长沙地区临床分离金黄色葡萄球菌的耐药特征及femB基因的克隆和原核表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的(1)了解长沙地区临床分离金黄色葡萄球菌(以下简称金葡菌)对常用抗菌药物的耐药现状,探讨金黄色葡萄球菌对甲氧西林和万古霉素的耐药水平。(2)构建金葡菌甲氧西林耐药辅助基因femB的原核表达载体并在大肠杆菌中表达,为进一步研究金葡菌对甲氧西林的耐药机制奠定基础。
     方法(1)收集长沙地区11家医院2009年11月-2010年11月临床分离的非重复金葡菌279株,应用Vitek-2全自动微生物分析系统进行鉴定,K-B法检测金葡菌对24种药物的敏感性,产色头孢菌素试验检测β-内酰胺酶以及D试验检测诱导型克林霉素耐药。(2)应用头孢西丁和苯唑西林纸片扩散法筛查耐甲氧西林的金葡菌(MRSA);琼脂稀释法检测头孢西丁,苯唑西林和万古霉素的最低抑菌浓度(MIC)。(3)提取金葡菌基因组DNA,并以此为模板进行femB基因的PCR扩增,构建重组质粒pGEX-4T-1-femB,并将重组质粒导入大肠杆菌BL21中进行表达。采用SDS-PAGE及Western blot分析对表达蛋白进行验证。
     结果(1)279株分离的金葡菌对24种药物的耐药分析显示,敏感率>50%的药物为9种,敏感率最高的为万古霉素、替考拉宁和利奈唑胺,均为100%,其次为呋喃妥因(97.1%)、氯霉素(93.5%)和复方新诺明(87.1%)。耐药率>50%的抗菌药物有11种,其中以青霉素G和氨苄西林的耐药率最高,均为97.1%。MRSA的分离率为54.5%,除万古霉素、替考拉宁、利奈唑胺、呋喃妥因均高度敏感外,MRSA对常用的16种抗生素的耐药率均显著高于MSSA。(2) 279株金黄葡菌中,p-内酰胺酶阳性250株(89.6%),红霉素耐药而克林霉素敏感、中介的30株菌中,D试验阳性22株(73.3%)。(3)苯唑西林(OXA)和头孢西丁(FOX) MIC范围分别为O.125μg/ml~>256μg/ml和2μg/ml~>256μg/ml,苯唑西林的MIC50和MIC90分别为128μg/ml和256μg/ml,头孢西丁的MIC50和MIC90分别为64μg/ml和256μg/ml。万古霉素MIC范围为1~2μg/ml,MIC50和MIC90均为2μg/ml。(4)经PCR,双酶切以及测序验证,成功的构建了重组质粒pGEX-4T-1-femB;重组质粒转化大肠杆菌BL21经IPTG诱导后,SDS-PAGE和Western blot分析证实表达出49KDa目的蛋白。
     结论(1)长沙地区临床分离的金葡菌p-内酰胺酶阳性率,克林霉素诱导型耐药率均较高,且呈多重耐药特征。(2)长沙地区临床分离的金葡菌不仅MRSA分离率高,而且对甲氧西林呈高水平耐药;所有菌株对万古霉素均敏感,但MIC已接近中介水平,应引起高度重视。(3)成功构建了重组质粒pGEX-4T-1-femB,并在大肠杆菌中高效的表达。
Objective (1) To investigate the characteristic of drug resistance and current situation of methicillin-resistance and vancomycin-resistance in clinical isolates of staphylococcus aureus in Changsha. (2) To construct prokaryotic expression vector of femB gene (Factors essential for the expression of methicillin resistance gene), and express it in E. coli and establish foundation for further investigations of methicillin-resistance in staphylococcus aureus.
