后使用基础粒子群算法优化BP神经网络的DGA方法,选择油中典型气体作为神经网络的输入,然后利用训练好的粒子群算法优化后的神经网络进行变压器故障类型诊断。试验结果表明,该方法具有很好的分类效果,较好地解决了变压器放电和过热共存时故障的难分辨问题,对故障诊断的正判率较高。
The electric power transformer is one of the equipments of the key in the electric power system, it undertakes the electric voltage transformation, electric power allotment with deliver, and provide the electric power service. Therefore, the normal work of the transformer is the important assurance to the electric power system safety, credibility, superior quality, economic work, we must prevent the electric power transformer from the breakdown and the occurrence of the troubles. But because the transformer circulates over a long period of time, the break down and the trouble can not be avoided completely, and the cause to break down to proceed from many various reason with trouble again. Implement of state on-line monitoring and fault diagnosis of the power equipment is the precondition of predicting maintenance, is the key element of reliable run, and is the important supplement and updated development to the traditional off-line preventive maintenance.
     According to the type and content of gas dissolved in transformer oil, it is easy to conclude the internal insulation faulty of transformer. The paper analyses the influence on the analysis of transformer oil chromatogram induced by different sampling oil spot when conventional analysis of transformer oil chromatogram or on-line analysis of transformer oil chromatogram. The paper introduces particularly the relation between the character of gases dissolved in transformer oil, content of gases, and the type of faults, the degree of the faults.
     T DGA is one of the mainly methods on insulation monitoring of transformer, but the accuracy is low because it is difficult to distinguish between failures when overheating and PD coexist. By analyzing all types of faults, a method is raised. The DGA of transformer by neural network based on particle swarm optimization (PSO) with neighborhood operator. Based on correlation analysis and pretreatment, the key gases are selected as the inputs of neural network, furthermore, fault diagnosis is accomplished by the neural network based on PSO with neighborhood operator. By discussing the experiment results, the method of this paper has very good classification results, and figure out the problem that is difficult to distinguish between failures when overheating and PD coexist, meanwhile, the effectiveness and usefulness is proved.
引文
[1]王昌长,李福祺,高胜友.电力设备的在线监测与故障诊断[M].北京:清华大学出版社,2006:1-10.
    [2]周青山.俄罗斯110-500kV电力变压器运行故障和事故分析[J].电网技术,2003,27(4):76-78.
    [3]黄建华,.全零三.变电站高压电气设备状态检修的现状及其发展[J].电力系统自动化,2001,25(11):56-59.
    [4]Jardine A K S. Optimizing condition based maintenance decisions[C]. In the proceedings of Reliability and Maintainability Symposium, Japan,2002:90-97.
    [5]苏鹏声,王欢.电力系统设备状态监测与故障诊断技术的分析[J].电力系统自动化,2003,27(1):61-65.
    [6]张言苍,张毅刚,徐大可.变压器局部放电在线检测的现状及发展[J].继电器,2004,32(22):70.
    [7]柳纲.电力设备故障诊断及状态检修的研究[D].南京:东南大学,2004:1-11.
    [8]胡文平,尹项根,张哲,等.分布式变电站高压电气设备在线监测系统设计[J].高电压技术,2003,29(1):53-55.
    [9]盛兆顺,尹琦岭.设备状态监测与故障诊断技术及其应用[M].北京:化学工业出版社,2003:1-30.
    [10]程鹏,佟来生,吴广宁.大型变压器油中溶解气体在线监测技术进展[J].电力自动化设备,2004,24(11):90-93.
    [11]董立新,肖登明,李喆,等.基于油中溶解气体分析数据挖掘的变压器绝缘故障诊断[J].电力系统自动化,2004,28(15):85-88.
    [12]章政,杨荆林,肖登明,等.基于油中溶解气体分析的变压器绝缘故障诊断方法的研究和发展[J].电力设备,2004,5(1):20-23.
    [13]刘娜,谈克雄,高文胜.基于油中溶解气体谱图的变压器故障识别方法[J].清华大学学报(自然科学版),2003,43(3):301-303.
    [14]马翼敏.油中溶解气体的色谱分析在变压器故障诊断中的应用[J].变压器,2005,42(8):83-84.
    [15]柳泽荣,丁在兴,翟岩,等.油色谱分析在变压器故障诊断中的应用[J].变压器,2005,42(9):43-46.
    [16]郭俊,吴广宁,张血琴,等.局部放电检测技术的现状和发展[J].电工技术学报,2005,22(2):29-35.
    [17]王颂,吴晓辉,袁鹏,等.局部放电超高频检测系统标定方法的研究现状及发展[J].高压电器,2007,43(1):59-61.
    [18]徐晴,包玉树.变压器局部放电试验若干问题的探讨[J].高电压技术,2007,33(4):189-191.
