基于多谱协同分析方法的D/INTP降低柴油机有害排放机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车保有量的增加,机动车废气排放引起的环境污染问题已经引起了社会的广泛关注。随着技术的不断革新,现代柴油机具有能量密度高、结构紧凑、CO2排放低等优点,因此发展高效清洁的柴油利用技术有助于降低汽车CO2的总排放量。柴油机排气中包含多种危害较大的污染物,如NOx、PM、PAHs等;但目前已有的后处理技术尚存在缺点,因此有必要对其进行改进或开发新型的后处理技术。近年来兴起的利用低温等离子体降低柴油机有害排放技术成为研究热点。本文协同利用发射光谱、气相色谱质谱联用、高效液相色谱、热重谱、拉曼光谱、X射线光电子能谱及PM BSUs特征参数谱对DNTP柴油机排气中NOx、PM、多环芳烃及醛酮类污染物与INTP氧化PM的机理进行了较为系统的研究。
     设计了一台介质阻挡放电型NTP反应器并搭建了D/INTP实验平台。为便于改变气体组分进行机理研究,采用模拟气代替真实排气对DNTP处理过程中的发射光谱进行了分析,考察了工作电压峰峰值、02初始浓度、NO初始浓度、C3H6初始浓度等因素对发射光谱及NOx去除率的影响;并结合化学模型对产物浓度的变化进行了分析。结果表明:02和C3H6均可以促进模拟气中NO的转化;模拟排气中02会削弱NOx去除效果,对C3H6的分解及HC向CO、CO2转化也有抑制效应;放电功率一定的情况下,降低工作频率有助于NOx去除率的提高;C3H6对NOx去除的促进作用明显,还可以调节NOx中NO和N02的比例。
     利用气相色谱质谱联用与高效液相色谱技术分别对]DNTP降低柴油机排气中多环芳香烃和醛酮类物质的效果进行了研究。结果表明:DNTP对PAHs排放总量降低作用明显,除100%负荷下二环PAHs浓度高于原机,其余各环PAHs的浓度均明显下降。DNTP对屈的去除效果最好;排气中检出的醛、酮类污染物中甲醛含量最高;DNTP作用后,所选的大部分工况下多种醛、酮类污染物能完全去除,醛、酮类污染物的总臭氧生成反应活性明显降低;因此,DNTP可有效降低柴油机醛、酮类污染物排放,减轻其对环境的危害。
     为了研究DNTP降低PM的机理,首先利用热重谱考察了PM中HVF、LVF、EC含量与PM氧化过程的放热规律在DNTP作用下的变化,然后利用SEM、TEM和HRTEM技术获取了DNTP作用前后PM的形貌及特征参数谱,并进行了对比分析。结果表明:原机PM样品中EC含量随着负荷的增加逐渐升高,HVF含量随着负荷的增加逐渐降低,LVF含量随负荷的增加则呈现先升高后降低的趋势;DNTP作用后,PM样品中各组分含量随负荷变化的趋势与原机PM样品组分含量随负荷变化的趋势大致相似,只有一个样品的DSC曲线出现两个放热峰,表明DNTP处理后PM中固体碳氧化活性的差异减小;DNTP处理后,SEM观测到的样品形貌随负荷的变化规律与原机相似,TEM观测到的初级颗粒积聚形态并未发生显著变化;DNTP在PM初级颗粒BSUs的数量长度分布与数量曲率分布过于平缓或集中时,可以发挥平抑作用。因此减小了不同工况下PM的物理化学特性的差异。
     为了研究DNTP作用后PM碳结构有序性、碳团簇含量的变化,测取了各样品的拉曼光谱并用五带模型对光谱进行拟合,得到了G、D1带FWHM及D3带相对强度;然后利用X射线光电子能谱技术研究了PM样品表面C、O元素比,官能团种类及比例在DNTP作用下的变化。结果表明:随着柴油机负荷的增加,原机样品中石墨结构有序性逐渐降低;DNTP处理后,样品的石墨结构有序性维持在一个相对较平稳的水平;原机PM样品中碳团簇的比例在低负荷时较低,中高负荷时有所升高,但随着负荷的进一步增加变化并不明显,DNTP作用后的PM样品中碳团簇比例较原机样品均有所升高,因此PM样品的氧化活性较原机样品有所增加;所有负荷下缺陷石墨碳键的比例均比原机样品中的高,表明DNTP处理后样品的表面活性有所增强;样品表面含氧官能团中O1s谱主要包含类醌类结构的羰基、普通的羰基、类醚类结构的碳氧单键及羧基中的碳氧键,DNTP处理后样品表面O1s的结合能整体上有向高位移动的趋势,可能是由于类醌类结构在放电产生大量活性物质的撞击下断裂,与OH自由基形成类醚类、羧基等官能团形成的。
     为了研究INTP再生DPF机理及PM在不同氛围中加热的氧化机理,对柴油机PM样品进行了空气氛围加热、氧气氛围加热、空气INTP、氧气INTP处理,并对处理过程中排气组分浓度随时间的变化及处理后PM碳结构、表面元素比例和官能团种类的变化进行了分析。结果表明:加热处理对PM碳结构有序性的削弱效应明显强于INTP,氧气INTP对碳结构有序性的削弱效应强于空气INTP空气加热、空气INTP;氧气INTP处理后样品中碳团簇含量高于原机样品,氧气加热处理后样品中碳团簇含量低于原机样品;空气INTP处理后的样品中碳团簇含量高于氧气INTP样品,表明N02氧化PM过程中更易于生成碳团簇;处理后各样品表面O元素含量高于原机样品,空气INTP处理后的样品O元素含量高于氧气加热处理后的样品;原机样品和空气加热处理后的样品中O元素不含类醌类碳氧结构;这是由于空气加热处理时样品经历剧烈氧化过程,碳氧双键、单键被直接氧化,无需经历醌类碳氧结构过渡;而氧气加热处理、空气INTP和氧气INTP处理过程中温度较低,类醌类碳氧结构成为固体碳氧化为气态氧化物的过渡态。
The environmental issue caused by vehicle exhaust gas has aroused wide attention with the growing of automobile holdings. Meanwhile, technology inovation has brought about many merits for modern diesel engines like high energy density, compact structrure, and low CO2emission and consequently developing efficient and clean diesel technology would be helpful to decrease total carbon dioxide emission of vehicles. Diesel exhaust gas contains various hazardous substances, including NOx, PM, PAHs, aldoketones and so on. However, the existing aftertreatment techniques against those harmful emissions are barely satisfactory, which make it essential to develop new amd more effective technoly. In this paper, synergentic application of emission spectrum, TG, GC-MS, HPLC, SEM, TEM, HRTEM, raman spectrum and X-ray photonelectrons spectrum is adopted to study the mechanism of NOx, PAHs, aldehydes and ketones, and PM decomposition by nonthermal plasma, aiming for supply experimental basis for direct and indirect application of nonthermal plasma in diesel aftertreatment field.