     Methods (1) Totally 279 non-duplicate clinical isolates of staphylococcus aureus were collected during November 2009 to November 2010 from 11 hospitals in Changsha and then identified by Vitek-2 system. K-B disk method was used to test drug sensitivity of 24 commonly used antibiotics, chromogenic cephalosporin spot test was applied to detectβ-lactamase and D-test were used to check inducible resistance of erythromycin to clindamycin. (2) MRSA was screened by oxacillin and cefoxitin disk diffusion methods. Agar dilution method was used to determine the minimal inhibitory concentrations (MICs) of oxacillin, cefoxitin and vancomycin to isolates of staphylococcus aureus. (3) Genomic DNA were extracted from staphylococcus aureus and used as templete for PCR amplification of femB gene fragment using special PCR primers. Recombinant plasmids pGEX-4T-1-femB were constructed and transformed into E.coli BL21. The expressed product was identified by SDS-PAGE and Western blot.
     Results (1) Of the 279 S. aureus isolates, The sensitive rates to 9 of the 24 antibiotics tested were higher than 50%. All the isolates were susceptible to tecoplanin, vancomycin and linezolid, and the sensitive rate to Nitrofurantoin, chlormycetin and trimethoprim-sulfamethoxazole was 97.1%,93.5% and 87.1% respectively. The resistant rates to 11 of the 24 antibiotics tested were higher than 50%, resistant rates to penicillin and ampicillin were the highest (both 97.1%).Among 279 strains, MRSA accounted for 54.5%, which were high sensitive to vancomycin, tecoplanin and linezolid. The resistant rates of MRSA to 16 antibiotics were higher than MSSA. (2) Of the 279 strains, the positive rate ofβ-lactamase was 89.6%(250/279). Of the 30 isolates resistant to erythromycin but susceptible or intermediate to clindamycin, 22(73.3%)showed a positive result of D-test. (3) The MIC range of OXA and FOX on staphylococcus aureus was 0.125->256μg/ml and 2~>256μg/ml respectively. The MIC50 and MIC90 of OXA and FOX was 128μg/ml and 256μg/ml,64μg/ml and 256μg/ml respectively. The MIC range of vancomycin on staphylococcus aureus was 1~2μg/ml, both the MIC50 and MIC90 of vancomycin were 2μg/ml. (4) Verified by PCR, double-enzyme digested assessment and sequencing, recombinant plamid pGEX-4T-1-femB was successfully constructed. SDS-PAGE and Western blot analysis confirmed the recombinant plasmid pGEX-4T-1-femB expressed a 49KD target protein in E.coli BL21.
     Conclusions (1) Clinical isolates of staphylococcus aureus in Changsha are multiple resistant to commonly used antimicrobial agents, positive rate ofβ-lactamase and rate of inducible resistance of erythromycin to clindamycin are high. (2) Clinical isolates of staphylococcus aureus in Changsha have a high isolated rate of MRSA, and are highly resistant to methicillin. All the strains are sensitive to vancomycin, but special attention should be paied to the incresed MICs which nearly reached intermediate level. (3) Recombinant plasmid pGEX-4T-1-femB is successfully constructed and high-effective expressed in E. Coli.