    [19]操敦奎.变压器油中气体分析诊断与故障检查[M].北京:中国电力出版社,2005:80-105.
    [20]G L Marton. The Hydran-a System for the Detection and Monitoring of Failure Conditions in Power Transformers [J]. IEEE Colloquium on Monitors and Condition Assessment Equipment.1996,3: 1-5.
    [21]T Mcgrail, A Wilson. On-line Gas Sensor [J] IEEE Colloquium on Conditon Monitoring of Large Machines and Power Transformers.2001,1:1-4.
    [22]S Birlasekaran, G Ledwich. Use of FFT and A NN Techniques in Monitoring of Transformer Fault Gases [J]. Proceedings of International Symposium on Electrical Insulating Materials.1998:75-78.
    [23]B Spading. Managing the Life of Transformers. RCM for Substation [J]. Transmission and Distribution Conference.1999:17-19.
    [24]M D Judd, G P Cleary, etc. Power transformer Monitoring Using UHF Sensors[J], Conference Record of the 2002 IEEE International Symposium on Electrical Insulation. Boston. MA USA. April.2002:7-10.
    [25]F. J. Zhou. Assembly on Tran Series of Transformer Incipient Fault Monitor [J]. Beijing Ligong Modern Electric Equipment Co. Limited,2000:32-35.
    [26]方琼,冯义等.电力变压器用数字化局部放电在线监测系统[J].高电压技术,2002,28(7):25-27.
    [27]陈江波,付锡年,聂德鑫,等.UHV变压器故障监测与诊断的信息决策平台[J].高电压技术,2006,32(12):108-110.
    [28]Scholkopf B, Burges C, Smola A J et al. Advances in kernel methods-support vector learning [M]. Cambridge, MA:MIT press,1998.
    [29]Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data mining and knowledge discovery,1998,2(2):1-47.
    [30]孙德山.支持向量机分类与回归方法研究[D].长沙:中南大学,2004:22-40.
    [31]曾嵘.支持向量及在设备故障诊断中的应用研究[D].长沙:中南大学,2005:15-40.
    [32]赵晶,张旭东,高隽.基于支持向量机的多类形状识别系统[J].合肥工业大学学报(自然科学版),2004,27(1):23-26.
    [33]刘志刚,李德仁,秦前清,等.支持向量机在多类分类问题中的推广[J].计算机工程与应用,2004,7:10-13.
    [34]孙即祥.现代模式多类识别[M].长沙:国防科技大学出版社,2002:1-50.
    [35]文明,方凯,汪方斌,等.一种基于SVM的多类判别算法[J].工业仪表与自动化装置,2006,6:6-8.
    [36]余艳芳,高大启.一种改进的最小二乘支持向量机及其应用[J].计算机工程与科学,2006,28(2):69-71.
    [37]Francessco Masulli, Giorgio Valentini. Comparing decomposition methods for classification [J]. Fourth international conference on knowledge-based intelligent engineering, Systems and technologies,2000:788-792.
    [38]Dietterich T G, Bakiri G. Solving Multiclass learning problems via Error-Correcting Output Codes [J]. Journal of Arti-ficial intelligence research,1995, (2):263-286.
    [39]潘明清.基于支持向量机的机械故障模式分类研究[D].杭州:浙江大学,2005:15-30.
    [40]杨琦.支持向量机在液压系统故障诊断中的应用研究[D].大连:大连海事学院,2005:10-31.
    [41]Suykens J A K, De Brabanter J, Lukas L, et al. Weighted least squares support vector machines: robustness and sparse approximation [J]. Neurocomputing,2002,48(1-4):85-105.
    [42]Suykens J A K., Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters,1999,9(3):293-300.
    [43]Suykens J A K., Vandewalle J, De Moor B. Optimal control by least squares support vector machines [J]. Neural Networks,2001, (14):23-35.
    [44]许亚洲.基于最小二乘支持向量机的数控机床热误差建模的研究[D].杭州:浙江大学,2006:9-41.
    [45]Huang N E, Zheng S, Steven R L, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc.R.Soc.London.A,1998, 454:903-995.
    [46]Timashev SA, Shalin MG. Precise analysis of non-stationary vibration processes using the Hilbert transform [J]. ACSIM 2000 Proceeding.2000,395-404.
    [47]高云超.希尔伯特-黄变换方法的仿真研究[D].哈尔滨:哈尔滨工程大学,2005:14-32
    [48]Huang N E, M C Wu. A confidence limit for empirical mode decomposition and Hilbert spectral analysis [J]. Proc.R.Soc.London, Ser.A,2003,459:2317-2345.
    [49]Wu Z, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proceedings of the Royal Society of London, Series A,2004,460: 1597-1611.
    [50]Gloersen P, Huang N E. Comparison of interannual intrinsic modes in hemispheric sea ice covers and other geophysical parameters [J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(5):1062-1074.
