几种典型的电化学振荡体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学振荡的深入研究,对于认识电化学振荡现象,发展电极过程动力学,丰富非平衡态、非线性动力学的研究内容,具有重要的科学意义。
     本论文从电极过程动力学分类的角度,研究了几种典型的电化学振荡体系,包括电化学反应(电荷传递)分别与表面吸脱附、表面相变和液相传质偶合。
     1.C_1有机小分子在Pt/Sb、Pt/Bi修饰电极上电势振荡行为的研究
     在采用不可逆吸附方法制得的Pt/Sb修饰电极上研究甲酸、甲醛和甲醇的电化学行为及振荡特征时发现:锑吸附原子能较大地增强Pt对甲酸和甲醛的催化活性,但对甲醇的电氧化起阻碍作用。同时,电化学振荡特征发生改变,但与电催化活性并不呈正相关。振荡变化的原因是由于锑的介入改变了双途径机理的两平行反应的份额,导致体系的正、负反馈的相对强度也随之改变,进而影响了二者的动力学匹配性,并最终导致振荡特征的变化。循环伏安判据能很好地解释所观察到的实验现象。甲酸在欠电位沉积的Pt/Bi修饰电极上的电化学行为及振荡特征与其在Pt/Sb电极上非常相似。
     2.金电极在HCl溶液中电溶解电流振荡的现场拉曼光谱研究
     采用拉曼光谱测得金溶解过程中出现的Au—Cl~-、AuCl_4~-、Au—O(H)键的振动谱带,扩散层中AuCl_4~-的浓度空间分布以及在电流振荡过程中AuCl_4~-暂态变化等。实验结果表明:金电极表面氧化膜的形成和与Cl~-络合引起的氧化膜溶解的周期性转变,导致在一非常窄的电势范围产生电流振荡。该体系属于典型的电化学反应与表面相变
    
    偶合的电化学振荡
    钝化态的相互转变
    。CV曲线中的交叉环在本体系中意味着活化态和
    3.103一还原过程中电势振荡的EQ以的研究
     首次利用EQCM对扩散层粘、密度变化的响应特征,研究了103-
    还原中伴随周期性析氢而产生电势振荡的机理。现场检测结果清楚地
    证实了振荡过程中所涉及的主要步骤有:①扩散控制下的103一表面浓
    度的还原耗尽;②氢气在电极表面的形成、聚集和析出;③析氢引
    起的对流使103一的表面浓度重新恢复等。我们的研究表明扩散层的粘、
    密度变化的同步检测可为研究本类振荡机理提供关键的有效信息。实
    验结果证明:本体系属于典型的电化学反应与传质步骤(液相传质)
    相偶合的电化学振荡。
The profound study on electrochemical oscillations has important scientific meaning for recognizing the oscillatory phenomena, developing the electrode processes and richening the research content of the non-equilibrium and nonlinear dynamic. From the viewpoint of electrode processes, several typical electrochemical oscillatory systems have been studied in this paper, including electrochemical reactions coupled with surface ad/desorption, phase transition and liquid mass transfer.
    1.Potential oscillatory behaviors on antimony-modified and bismuth-modified platinum electrodes for the electrocatalytic oxidation of one-carbon organic molecules.
    Electrochemical behaviors and oscillatory characteristics for the oxidation of one-carbon organic molecules on Pt/Sb electrodes are investigated. We found that with the increase of sb, the electrocatalytic activity increases for the oxidation of HCOOH and HCHO, but decreases for the oxidation of CH3OH. No a positive correlation was found between oscillation and electrocatalytic activity. A plausible explanation is given here. The presence of Sb adatom affects the dual path parallel reactions on Pt in different extents, and thus changes the relative strength of the positive and negative feedbacks on the Pt, leading to the change of oscillatory characteristics. CV criterion explains the experimental results well. The results of formic acid oxidation on. Bi-modified electrodes are similar to those on Pt/Sb electrodes.
    2.In situ Raman spectroscopic studies on the current oscillations during gold electrodissolution in HC1 solution
    Raman spectroscopy has been used for investigating the gold oscillatory electrodissolution processes in a 2 mol dm-3HCl solution. The
    