引文
[1]Casewell MW, Hill RL. The carrier state: methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother,1986,18 (Suppl A):1-12
    [2]Saiman L, O-Keefe M, Graham PL, et al. Hospital transmission of community-acquired methicillin-resistant Staphylococcus aureus among postpartum women. Clin Infect Dis,2003,37:1313-1319
    [3]Whitby M, McLaws ML, Berry G. Risk of death from methicillinresistant Staphylococcus aureus bacteraemia:a meta-analysis. Med J Aust,2001,175:264-267
    [4]Chua K, Howden BP. Treating gram-positive infections:vancomycin update and the whys, wherefores and evidence base for continuous infusion of anti-Gram-positive antibiotics. J Cur Opin Infect Dis,2009,22:525-534
    [5]Lodise TP, Graves J, Evans A, et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant staphylococcus aureus bacteremia treated with vancomycin. J Antimicrob Chemother,2008,52(9):3315-3320
    [6]Caffrey AR, Quilliam BJ, LaPlante KL. Comparative effectiveness of linezolid and vancomycin among a national cohort of patients infected with methicillin-resistant staphylococcus aureus. Antimicrob Agents Chemother,2010, 54(10):4394-4400
    [7]刘于红,邹日坤,李大伟,等.万古霉素与利奈唑胺治疗MRSA菌血症.山东医药,2009.49(52):69-70
    [8]Apodaca AA, Rakita RM. Linezolid-induced lactic acidosis. N Engl J Med,2003, 348:86-87
    [9]Palenzuela L, Hahn NM, Nelson RP Jr, et al. Does linezolid cause lactic acidosis by inhibiting mitochondrial protein synthesis? Clin Infect Dis,2005,40:e113-116
    [10]Narita M, Tsuji BT, YU VL. Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy,2007,27: 1189-1197
    [11]Giannouli S, Labrou M, Kyritsis A, et al. Detection of mutations in the FemXAB protein family in oxacillin-susceptible mecA-positive staphylococcus aureus clinical isolates. J Antimicrob Chemother,2010,65(4):626-633
    [12]Parvez MA, Shibata H, Nakano T, et al. No relationship exists between PBP 2a amounts expressed in different MRSA strains obtained clinically and their beta-lactam MIC values. J Med Invest,2008,55(3-4):246-253
    [13]Berger-Bachi B, Rohrer S. Factors influencing methicillin resistance in staphylococci. Arch Microbiol,2002,178:165-171
    [14]Li X, Xiong Y, Fan X, et al. A study of the regulating gene of femA from methicillin-resistant Staphylococcus aureus clinical isolates. J Int Med Res,2008, 36(3):420-433
    [15]Kuorda M, Ohta T, Uchiyama I, et al. Whole genome sequencing of Meticilin-resistant Staphylococcus aureus. Lancet,2001,357(9264):1225-1240
    [16]Hanaki K, Sekiguchi J, Shimada K, et al. Loop-mediated isothermal amplification assays for identification of antiseptic-and methicillin-resistant staphylococcus aureus. J Microbiol Methods,2011,84(2):251-254
    [17]苏明权,杨柳,马越云,等.实时荧光定量PCR检测金黄色葡萄球菌方法的试验研究. 国际检验医学杂志,2010.31(8):794-796
    [18]Ling B, Berger-Bachi B. Increased overall antibiotic susceptibility in Staphylococcus aureus femAB null mutants. J Antimicrob Agents Chemother,1998, 42:936-938
    [19]NCCLS.Performance standards for antimicrobial susceptibility testing[S].20th informational supplement M100-S20,2010,30(1):70-74
    [20]孙秋林,李家斌,李慧.2004年葡萄球菌对12种抗菌药物的耐药性.中华医院感染学杂志,2006.16(10):1165-1166
    [21]王进,高磊,薛峰,等.2006-2007年Mohnarin细菌耐药监测.中华医院感染学杂志,2008.18(8):1051-1056
    [22]金咏絮,林其昌,陈公平,等.我院2007-2008年金黄色葡萄球菌耐药性分析.中国感染与化疗杂志,2010.10(1):53-56
    [23]舒文,潭为.金黄色葡萄球菌临床分离株耐药谱分析.中华医院感染学杂志,2006.16(10):1162-1164