     A dielectric barrier discharge nonthermal plasma reactor was designed and then the experimental platform was established. In order to survey NOx removal mechanism by direct nonthermal plasma, simulated gas were used, whose components can be changed more easily. The influence of voltage peak-to-peak value and frequency of power supply and the intial concentration of oxygen, nitrogen monoxides and propene on the spectrum and NOx removal efficiency were investigated. The results indicates that oxygen and propene can both promote the convertion of NO and oxygen can attenuate NOx removal rate and hamper the decomposition of propene and the oxidation of hydrogen carbon to CO and CO2. The exisiting of propene has an obvious positive effect on NOx removal. In addition, Lowing frequency of power supply could help to improve NOx removal rate under the same power.
     PAHs and carbonyl emission in diesel exhaust gas before and after the treatment of DNTP were detected via GC-MS and HPLC respectively. The result indicates that DNTP has the strongest removal capability towards chrysene and the total PAHs emission decreased obviously with reduction of most PAHs emission except a abrupt growing of two-ring PAHs at100%load. Methanal has the highest pencentage among aldehydes and ketons detected in the exhaust gas. Several aldehydes and ketones was completely removed at most loads and the total ozone reactivity of aldehydes and ketones was brought down and thus alleviate the hazard caused by the aldehydes and ketones emission from diesel engine exhaust gas.
     To investigate the variation of HVF, LVF and EC content, the heat release process and the morphology during oxidation of PM, the samples before and after the treatment of DNTP was analysed via TG, DSC, SEM, TEM and HRTEM. The results show that EC content grows with the increasing of loads while HVF content sees the opposite trends and LVF content rise first before get down with the growing of loads. Contents variation of samples after the treatment was approximately similar with that before the treatment, and the SEM and TEM observation shows the result alike. Only one sample's DSC curve has two heat release peaks, indicating the differentiation of elemental carbon reactivity of samples is weakened by the DNTP treatment. HRTEM observation shows that DNTP plays a balance role as the length and curvature distribution of primary particle BSUs are too concentrated or dispersive, and thus reduce the differentiation of physical and chemical characteristic of PM samples.
     The relative intensity of D3band and the FWHM of G and D1bands were obtained to survey the carbon structure ordering and molecule carbon contents after analyzing the spectrums of PM samples, which is fitted via a five-band model. Then XPS was used to investigate the variation of the elemental ratio of carbon and oxygen and the species of functional group after the treatment of DNTP. The results show that the graphene structure is less ordered as loads grow. After the treatment of DNTP, the graphene structure ordering could keep at a relative stable level. The molecular carbon content of PM samples after treatment is higher than that before treatment which increases gently at low and medium loads and has no obvious growing with the further load rising. So the treatment brought the PM higher oxidation reactivity. The proportions of defective carbon bonds of treated PM samples are all higher than that of raw samples, indicating PM samples have more reactive surfaces after the treatment of DNTP. The O1s spectrum of the oxygenie functional groups in the surface of PM samples mainly includes quinonoid carbonyl, common carbonyl, single C-0bonds in ethers and single C-0bonds in carboxyl. The O1s bond energy move to higher position holistically after the DNTP treatment, which is probably caused by the formation of additional ethers and quinonoid functional groups after the decomposing of quinonoid carbonyl under the collision of reactive particles generated during discharge and combination with OH radicals.