    [51]Huang N E, ML Wu. Application of Hilbert-Huang transform to non-stationary financial time series analysis[J]. Applied Stochastic M-odels in Business and Industry,2003,19(6):245-268.
    [52]王波,杨洪耕.电力系统电压短期扰动的三角莫太检测方法[J].电工技术学报.2005,20(11):101-105.
    [53]牛发亮,黄进,杨家强,等.基于感应电机启动电磁转矩Hilbert-Huang变换的转子断条故障诊断[J].中国电机工程学报,2005,25(11):107-112.
    [54]冯志鹏,褚福磊.基于Hilbert-Huang变换的水轮机非平稳压力脉动信号分析[J].中国电机工程学报,2005,25(10):111-115.
    [55]成永红.电力设备绝缘检测与诊断[M].北京:中国电力出版社,2001,8:100-105.
    [56]SHI Yu-hui. EBERHART R.A modified particle swarm optimizer [C]//Proc IEEE Int conf on Evolutionary Computation Anchorage. IEEE,1998:69-73.
    [57]EBERHART R. KENNEDY J. A new optimizer using particle swarm theory[C]//Proc 6th Int Symposium on Micro Machine Human Science, Nagoya. [s.n.].1995:39-43.
    [58]曹铁泽.变压器油中溶解气体色谱在线监测系统关键技术研究[D].燕山:燕山大学,2004:20-50.
    [59]罗建波.基于DGA的电力变压器故障诊断技术研究[D].杭州:浙江大学,2005:9-40.
    [60]张允.基于神经网络的变压器油色谱在线监测与故障诊断系统[D].吉林:吉林大学,2004:15-53.
    [61]徐志钮.基于油中溶解气体分析的变压器绝缘故障诊断研究[D].北京:华北电力大学,2004:11-44.
    [62]黄伟.变压器油中溶解气体在线监测系统及其故障诊断方法研究[D].长沙:湖南大学,2005:17-48.
    [63]徐安定.大型变压器状态监测与故障诊断技术[D].杭州:浙江大学,2005:20-55.
    [64]潘巍巍.电力变压器故障诊断与定位的研究[D].杭州:浙江大学,2004:10-30.
    [65]王少芳,蔡金锭,刘庆珍.基于改进GA-BP混合算法的电力变压器故障诊断[J].电网技术,2004,28(4):30-33.
    [66]王少芳,蔡金锭.GA-BP算法在变压器色谱诊断中的应用[J].高电压技术,2003,29(7):3-6.
    [67]章剑光.变电设备状态检修应用研究[D].杭州:浙江大学,2004:12-40.
    [68]莫娟,王雪,董明,等.基于粗糙集理论的电力变压器故障诊断方法[J],中国电机工程学报,2004,24(7):162-166.
    [69]王永强,律方成,李和明,等.基于贝叶斯网络和油中溶解气体分析的变压器故障诊断方法[J],电工技术学报,2004,19(12):74-77.
    [70]黄文涛,赵学增,王伟杰,等.基于物元模型的电力变压器故障的可拓诊断方法[J],电力系统自动化,2004,28(13):45-49.
    [71]彭宁云,文习山,王一,等.基于线性分类器的充油变压器潜伏性故障诊断方法[J],中国电机工程学报,2004,24(6):147-151.
    [72]孙辉,李卫东,孙启忠,等.判决树方法用于变压器故障诊断的研究[J],中国电机工程学报,2001,21(2):50-55.
    [73]王楠,律方成,刘云鹏,等.基于决策表约简的变压器故障诊断Petri网络模型及其应用研究[J],电工技术学报,2003,18(6):88-93.
    [74]Platt J, Cristianini N, Shawe-Taylor J. Large Margin DAG's for Multiclass Classification [J].Advances in Neural Information Processing Systems.2000:547-553.
    [75]杨恩星.一种新型局部放电在线监测装置的研究[D].沈阳:沈阳工业大学,2003:20-40.
    [76]王贤.变压器局部放电测量中抗干扰方法的试验研究[D].北京:华北电力大学(北京),2003: 5-25.
    [77]H.Bosi, M.Haitje. Application of rogowski coils for partial discharge decoupling and noise suppression [J]. Proc. of 5th 2sh,1978mBraunschweig, No.42.02.
    [78]R Malewski, et al. Insulation diagnostic system for HV power transformer in service [J]. IREQ.CIGRE,12-01,1986.
    [79]Luo Bin,Sun Caixin, et al. A new method of noise suppression for on-line monitoring Partial discharge in transformers[J]. Proc.of 9th ISH,1995, G raz, No.5587.
    [80]A. Krivda. Automated Recognition of Partial Discharges [J], IEEE Trans. on Dielectrics and Electrical Insulation,1995, Vol.2,No.S:796-821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700