    
    
    spatial profile of AuCl4- concentration in the diffusion layer, and the temporal evolution of AuCl4- during the current oscillations have all been measured in situ by a confocal Raman spectroscope. These experimental results indicate that the transition between active and passive states of gold accounts for the current oscillations in a very narrow potential range. A crossing cycle in the cyclic voltammogram that means a pair of overlapping positive and negative feedbacks corresponds to the active-passive transition. The electrodisslotion of Au is a typical example of oscillations system generating from the coupling of electrochemical reactions with surface phase transition.
    3. In situ monitoring of potential oscillations in the reduction of IO3-by electrochemical quartz crystal microbalance The new experimental results that were obtained by in situ EQCM monitoring clearly demonstrate the all key steps involved in the oscillation: the diffusion-limited depletion of IO3- by reduction, the formation, growth and departure of hydrogen bubbles on the surface, and the convection-induced replenishment of IO3- by the hydrogen evolution, our study shows that simultaneous frequency responses to the changes of density and viscosity in the diffusion layer during the oscillation can also provide meaningful and even decisive information on the oscillatory mechanism for the oscillators involving the coupling of electrochemical reactions with diffusion and convection mass transfer.
引文
[1] 李如生,非平衡现象和涨落化学,化学通报,1985,5,41.
    [2] E. S. Scott, R. Schrelner, L. R. Sharpe, B. Z. Shakhashiri, G. E. Dirreen, Oscillating chemical reactions, The University of Wisconsin Press, Madison WI, USA, 1985.
    [3] 董小梅,刘剑波,徐功骅,B-Z振荡反应,大学化学,1996,11,35.
    [4] I. Ferino, E. Rombi, Oscillation reaction, Catalysis Today, 1999, 52, 291.
    [5] S. R. Groot, P. Mazur, Nonequilibrium thermodynamics, Amsterdam, Northholland, 1962.
    [6] P. Glansdorf, I. Prigogine, Thermodynamic theory of structure, stability and fluctuations, Wiley, New york, 1971.
    [7] B. H. Lavenda, Thermodynamics of irreversible process, Macmillan, London, 1987
    [8] R. Balescu, Equilibrium and nonequilibrium statistical mechanics, Wiley, New
    
    York, 1975.
    [9] G. N. Kampen, Stochastic process in physics and chemistry, Amsterdam, Nothholland, 1981.
    [10] C. W. Gardner, Handbook of stochastic method, Springer, Berlin, 1985.
    [11] J. Keizer, Statistical thermodynamics of nonequilibrium process, Springer, New York, 1987.
    [12] 李样云,化学振荡反应研究简史,化学通报,1986,11,56.
    [13] Z. X. Li, C. L. Yuan, C. M. Tai, Study on the energy in the chemical oscillation, 宝鸡文理学院学报,1997,17,42.
    [14] G. F. He, M. J. Zheng, Oscillating chemical reaction, 泰安师专学报,2001,23,68.
    [15] C. X. Cai, C. H. Huang, Oscillating chemical reaction, 南京师大学报,1999,22,43.
    [16] 许海涵,化学振荡,化学通报,1991,1,26.
    [17] 徐济德,倪诗圣,汪明华,B-Z振荡反应——一个中级无机化学实验,大学化学,1986,4,36.
    [18] P. Strasser, M. Eiswirth, M. T. M. Koper, Mechanistic classification of electrochemical oscillators-an operational experimental strategy, J. Electroanal. Chem., 1999, 478, 50.
    [19] G. T. Fechner, Zür electrochemie ueber urnkehrungen der polaritt inder einfachen kette, Schweigger J. für Chemie Physik. 1828, 53, 129.
    [20] D. H. Wang, E X. Gang, J. Y. Zou, New electrochemical oscillations induced by the absorption-desorption of organic corrosion inhibitor on Fe in H_2SO_4 solution, Electrochem. Acta, 1998, 43, 2244.
    [21] P. Michael, S. Dimitra, The effect of a sinusoidal perturbation on the active-passive transition region of cobalt in phosphoric acid solution, J. Electroanal. Chem., 1995, 386, 89.
    [22] S. G. Corcoran, K. Sieradzki, Chaos during the growth of an artificial pit, J. Electrochem., 1992, 139, 1568.
    [23] B. Ren, B. W. Mao, X. W. Cai, J. Tao, J. Q. Mu, Studies of electrochemical oscilation of Au/HCl in presence of "Positive feedback" of substrate electrodes, 电化学, 1995, 1, 11.
    