     Four kinds of treatment was administered toward PM samples including heating in air atmosphere, heating in oxygen atmosphere, air INTP and Oxygen INTP, so as to survey the mechanism of DPF regeneration by INTP and PM oxidation in different condition. The carbon structure, elemental proportion, functional group species and the variation of exhaust gas component were also compared. The results show that air and oxygen atmosphere heating could weaken the carbon structure ordering more effectively than INTP, and oxygen INTP more effectively than air INTP. The molecular carbon content of PM samples is higher after the treatment of air atmosphere heating, air INTP and oxygen INTP while that is lower after the treatment of oxygen atmosphere heating. PM samples treated by air INTP have higher molecular carbon content than that treated by oxygen INTP, implying that molecular carbon is more likely to form during the PM oxidation by NO2. The oxygen elemental proportion in the surface of PM samples treated by air atmosphere heating, oxygen atmosphere heating, air INTP and oxygen INTP is higher than that of raw PM samples, and air INTP treated is higher than oxygen atmosphere heating treated samples. The oxygen element in samples treated by oxygen atmosphere heating, air INTP and oxygen INTP is from quinonoid carbonyl, C=O bonds, single C-O bonds in ethers, single C-O bonds in hydroxyl and absorbed oxygen or water molecular. But the raw and air atmosphere treated samples has no oxygen element from quinonoid structure. The probable reason is that C-O and C=O bonds are directly oxidized to CO or CO2when heated in high temperature air atmosphere while C-O and C=O bonds are firstly converted to quinnoid structure as intermediate state before oxidized to CO or CO2.
引文
[1]卢祖丹.我国社会经济发展及制度变迁对碳排放的影响研究[D].合肥:中国科学技术大学,2011.
    [2]周龙保.内燃机学(第二版)[M].北京:机械工业出版社,2005.
    [3]张延峰,宋崇林,成存玉,等.车用柴油机排气颗粒物中有机组分和无机组分的分析[J].燃烧科学与技术,2004,10(6),197-201.
    [4]高俊华,方茂东,张仲荣,等.柴油机排气微粒中多环芳香烃的色谱质谱分析[J].内燃机学报,2009,27(5),423-42.
    [5]Christer Soderstrom, Kauko Tormonen, Solla. Effect of ammonium formate and mixtures of urea and ammonium formate on low temperature activity of SCR system. [C].SAE Paper 2005-01-1856,2005.
    [6]Song Chonglin, Bin Feng, Tao Zemin.et al. Simultaneous removals of NOX, HC and PM from diesel exhaust emissions by dielectric barrier discharges [J]. Journal of Hazardous Materials, 2008,166(1),523-530
    [7]Jan Vinogradov, Boris Rivin, Eran Sher. NOX reduction from compression ignition engines with DC corona discharge-An experimental study. Energy [J],2007, (32),174-186.
    [8]李芳,陈敏东,张爱民,等.柴油发动机颗粒排放物研究进展[J].环境科学与技术,2009,32(4),81-85.
    [9]李红,曾凡刚,邵龙义,等.可吸入颗粒对人体健康危害的研究进展[J].环境与健康杂志,2002,19(1):85-87.
    [10]朱崇基,周有平,何文华.汽车环境保护学[M].杭州:浙江大学出版社.2001.
    [11]蒋德明,陈长佑,杨嘉林,等.高等车用内燃机原理[M].西安:西安交通大学出版社.2006.
    [12]李兴虎.汽车环境保护技术[M].北京:北京航空航天大学出版社,2004.
    [13]何元,王恒.柴油机排气颗粒物的观测及分析[J].小型内燃机,2000,29(5),35-38.
    [14]M. Matti Maricq. Chemical characterization of particulate emissions from diesel engines:a review [J]. Aerosol Science,2007(38),1079-1118.
    [15]Michael Frenklach. Reaction mechanism of soot formation in flames[J]. Physical Chemistry Chemical Physics,2002, (04),2028-2037.
    [16]H.Burtscher. Physical characterization of particulate emissions from diesel engines:a review[J],2005,36(07):896-932.
    [17]GB18352.2-2001《轻型汽车污染物排放限值及测量方法(Ⅱ)》
    [18]GB18352.3-2005《轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段)》.
    [19]GB17691-2005《车用压燃式、气体燃料点燃式发动机与汽车排放污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)》
    [20]赵航,王务林,杨建军,等.车用柴油机后处理技术[M].北京:中国科学技术出版社,2010.
    [21]Steve Arnold, Kevin Slupski, Mark Groskreutz, et al. Advanced turbocharging technologies for heavy-duty diesel engines [C]. SAE Paper,2001-01-1229.
    [22]Steven D, Arnold. Turbocharging:technologies to meet critical performance demands of ultra-low emissions diesel engines [C]. SAE Paper,2004-01-1359.
    [23]A. Chasse, P.Moulin, P. Gautier, et al. Double stage turbocharger control strategies development [C]. SAE Paper,2008-01-0988.
    [24]Mikame. Valve timing control apparatus for internal combustion engine, U.S. patent 6,626, 136[P].Sep.30,2003.
    [25]Allen J. Production electron-hydraulic variable valve-train for a new generation of I.C. engines[C]. SAE Paper,2002-01-1109.
    [26]Yutaka Murata, Jin Kusaka, Matsuo Odaka, et al. Achievement of medium engine speed and load premixed diesel combustion with variable valve timing[C]. SAE Paper,2006-01-0203.
    [27]Chalgren R D, Parker G G. A controlled EGR cooling system for heavy duty diesel applications using the vehicle engine cooling system simulation [C]. SAE Paper, 2002-01-0076,2002.
    [28]王一江,董尧清.国Ⅳ中重型电控共轨柴油机EGR技术路线探讨[J].内燃机工程,2011,32(2),6-11.