    [24]Grundmann H, Aires-de-Sousa M, Boyce J, et al. Emergence and resurgence of meticillin-resistant staphylococcus aureus as a public-health threat. Lancet,2006, 368:874-885
    [25]朱德妹,胡付品,汪复.2007年中国CHINET葡萄球菌属耐药性监测.中国感染与化疗杂志,2009.9(3):168-174
    [26]汪复,朱德妹,胡付品,等.2008年中国CHINET葡萄球菌属耐药性监测.中国感染与化疗杂志,2009.9(5):321-329
    [27]汪复,朱德妹、胡付品,等.2009年中国CHINET葡萄球菌属耐药性监测.中 国感染与化疗杂志,2010.10(5):325-334
    [28]孙宏莉,王辉,陈民钧,等.2006年中国七家教学医院革兰阳性球菌耐药性研究.中华检验医学杂志,2008.31(6):635-642
    [29]汪玥,孙自镛,朱旭,等.Mohnarin 2008年度报告:中南地区细菌耐药监测.中国抗生素杂志,2010.35(7):250-258
    [30]徐修礼,张鹏亮,樊新,等.Mohnarin 2008年度报告:葡萄球菌和肠球菌耐药监测.中国抗生素杂志,2010.35(7):520-528
    [31]Mohanasoundaram KM, Lalitha MK. Comparison of phenotypic versus genotypic methods in the detection of methicillin resistance in staphylococcus aureus. Indian J Med Res,2008,127(1)78-84
    [32]Xiao YH, Wang J, Li Y. Bacterial resistance surveillance in China: a report from Mohnarin 2004-2005. Eur J Clin Microbiol Infect Dis,2008,27:697-709
    [33]Jones RN. Microbiological features of vancomycin in the 21st century: minimum inhibitory concentration Creep. Bactericidal/Static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains.J Clin Infect Dis, 2006,42(s):S13-S24
    [34]Drnghi DC, Moeck G, Arhin FF, et al. A current look at the in vitro activity of oritavancin and vancomycin against isolates of S.aureus from both Europe snd the US. ECCMIC,2009, poster 1673
    [35]NCCLS. Performance standards for antimicrobial susceptibility testing[S].19th informational supplement M100-S19,2009,29(3):52
    [36]Wootton M, Alasdair P. MacGowan AP, Walsh TR, et al. A multicenter study evaluating the current strategies for isolating Staphylococcus aureus strains with reduced susceptibility to Glycopeptides. J Clin Microbiol,2007,45(2):329-332
    [37]李晓芳,范听建,过孝静,等.金黄色葡萄球菌耐药机制的研究.四川大学学报(医学版),2006.37(3):365-368
    [38]NCCLS. Performance standards for antimicrobial susceptibility testing[S].14th informational supplement M100-S14,2004,24:40-47
    [39]Swenson JM, Brasso WB, Ferraro MJ, et al. Detection of inducible clindamycin resistance in staphylococci by broth microdilution using erythromycin-clindamycin combination wells. J Clin Microbiol,2007,45(12):3954-3957
    [40]汤瑾,王坚镪,蒋燕群.葡萄球菌对克林霉素诱导耐药的分析.中国感染与化疗杂志,2008.8(1):50-52
    [41]陈月燕,肖刚,席云.172株金黄色葡萄球菌耐药性及D-试验研究分析.广 东医学,2009.30(11):1650-1652
    [42]Patel M, Waites KB, Moser SA, et al. Prevalence of inducible clindamycin resistance among community-and hospital-associated Staphylococcus aureus isolates. J Clin Microbiol,2006,44(7):2481-2484
    [43]张国钧.治疗耐甲氧西林金黄色葡萄球菌感染的抗菌药物新进展.中华医院感染学杂志,2009.19(15):72-74
    [44]Muller AA, Mauny F, Berlin M, et al. Relationship between spread of methicillin-resistant staphylococcus aureus and antimicrobial use in a French university hospital. Clin Infect Dis,2003,36:971-978
    [45]MacKenzie FM, Bruce J, Struelens MJ, et al. Antimicrobial drug use and infection control practices associated with the prevalence of methicillin-resistant Staphylococcus aureus in European hospitals. Clin Microbiol Infect,2007, 13:269-276
    [46]Bancroft EA. Antimicrobial resistance: it' s not just for hospitals. JAMA,2007, 298(15):1803-1804
    [47]Centers for Disease Control and Prevention. HIV/AIDS Surveillance Report, 2005. Vol. 17 Rev ed. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention; 2007:16. http://www.CDC. gov/hiv/topics/surveillance/resources/reports/Accessed30 October 2009