    
    [24] O. Lev, A. Wolffberg, L. M. Sheintuch, The structure of complex behavior in anodic nickel dissolution, J. Chem. Phys., 1989, 93, 1661.
    [25] D. Sazou, P. Machael, Experimental bifucation analysis of the cobalt phosphoric acid electrochemical oscillator, Electrochim. Acta, 1995, 40, 755.
    [26] D. T. Bowlin, A. Schecne, A. J. Pearlsein, Current oscillatins in potentiostatic electro-oxdation of aluminum in phosphoric and sulfuric acids, Electrochim. Acta, 1998, 43, 417.
    [27] J. C. K. Ho, D. L. Piton, J. S. Pierre, Cathodic potential oscillations of Fe(Ⅲ) reduction on Pt and Zn in 1 M NaCl solution under galvanostatic condition, J. Eletrochem. Soc., 1997, 144, 3367.
    [28] J. S. Pierre, D. L. Piron, A model for the potential oscillations of the zinc electrode polarized cathodicaly in alkaline medium, J. Electrochem. Soc., 1987, 134, 1689
    [29] D. L. Piron, I. Nagatsugawa, C. L. Fan, Cathodic potential oscillation of Sn(Ⅱ)/Sn electrode in KOH solution under constant current conditions, J. Electrochem. Soc., 1991, 138, 3296.
    [30] S. Kariuki, H. D. Dewald, Current oscillation in the reduction of indium(Ⅲ) and gallium(Ⅲ) in dilute chloride and nitrate solution at the dropping mercury electrode, Electrochim. Acta, 1998, 43, 701.
    [31] T. Matsuda, H. Hommura, Y. Mukouyama, S. Yae, Y. Nakato, New current and potential oscillations for reduction reactions on Pt electrode in acid solution contain high concentration hydrogen perxide, J. Electrochem. Soc., 1997, 144, 1988.
    [32] Z. L. Li, J. L. Cai, S. M. Zhou, Potential oscillations during the reduction of Fe(CN)_6~(3-) ions with convection feedback, J. Electroanal. Chem., 1997, 432, 111.
    [33] Z. L. Li, J. L. Cai, S. M. Zhou, Current oscillations in the reduction of some anions invoving convection mass transfer, J. Electroanal. Chem., 1997, 436, 195.
    [34] Z. L. Li, J. L. Cai, S. M. Zhou, Coupling of the electrochemical oscillations from the cathode and anode in the Fe(CN)_6~(3-)/Fe(CN)_6~(4-) system, J. Electroanal. Chem., 1998, 445, 105.
    [35] Z. L. Li, J. L. Cai, S. M. Zhou, Chaos during the reduction of iodate in alkaline solution: geometrical effect of the electrode, J. Phys. Chem. B, 1998, 102, 1539.
    