    [29]张韦,舒歌群,沈颖刚,赵伟,等.EGR与进气富氧对直喷柴油机NO和碳烟排放的影 响[J].内燃机学报,2012,30(1),16-21.
    [30]杨浩林,赵黛青,鲁冠军.C02稀释燃料对富氧扩散燃烧中NO生成的抑制作用[J].热能与动力工程,2006,21(1),43-47.
    [31]Cheolwoong Park, Sanghoon Kook, Choongsik Bae. Effects of multiple injections in a HSDI diesel engine equipped with common rail injection system[C]. SAE Paper,2004-01-0127.
    [32]N.A.Henein, M-C.lai, I.P.Singh, et al. Characteristics of a common rail diesel injection system under pilot and post injection mode[C]. SAE Paper,2002-01-0218.
    [33]Gavin Dober, Simon Tullis, Godfrey Greeves, et al. The impact of injection strategies on emissions reduction and power output of future diesel engines[C].SAE Paper,2008-01-0941.
    [34]U.S. Department of energy efficiency and renewable energy office of transportation technologies. Homogeneous charge compression ignition (HCCI) technology[R]. A Report to the U.S. Congress.2001(4).
    [35]Gary D. Neely, Shizuo Sasaki, Yiqun Huang, et al. New diesel emission control strategy to meet US tier2 emissions regulations[C]. SAE Paper,2005-01-1091.
    [36]Malin Alriksson, Tanja Rente, Ingemar Denbratt. Low soot, low NOx in a heavy duty diesel engine using high level of EGR[C]. SAE Paper,2005-01-3836.
    [37]Yoshinori Iwabuchi, Kenji Kawai, Takeshi Shoji, et al. Trial of new concept diesel combustion system-premixed compression-ignited combustion[C]. SAE Paper,1999-01-0185.
    [38]Hiroshi Ogawa, Shuji Kimura, Masao Koike, et al. A study of heat rejection, combustion characteristics of a low-temperature and premixed combustion concept based on measurement of instantaneous heat flux in a direct-injection diesel engine[C]. SAE Paper,2000-01-2792.
    [39]Vesna Tomasic. Application of the monoliths in DeNOx catalysis[J]. Catalysis Today,2007, 119:106-113.
    [40]Inomata M, Miyamoto A, Murakami Y. Mechanism of the reaction of NO and NH3 on vanadium oxide catalyst in the presence of oxygen under the dilute gas conditions [J]. Journal of catalysis,1980,62(1),140-148.
    [41]G. Ramis, G. Busca, F. Bregani, et al.Fourier transform-infrared study of the adsorption and ccoadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction[J]. Applied Catalysis,1990,64,259-278.
    [42]Gary Fulks, Galen B. Fisher, Ken Rahmoeller, et al. A review of solid materials as alternative ammonia sources for lean NOX reduction with SCR[C]. SAE Paper,2009-01-0907.
    [43]Miyoshi N, Katoh K, Tanaka T, et al. Development of new concept three-way catalyst for automotive lean-burn engines[C]. SAE Paper,950809.
    [44]王建强,王远,刘双喜,等.稀燃发动机NOx存储还原技术研究进展[J].现代化工,2011,34(4),28-33.
    [45]王天友,EricLim Khim Song,林漫群,等.燃油催化微粒捕集器微粒捕集与强制再生特性的研究[J].内燃机学报,2007,25(6),527-531.
    [46]Tim Johnson. Update on diesel exhaust emissions control technology and regulation[C]. DEER Conference,2004.
    [47]谭不强,胡志远,楼狄明,等.柴油机捕集器结构参数对不同粒径微粒过滤特性的影响[J].机械工程学报,2008,44(2),175-181.
    [48]龚金科,余明果,王曙辉,等.柴油机单元块旋转式过滤体DPF微波再生研究[J].农业机械学报,2011,42(1),2-7.
    [49]Kanta Yamamoto, Keishi Takada, Jin Kusaka. Influence of diesel post injection timing on HC emissions and catalytic oxidation performance [C]. SAE Paper,2006-01-3422.
    [50]Kyle L. Fujdala, Timothy J. Truex, John B. Nicholas, et al. Rational design of oxidation catalysts for diesel emission control [C]. SAE Paper,2008-01-0070.
    [51]Kati Lehtoranta, Pekka Matilainen, Juha-Matti Asenbrygg, et al. Particle oxidation catalyst in light duty and heavy duty diesel applications [C]. SAE Paper,2007-24-0093.
    [52]许根慧,姜恩永,盛京,等.等离子体技术与应用.北京:化学工业出版社,2006.
    [53]菅井秀郎.等离子体电子工程学.北京:科学出版社,2002.
    [54]C. G. Liu, Marafee. A, B. J. Hill, et al. Oxidative coupling of methane with AC and DC corona discharge[J]. Ind. Eng. Chem. Res.,1996,35 (10),3295-3301.
    [55]Luo H Y, Liang Z, Wang X X, et al. Observation of the transition from a Townsend discharge to a glow discharge in helium at atmospheric pressure[J]. Appl Phys Lett,2007,91(22), 221504.
    [56]王新新.介质阻挡放电及其应用[J].高电压技术,2009,35(1):1-11.
    [57]蔡忆昔,张乐夫,冉冬立,等.温度对NTP喷射系统处理柴油机模拟排气的影响[J].内燃机工程,2011,32(4),7-11.
    [58]王军,蔡忆昔,赵卫东,等.低温等离子体喷射系统降低排放及再生DPF的实验研究[J].车用发动机,2010,3,79-82.
    [59]Yoshioka Y, Sano K, Teshima K. NOx removal from diesel engine exhaust by ozone injection method [J]. JAdv OxidTechnol,2003,6(2):143-149.
    [60]Harano A, Sadakata M, Sato M. Soot oxidation in a silent discharge[J]. J Chem Eng Jpn,1991, 24(1),100-106.
    [61]Fanick ER, Bykowski BB. Simultaneous reduction of diesel particulate and NOx using plasma[C]. SAE Paper,1994-942070.
    [62]Thomas SE, Martin AR, Raybone D, et al. Non thermal plasma after treatment of particulates-theoretical limits and impact on reactor design[C]. SAE Paper,2000-01-1926.
    [63]Yao S, Suzuki E, Nakayama A. Oxidation of activated carbon and methane using a high-frequency pulsed plasma[J]. J Hazard Mater,2001, B83,237-242.
    [64]Yao S, Yamamoto S, Kodama S, et al. An innovative after-treatment system for diesel PM removal[J]. International conference on automotive technologies, Istanbul, Turkey 2008.
    [65]Chae JO, Hwang JW, Jung JY, et al. Reduction of the particulate and nitric oxide from the diesel engine using a plasma chemical hybrid system[J]. Phy Plasma,2001,8:1403-1410.
    [66]Yao S. Plasma reactors for diesel particulate matter removal [J]. Recent Patents on Chemical Engineering,2009,2,67-75.
    [67]B. S. Rajanikanth, A. D. Srinivasan. Pulsed plasma promoted adsorption/catalysis for NOx removal from stationary diesel engine exhaust[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(2),302-311.
    [68]Tochikubo, Fumiyoshi. Modeling for plasma-enhanced catalytic reduction of nitrogen oxides [J]. Thin Solid Films,2009,518 (3),957-961.
    [69]Okubo M, Arita N, Kuroki T, et al. Carbon particulate matter incineration in diesel engine emissions using indirect nonthermal plasma processing[J]. Thin Solid Films,2007,515(9), 4289-4295.
    [70]Okubo M, Arita N, Kuroki, T. et al. Total diesel emission control technology using ozone injection and plasma desorption[J]. Plasma Chemistry and Plasma Processing,2008,28(2), 173-187.
    [71]Okubo M, Arita N, Kuroki T, et al. Carbon particulate matter incineration in diesel engine emissions using indirect nonthermal plasma processing[J]. Thin Solid Films,2007,515(9), 4289-4295.
    [72]李康华,蔡忆昔,李小华,等.水冷式低温等离子体反应器的性能试验[J].农业工程学报,2012,28(22),69-75.
    [73]韩文赫,蔡忆昔,王军,等.空气介质阻挡放电型间接低温等离子体系统性能实验分析[J].高电压技术,2010,36(12),3065-3069.
    [74]郭燕君,管斌,程琪等.一氧化氮在低温等离子体中的氧化试验研究[J].车用发动机,2008(6):60-63.
    [75]Apostolescu N, Geiger B, Hizbullah K, et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts, Appl.Catal. B:Environ.2006, (62):104-114.
    [76]Yoshida K, Okubo M, Yamamoto T, et al. Distinction between nothermal plasma and thermal desorptions for NOx and CO2[J]. Appl. Phys. Lett.2007,(90):131501.
    [77]Wang Hongchang, Li Duan, Wu Yan, et al. Removal of four kinds of volatile organic compounds mixture in air using silent discharge reactor driven by bipolar pulsed power[J]. Journal of Electrostatics,2009,67(4):547-553.
    [78]王军,蔡忆昔,庄凤芝等.介质阻挡放电功率测量及各参量变化规律[J].江苏大学学报(自然科学版),2008,29(5):398-401.
    [79]S De Benedictis, G Dilecce, Laser-induced fluorescence measurements of He (23 S) decay in He-N2/O2 pulsed RF discharges:Penning ionization [J]. Journal of Physics D:Applied Physics 1995.(28):2067-2067.
    [80]M.A. Naveed, A.Qayyum, Shujaat Ali, et al. Effects of helium gas mixing on the production of active species in nitrogen plasma[J]. Physics Letters A,2006,359(4):499-503.
    [81]Simek M, Babicky V, Clupek M, et al. Excitation of N2(C3Πu) and NO(A2Σ+) States in a Pulsed Positive Corona Discharge in N2, N2-O2 and N2-NO Mixtures [J]. J Phy D:Appl Phys, 1998,31:2591-2602
    [82]Shimizu K, Oda T. Emission Spectrometry for Discharge Plasma Diagnosis [J]. Science and Technology of Advanced Materials,2001,2:577-585.
    [83]Cosby P C, Electron impact dissociation of nitrogen[J]. J. Chem. Phys,1993, (98):9544.
    [84]Abel Fernandez, Goumri A. Arthur Fontijn. Kinetics of the Reactions of N(4S) Atoms with O2 and CO2 over Wide Temperatures Ranges.[J] J. Phys. Chem. A,1998,102 (1):168-172.
    [85]Cosby P C. Electron-impact dissociation of oxygen[J]. J. Chem. Phys,1993,(98):9560.