    
    [36] Z. L. Li, Y. Zeng, Q. J. Xie, S. Z. Yao, Nonlinear phenomenon during the reduction of hydrogen peroxide in alkaline solution involving mass transfer, J. Electrochem. Soc., 1998, 145, 3857.
    [37] H. Okamoto, N. Tanaka, Potential oscillation mechanism for formaldehyde oxidation on platinum, Electrochim. Acta, 1993, 38, 503.
    [38] H. Okamoto, N. Tanaka, M. Naito, Estimating the number of reaction intermediates for formaldehyde oxidation by analysis of the chaotic behavior, Electrochim. Acta, 1994, 39, 2471.
    [39] H. Okamoto, Mechanistic studies of the potential oscillation and induction period in the oxidation of formic acid on platinum, Electrochim. Acta, 1992, 37, 37.
    [40] N. Markovic, P. N. Ross, Jr, Oscillatory behavior in the electrochemical oxidation of formic acid on Pt(100), J. Phys. Chem., 1993, 97, 9771.
    [41] M. Schell, Y. H. Xu, Z. Zdraveski, Mechanism for the electrocatalyzed oxidation of glycerol deduced from an analysis of chemical instabilities, J. Phys. Chem., 1996, 100, 18962.
    [42] P. Strasser, M. Lubke, C. Eickes, M. Eiswirth, Modeling galvanostatic potential oscillations in the electrocatalytic iodate reduction system, J. Electroanalytical Chemistry, 1999, 462, 19.
    [43] G. J. Tim, J. V. Venrooij, M. T. M. Koper, Bursting and mixed-mode oscillations during the hydrogen peroxide reduction on a platinum electrode, Electrochim. Acta, 1995, 40, 1689.
    [44] L. Treindl, K. Doblhofer, K. Krischer, Z. Samec, Mechanism of the oscillatory reduction of peroxidisulfate on gold(110) electrode potentials positive to the point of zero charge, Electrochim. Acta, 1999, 44, 3963.
    [45] K. K. Csorgel, M. Orban, Oscillatory chemical reactions in heterogeneous systems: Oxidation of hydrogen on platinum surface by strong oxidants in aqueous solutions, J. Phys. Chem., 1996, 100, 19141.
    [46] H. Okamoto, N. Tanaka, M. Naito, Chaos in the oxidation of fomaldehyde and/or methanol, J. Phys. Chem. A, 1997, 101, 8480.
    [47] J. Lee, S. R. Ragsdale, X. P. Gao, H. S. White, Magnetic field control of the potential distribution and current at microdisk electrodes, 1998, 422, 169.
    [48] H. J. Lewerenz, Spatial and Temporal oscillation at Si(Ⅲ) electrodes in aqueous
    
    fluoride-containing solution, J. Phys. Chem. B, 1997, 101, 2421.
    [49] J. N. Chazalviel, C. D. Fonseca, F. Ozanam, In situ infrared study of the oscillating anodic dissolution in fluoride electrolytes, J. Electrochem. Soc., 1998, 145, 964.
    [50] J. Carstensen, R. Prange, H. Foll, A mode for current-voltage oscillations at the silicon electrode and comparison with experimental results, J. Electrochem. Soc., 1998, 146, 1134.
    [51] 徐群杰,邓薰南,电沉积CuInSe_2上H_2O_2阴极还原时的电化学振荡,化学学报,1995,53,1076.
    [52] G. Ncher, L. Pohlmann, H. Trinutsch, Mixed-mode oscillations, self-similarity, and time-transient chaotic behavior in the (photo) electrochemical system pCuInSe_2/H_2O_2, J. Phys. Chem., 1995, 99, 17763.
    [53] 李则林,电化学振荡体系的普适判据,博士后研究工作报告,湖南大学,2001.
    [54] M. T. M. Koper, M. Hachkar, B. Beden, Investigation of the oscillatory electro-oxidation of formaldehyde on Pt and Rh electrodes by cyclic voltammetry, impedance spectroscopy and electrochemical quartz crystal microbalance, J. Chem. Soc., Fraday Trans., 1996, 92, 3975.
    [55] Z. L. Li, Y. Yu, H. Liao, S. Z. Yao, A universal topology in nonlinear electrochemical systems, Chem. Lett., 2000, 4, 330.
    [56] 陈正举,王德平,氢燃料的特性与应用前景,沈阳航空工业学院学报,1994,27,88.
    [57] B. Beden, E Hahn, J. M. Leger and C. Lamy, "In situ" infrared reflectance spectroscopic study of the adsorbed species resulting from CH_3OH adsorption on polycrystalline Pt in acid solution, J. Electroanal. Chem., 1989, 258, 463.
    [58] R. J. Nichols and A. Bewick, SNIFTIRS with a flow cell: The identification of the reaction intermediates in methanol oxidation at Pt anodes, Electrochim. Acta, 1988, 33, 1691.
    [59] R. Parsons, T. VanderNoot, The oxidation of small organic molecules: A survey of recent fuel cell related research, J. Electroanal. Chem., 1988, 257, 9.
    [60] M. B. Brzeinska, J. Heitbaum, On the anodic oxidation of formaldehyde on Pt, Au and Pt/Au-alloy electrodes in alkaline solution, J. Electroanal. Chem., 1985, 183, 167.
    