    [86]John T. Herron. David S. Green. Chemical Kinetics Database and Predictive Schemes for Nonthermal Humid Air Plasma Chemistry. PartⅡ. Neutral Species Reactions[J]. Plasma Chemistry and Plasma Processing,2001,3 (21):459-481.
    [87]Pintassilgo C D, J.Loureiro e V.Guerra, Modeling of a N2-O2 flowing afterglow for plasma sterilization[J]. J. Phys. D Appl.Phys,2005,(38):417.
    [88]Kossyi I. A, Kostinsky A. Yu, Matveyev A. A, et al, Plasma Sources Sci. Technol,1992, (1):207-20.
    [89]Herron J T, Evaluated chemical kinetics data for reactions of N(2D), N(2P), and N2(A3 Eu+) the gas phase[J]. J.Chem,1999,28(5):1453-1483.
    [90]S. Yagi, M. Tanaka, Mechanism of ozone generation in air-fed ozonisers. [J]. J. Phys D Appl Phys,1979, (12):1509-1520.
    [91]钟侃,聂勇,汪晶毅.03和C2H4在介质阻挡放电转化NO中的作用[J].高电压技术,2008,34(1):103-106.
    [92]Hyun-Ho Shin, Woong-Sup Yoon. Hydrocarbon effects on the promotion of non-thermal plasma NO-NO2 Conversion. [J]. Plasma Chemistry and Plasma Proceeding. 2003,23(4):681-704.
    [93]Pintassilgo C D, Cernogora G, Loureiro J. Spectroscopy study and modeling of an afterglow created by a low-pressure pulsed discharge in N2-CH4[J]. Plasma Sources Sci. Technol,2001,10(2):147-161.
    [94]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996:21.
    [95]EPA Bulleton. Draft Technical Support Document:Control of Emissions of Hazardous Air Pollutants from Motor Vehicles and Motor Vehicles Fuels[R]. EPA420-D-00-003,2000.
    [96]王忠,安玉光,许广举,等.柴油机多环芳香烃类污染物的测量方法[J].农业工程学报,2011,27(4):174-177.
    [97]Ch M Du, J H Yan, X D Li, et al. Simultaneous Removal of Poly cyclic Aromatic Hydrocarbons and Soot Particles from flue Gas by Gliding arc Discharge Treatment[J]. Plasma Chem Plasma Process,2006,26 (5):517-525.
    [98]Yu L, Tu X, Li X, et al. Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor[J]. Journal of Hazardous Materials,2010,180(1-3):449-455.
    [99]Chong-Lin Song, Feng Bin, Ze-Min Tao, et al. Simultaneous removals of NOx, HC and PM from diesel exhaust emissions by dielectric barrier discharges[J]. Journal of Hazardous Materials 2009,166(1):523-530.
    [100]Yang Hsi-Hsien, Lee Wen-Jhy, Mi Hsiao-Hsuan et al. PAH emissions influenced by Mn-based additive and turbo charging from a heavy-duty diesel engine. Environment International 1998,24 (4):389-403.
    [101]陈敏东,李芳,李红双,等.柴油机尾气颗粒物中PAHs的定量分析[J].环境化学,2010,1(29):137-138.
    [102]Chaochen Ma, Lei Zhong, Shuliang Yu. Effect of the plasma and temperature on the chemical components of particulate matter using corona discharge[C].2011, International Conference on Consumer Electronics, Communications and Networks, CECNet 2011-Proceedings: 2171-2174.
    [103]何超,葛蕴珊等,谭建伟,等.生物柴油醛酮类化合物的排放特性研究[C].长春:中国 内燃机学会燃烧、节能、净化分会,2008.
    [104]刘巽俊.内燃机排放与控制[M].北京:机械工业出版社,2002,11-14.
    [105]Kristine Drobot, WaiK Cheng. Hydrocarbon Oxidation in the Exhaust Port and Runner of aSpark Ignition Engine[J]. Combustion and Flame,1994,99(2):422-433.
    [106]李博,楼狄明,谭丕强,等.发动机燃用生物柴油的常规和非常规排放特性[J].内燃机工程,2009,30(5):22-26.
    [107]O. Koeta, N. Blin-Simiand, W. Faider, et al. Decomposition of Acetaldehyde in Atmospheric Pressure Filamentary Nitrogen Plasma[J]. Plasma Chemistry and Plasma Processing, 2012,32(5):991-1023.
    [108]Hui-xian Ding, Ai-Min Zhu, Xue-Feng Yang et al. Removal of Formaldehyde from Gas Streams Via Packed-bed Dielectric Barrier Discharge Plasma[J]. Institute of Physics Publishing,2005,(38):4160-4167.
    [109]How Ming Lee, Moo Been Chang, Gas-phase Removal of Acetaldehyde Via Packed-bed Dielectric Barrier Discharge Reactor[J], Plasma Chemistry and Plasma Processing,2001,21(3):9-343.
    [110]R.G. Tonkyn, S.E. Barlow, T.M. Orlando, Destruction of Carbon Tetrachloride in a Dielectric Barrier/packed-bed Corona Reactor[J], Journal of Applied Physics,1996.(80):4877-4886.
    [111]Alina Silvia, Chiper,Nicole, Blin-simiand, et al. Detailed Characterization of 2-Heptanone Conversion by Dielectric Barrier Discharge in N2 and N2/O2 Mixture[J].American Chemical Society,2010,114:397-407.