    
    [61] C. Lamy, Electrocatalytic oxidation of organic compounds on noble metals in aqueous solution, Electrochim. Acta, 1984, 29, 1581.
    [62] J. Koljadko, B. I. Podlorchenko, R. Wetzel and L. Muller, The formation and behavior of Ag adsorbates at Pd electrodes and their influence on electrocatalytic oxidation of formic acid at Pd, J. Electroanal. Chem., 1982, 137, 117.
    [63] B. Beden, A. Bewick, K. Kunimatsu, C. Lamy, Infrared study of adsorbed species on electrodes: Adsorption of carbon monoxide on Pt, Rh and Au, J. Electroanal. Chem., 1982, 142, 345.
    [64] S. Motoo, N. Furuya, Electrochemistry of iridium single crystal surfaces : Part Ⅰ. structural effect on formic acid oxidation and poison formation on Ir (111), (100) and (110), J. Electroanal. Chem., 1986, 197, 209.
    [65] M. Shibata, S. Motoo, Electrocatalysis by ad-atoms: Part ⅩⅩ. rate-determining step in methanol oxidation enhanced by oxygen-adsorbing ad-atoms, J. Electroanal. Chem., 1986, 209, 151.
    [66] E. P. M. Leiva, M. C. Goiordano, The influnce of platinum elecrode surface on the electroadsorpotion and electro-oxidation of methanol in acid solutions, J. Electrochem. Soc., 1983, 130, 1305.
    [67] B. Beden, F. Kairgan, C. Lamy, M. Leger, Oxidation of methanol on a platinum electrode in alkaline medium: Effect of metal ad-atoms on the electrocatalytic activity, J. Electroanal. Chem., 1982, 142, 171.
    [68] M. J. Zhang, C. P. Wilde, The influence of organic adsorbate on the UPD process: Oxidation of formic acid at UPD lead-modified platinum electrodes, J. Electroanal. Chem., 1995, 390, 59.
    [69] J. L. Hudson, T. T. Tsotsis, Electrochemical reaction dynamics: A review, Chem. Eng. Sci., 1994, 49, 1493.
    [70] J. Wojtowicz, N. Marincic, B. E. Conway, Oscillatory kinetics in the electrochemical oxidation of formate and ethylene, J. Chem. Phys., 1968, 48, 4333.
    [71] M. Schell, F. N. Albahadily, J. Safar, Y. Xu, Characterization of oscillatory states in the electrochemical oxidation of formaldehyde and formate/formic acid, J. Phys. Chem., 1989, 93, 4806.
    [72] S. G. Sun, Y Lin, Current oscillation during oxidation of formic acid on Pt/Sb electrode. Progress in Natural Sinence, 1992, 2, 351.
    