    [112]Yi Chengwu, Qu Wenming, Wang Songmei, et al. Study on Formaldehyde Degradation Using Strong Ionization Discharge[J],IEEE,2010,2094-2097.
    [113]N Blin-Simiand, S Pasquiers, F Jorand, et al. Removal of Formaldehyde in Nitrogen and in Dry Air by a DBD:Importance of Temperature and Role of nitrogen Metastable States[J]. Journal of physicsd,2009,42(12):1-5.
    [114]Jintawat Chaichanawong, Wiwut Tanthapanichakoon, Tawatchai Charinpanitkul,et al. High-temperature Simultaneous Removal of Acetaldehyde and Ammonia Gases Using Corona Discharge[J]. Science and Technology of Advanced Materials,2005,6(3-4):319-324.
    [115]彭美春,王贤烽,王海龙,等.柴油-生物柴油-乙醇混合燃料发动机的醛类化合物排放特性研究[J].内燃机学报,2010,28(2):127-132.
    [116]William P. L. Carter. Development of Ozone Reactivity Scales for Volatile Organic Compound[J]. Journal of the Air and Waste Management Association,1994,44:881-899.
    [117]Philip Price, Richard Stone, Dave OudeNijeweme, et al. Cold Start Particulate Emissions from a Second Generation DI Gasoline Engine[C]. SAE Paper,2007-01-1931.
    [118]Muller J O, Su D S, Jentoft R E, et al. Diesel engine exhaust emission:oxidative behavior and microstructure of black smoke soot particulate[J]. Environ. Sci. Technol.2006,40(4): 1234-1236.
    [119]OBERLIN A. High-Resolution TEM Studies of Carbonization and Graphitization. Chemistry and Physics of Carbon. Vol22, Thrower P.A. (Ed.) Marcel Dekker, New-York,1989:1-143.
    [120]H X Chen, R A Dobbins. Crystallogenesis of particles formed in hydrocarbon combustion. Combust Sci Technol,2000,159:109-128
    [121]R.E. Franklin. The interpretation of diffuse X-ray diagrams of carbon[J]. Acta Crystallogr, 19503(2):107-121.
    [122]H Fujimoto, A Mabuchi, K Tokumitsu, et al. Effect of crystallite size on the chemical compositions of the stage 1 alkali metal-graphite intercalation compounds[J]. Carbon,1994, 32(2):193-198.
    [123]N Iwashita, M Inagaki. Relations between structural parameters obtained by X-ray powder diffraction of various carbon materials[J]. Carbon,1993,31(7):1107-1113.
    [124]Kuen Yehliu, Randy L Vander Wal, Andre L Boehman. A comparison of soot nanostructure obtained using two high resolution transmission electron microscopy image analysis algorithms[J].2011,49(13):4256-4268.
    [125]Vander Wal, R L a Tomasek, A J a Pamphlet, et al. Analysis of HRTEM images for carbon nanostructure quantification[J]. Journal of Nanoparticle Research,2004,6(6):555-568.
    [126]Grieco W J, Howard J B, Rainey L C, et al. Fullerenic carbon in combustion-generated soot[J]. Carbon,2000,38(4):597-614.
    [127]Pope C J, Marr, J A, Howard, J B. Chemistry of fullerenes C60 and C70 formation in flames[J]. Journal of Physical Chemistry,1993,97(42):11001-11013.
    [128]Rosem H, Novakov T. Raman scattering and the characterisation of atmospheric aerosol particles[J]. letters to nature,1977,266,708-710.
    [129]Ivleva Natalia P, Messerer Armin, Yang Xin, et al. Raman microspectroscopic analysis of changes in the chemical structure and reactivity of soot in a diesel exhaust aftertreatment model system[J]. Environmental Science & Technology,2007,41(10),702-707.
    [130]Knauer M, Schuster M E, Su D S, et al. Soot structure and reactivity analysis by raman microspectroscopy, temperature-programmed oxidation, and high-Resolution transmission Electron Microscopy [J]. JOURNAL OF PHYSICAL CHEMISTRY,2009,113(50), 13871-13880.
    [131]刘志广,张华,李亚明.仪器分析(第二版)[M].大连:大连理工大学出版社,2007.
    [132]A.Sadezky, H.Muckenhuber, H.Grothe, et al. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon,2005,43(8), 1731-1742.
    [133]Cuesta A, Dhamelincourt P, Laureyns J, et al. Effect of various treatments on carbon fiber surfaces studied by raman microprobe spectrometry[J]. Applied Spectroscopy.1994,32(8), 356-360.
    [134]T. Jawhari, A. Roid, J. Casado. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon,1995,33(11),1561-1565.
    [135]B. Dippel, H. Jander, J. Heintzenberg. NIR FT Raman spectroscopic study of flame soot[J]. Physical Chemistry Chemical Physics,1999,1(20),4707-4712.
    [136]M. S. Dresselhau, G. Dresselhaus. Intercalation compounds of graphite. Advances in Physics, 1981;30(2),139.
    [137]N. P. Ivleva, U. McKeon, R. Niessner, et al. Raman microspectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI:soot, humic-Like substances, and inorganic compounds[J]. Aerosol Science and Technology,2007,41(7), 655-671.
    [138]A. Cuesta, A. Martinez-Alonso, J. M. D. Tascon. Carbon reactivity in an oxygen plasma:a comparison with reactivity in molecular oxygen[J]. Carbon,2001,39 (8),1135-1146.