    
    [73] J. Lee, P. Strasser, M. Eiswirth, G. Ertl, On the origin of oscillations in the electrocatalytic oxidation of HCOOH on a Pt electrode modified by Bi deposition, Electrochim. Acta, 2001, 47, 501.
    [74] J. Lee, J. Christoph, P. Strasser, M. Eiswirth, G. Ertl, Spatio-temporal interfacial potential patterns during the electrocatalyzed oxidation of formic acid on Bi-modified Pt, J. Chem. Phys., 2001, 115, 1485.
    [75] B R. Land, J. R. Lombardi, Surface enhanced Raman Spectroscopy: In Gale R J (Ed.) Spectroelectrochemistry theory and practice, Plenum Press, New York, 1988.
    [76] D. M. Hembree, J. C. Oswald, N. R. Smyre, Surface enhanced Raman microspectrocopy at electrode surfaces, Appl. Spectrosc., 1987, 41, 267.
    [77] S. H. Macomber, T. E. Furtak, Surface enhanced Raman scattering magnified photochemical activation of the silver electrode in aqueous halide electrolytes, Chem. Phys. Lett., 1982, 90, 439.
    [78] S. Efrima, Surface-enhanced Raman scattering (SERS): In J. O'M. Bockris, R. E. White, B. E. Conway (Eds.), Modem Aspects of Electrochemistry, New York, Plenum Press, 1985, 16, 253.
    [79] X. P. Gao, D. Gosztola, L. W. Leug, Surface-enhanced Raman scattering at gold electrodes: Dependence on electrochemical pretreatment conditions and eomprarisons with silver, J. Electroanal. Chem., 1987, 233, 211.
    [80] B. Pettinger, M. R. Phiopott, J. G. Gordon, Further observation of the surface-enhanced Raman spectrum of water on silver and copper electrodes, Surf. Sci., 1981, 105, 469.
    [81] T. E. Furtak, Current understanding of the mechanism of surface-enhanced scattering, J. Electroanal. Chem., 1983, 150, 375.
    [82] M. Fleischmann, Z. Q. Tian, The effect of the underpotential and overpotential deposition of lead and thallium on silver on the Raman spectra of adsorbate, J. Electroanal. Chem., 1987, 217, 385
    [83] M. Fleischmann, P. R. Graves, J. Robinson, Ehanced and normal Raman scattering, J. Electroanal. Chem., 1985, 182, 73.
    [84] Z. Q. Tian, W. H. Li, S. Z. Zou, Potential averaged surface enhanced Raman spectroscopy, Appl. Spetrosc., 1996, 50, 1569.
    [85] 田中群,孙世刚,罗瑾,杨勇,现场光谱电化学研究新进展,物理化学学报,
    
    1994, 10, 860.
    [86] R. P. Cooney, E. S. Reid, M. Fleischmann, Thiocyanate adsorption and corrsion at silver electrode: A Raman spectroscopic study, J. Chem. Soc., Fraday. Trans., 1977, 73, 1691.
    [87] H. Wetzel, H. Grischer, B. Pettinger, Surface-enhanced Raman scattering from silver-cyanide and silver-thiocynate vibrations and the importance of adatoms, Chem. Phys. Lett., 1981, 80, 159.
    [88] M. J. Weaver, F. Barz, J. G. Gordon, Surface-enhanced Raman spectroscopy of electrochemically characterized interface: Potential dependance of Raman spectra for thiocyanate at silver electrode, Surf. Sci., 1983, 125, 409.
    [89] Z. Q. Tian, W. H. Li, Z. H. Qiao, Molecular-level investigations of different types of coadsorption at Ag electrodes by Raman spectroscopy, Russion. J. Electrochem., 1985, 31, 1014.
    [90] S. Sharonov, I. Nabiev, A. Feofanov, Canfocal 3-dimensional scanning laser Raman-SERS-Fluorescence microprobe spectral imaging and high-resolution applications, J. Raman Spectrosc., 1994, 25, 699.
    [91] 田中群,表面增强拉曼光谱研究电化学中的共吸附现象,物理化学学报,1988,4,344.
    [92] S. Bruekenstein, M. Shay, Experimental aspects of use of quartz crystal microbalance in solution, Electrochim. Acta, 1985, 30, 295.
    [93] Q. H. Wu, S. G. Sun, X. Y. Xiao, et al. An EQCM study of Sb adsorption and coadsorption with CO on Pt electrode in perehloric acid solution, Electrochim. Acta, 2000, 45, 683.
    [94] H. W. Buschmann, S. Wilhelm, W. Vielstich, On the study of methanol oxidation by electrochemical SIMS, Electrochim. Acta, 1986, 31, 939.
    [95] D. A. Bettry, in Electrochemical Interfaces: Modern techniques for in-situ interface characterization, H. D. Abruna (Ed.), Vch Publishers, New York, 1991, p.531.
    [96] S. J. Martin, V. Granstaff, G. C. Frye, Characterazition of a quartz crystal microbalance with simultaneous mass and liquid loading, Anal. Chem., 1991, 63, 2272.
    [97] Y. G. Dong, G. P. Feng, Effects of surface physical sorption on characteristic of coated quartz crystal humidity sensors, the 5th International Meeting on
    
    Chemlcal sensors, Rome, Italy, 1994.
    [98] 王芳,吴霞琴,金龙,李和兴,EQCM技术对电化学振荡机理的探讨,上海师范大学学报,2001,2,53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700