    [139]Wang Y, D.C Alsmeyer, R.L McCreery,. Raman spectroscopy of carbon materials:Structural basis of observed spectra[J]. Chemistry of Materials,1990,2(5),557-563.
    [140]Cuesta A, Dhamelincourt P, Laureyns J, et al. Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials [J]. Journal of Materials Chemistry,1998,8(12),2875-2879.
    [141]Yoshida A, Kaburagi Y, Hishiyama Y. Full width at half maximum intensity of the G band in the first order Raman spectrum of carbon material as a parameter for graphitization[J]. Carbon, 2006,44(11),2333-2335.
    [142]Gruber T, Waldeck-Zerda T, Gerspacher M. Raman studies of heat-treated carbon blacks[J]. Carbon,1994,32(7),1377-1382.
    [143]Johannes Schmid, Benedikt Grob, Reinhard Niessner, Natalia P. Ivleva, Multiwavelength Raman Microspectroscopy for Rapid Prediction of Soot Oxidation Reactivity[J]. Journal of Materials Chemistry,2011,83 (4),1173-1179.
    [144]Green PD, Johnson CA, Thomas KM. Applications of laser Raman microprobe spectroscopy to the characterization of coals and cokes[J]. Fuel,1983,62(9),1013-1023.
    [145]Bar-ziv E, Zaida A, Salatino P, et al. Diagnostics of carbon gasification by Raman microprobe spectroscopy[J]. Proceedings of the combustion institute,2000,28(2),2369-2374.
    [146]Beyssac O, Goffe B, Petitet JP, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy [J]. Spectrochim Acta,2003,59(10), 2267-2276.
    [147]Natalia P. Ivleva, Armin Messerer, Xin Yang, et al. Raman Microspectroscopic Analysis of Changes in the Chemical Structure and Reactivity of Soot in a Diesel Exhaust Aftertreatment Model System[J]. Environmental Science & Technology.2007,41 (10), 3702-3707.
    [148]P. M. Th. M. van Attekum, G. K. Wertheim. Excitonic Effects in Core-Hole Screening[J]. Phys.Rew.Lett,1979,43(25),1896-1898.
    [149]Speranza, G.; Minati, L. The surface and bulk core lines in crystalline and disordered polycrystalline graphite[J]. Surface Science,2006,600(19),4438-4444.
    [150]G. K. Wertheim and P. H. Citrin, in Photoemission in Solids, edited by M. Cardona and L. Ley (Springer-Verlag, Berlin,1978), Vol. I, Chap.5, p.197.
    [151]Lahaye,J.; Nanse, G.; Fioux,P.; Bagreev,A.; Broshnik, A.; Strelko, V. Appl. Sur. Sci.1999,147(1-4),153-174.
    [152]H. Werner, D. Herein, J. Blcker, et al. Spectroscopic and chemical characterisation of "fullerene black" Chemical Physics Letters[J],1992,194(1-2),62-66.
    [153]Muller, J.-O. Ph.D. Thesis, Fritz-Haber-Institute der MPG. Berlin,2005. P69.
    [154]Schuster, Manfred E, Havecker, Michael,Arrigo, Rosa, et al. Surface sensitive study to determine the reactivity of soot with the focus on the European emission standards IV and VI[J]. The Journal of Physical Chemistry Part A:Molecules, Spectroscopy, Kinetics, Environment and General Theory,2011,115 (12),2568-2580.
    [155]Mcfeely, F.R.; Kowalczyk, S.P.; Ley,L.; Cavell,R.G; Pollak, R.A.; Shirley, D.A. Phys.Rev. B 1974,9,5268.
    [156]Schlogl, R.; Boehm, H. P. Influence of crystalline perfection and surface species on the X-ray photoelectron spectra of natural and synthetic graphites[J]. Carbon 1983,21(4),345-358.
    [157]Desimoni E, Casella G. I, Morone A, et al. XPS determination of oxygen-containing functional groups on carbon-fibre surfaces and the cleaning of these surfaces[J]. Surface and Interface Analysis,1990,15(10),627-634.
    [158]Desimoni E, Casella, G. I, Salvi A. M. XPS/XAES study of carbon fibres during thermal annealing under UHV conditions [J]. Carbon,1992,30(4),521-526.
    [159]P. Merel, M. Tabbal, M. Chaker, et al. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS[J]. Applied Surface Science,1998,136(1-2),105-110.
    [160]W.H.Lee, S.J.Kim, W.J.Lee, et al. X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material[J]. Applied Surface Science.2001,181(1-2), 121-127.
    [161]Rosa Arrigo, Michael Havecker, Sabine Wrabetz, et al. Tuning the Acid/Base Properties of Nanocarbons by Functionalization via Amination[J]. Chem. Soc,2010,132 (28),9616-9630.
    [162]J Lahaye, G Nanse, Ph Fioux, et al. Chemical transformation during the carbonisation in air and the pyrolysis under argon of a vinylpyridine-divinylbenzene copolymer by X-ray photoelectron spectroscopy[J]. Applied Surface Science,1999,147(1-4),153-174.
    [163]Pels J.R, Kapteijn F, Moulijn J.A, et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis[J]. Carbon,33(11),1995,1641-1653.
    [164]Satoshi Kodama, Shuiliang Yao, Shin Yamamoto. Oxidation Mechanism of Diesel Particulate Matter in Plasma Discharges[J]. Chemistry Letters,2009,38(1):50-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700