    [48]Henze U, Sidow T, Wecke J, et al. Influence of femB on methicillin resistance and peptidoglycan metabolism in staphylococcus aureus. J Bacteriol,1993, 175(6):1612-1620
    [49]Hubscher J, Berger-Bachi B, Kotte O, et al. Living with an imperfect cell wall:compensation of femAB inactivation in Staphylococcus aureus. J BMC Genomics,2007,8(1):307-322
    [50]周宇苟,魏东芝.融合蛋白表达载体pGEX及其应用.生命科学,1998.10(3):122-124
    [51]Hartinger D, Heinl S, Schwartz HE, et al. Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B(1). J Microb Cell Fact,2010,9: 62
    [52]Sembrook J, Fritsch EF, Maniatis T.分子克隆实验指南,第3版,北京:科学出版社,2002
    [1]Deurenberg RH, Stobberingh RE. The evolution of staphylococcus aureus. Infection Genetic Evol,2008,8:747-763
    [2]Llarrull LI, Fisher JF, Mobashery S. Molecular basis and phenotype of methicillin resistance in staphylococcus aureus and insights into new β-Lactams that meet the challenge. J Antimicrob Agents Chemother,2009,53(10):4051-4063
    [3]Subray SH, Thomas ES. FemABX family members are novel nonribosomal peptidyl transfcrases and important pathogen specific drugs target. J Biol Chem,2001, 276(10):6998-7003
    [4]Li X,Xiong Y, Fan X, et al. A study of the regulating gene of femA from methicillin-resistant Staphylococcus aureus clinical isolates. J Int Med Res,2008, 36(3):420-33
    [5]Berger-Bachi B, Rohrer S. Factors influencing methicillin resistance in staphylococci. J Arch Microbiol,2002,178:165-171
    [6]Cha J, Vakulenko SB, Mobashery S. Characterization of the β-lactam antibiotic sensor domain of the MecRl signal sensor/transducer protein from methicillin-resistant staphylococcus aureus. Biochemistry,2007,46:7822-7831
    [7]Akcam FZ, Tinaz GB, Kaya O, et al. Evaluation of methicillin resistance by cefoxitin disk diffusion and PBP2a latex agglutination test in mecA-positive staphylococcus aureus, and comparison of mecA with femA, femB, femX positivities. J Microbiological Res,2009,164(4):400-403
    [8]Murakami K, Nomura K, Doi M, et al. Production of low-affinity penicillin-binding protein by low-and high-resistance groups of methicillinp-resistant staphylococcus aureus. J Antimicrob Agents Chemother,1987,31(9):1307-1311
    [9]Maidhof H, Reinicke B, Blumed P, et al. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible staphylococcus aureus strains. J Bacteriol,1991,173(11):3507-3513
    [10]Mohanasoundaram KM, Lalitha MK. Comparison of phenotypic versus genotypic methods in the detection of methicillin resistance in staphylococcus aureus. J Indian J M Res,2008,127(1):78-84
    [11]Ehlert K, Schroder W, Labischinski H. Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation. J Bacteriol.1997,179(23): 7573-7576
    [12]Rohrer S, Ehlert K, Tschiemke M, et al. The essential staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Proc Natl Acad Sci USA,1999,96,9351-9356
    [13]Hong HJ, Hutchings MI, Hill LM, et al. The Role of the Novel Fem Protein VanK in Vancomycin Resistance in Streptomyces coelicolor. J Biol Chem,2005, 280(13):13055-13061
    [14]Kopp U, Roos M, Wecke J, et al. Staphylococcus peptidoglycan interpeptide bridge biosynthesis:a novel antistaphylococcal target. J Microbiol Drug Resist,1996, 2:185-198
    [15]Parvez MA, Shibata H, Nakano T, et al. No relationship exists between PBP 2a amounts expressed in different MRSA strains obtained clinically and their beta-lactam MIC values. J Med Invest,2008,55(34):246-253
    [16]李艺,杨信怡,游雪甫,等.耐甲氧西林金葡菌的耐药分子机制研究.国外医药抗生素分册,2005.26(4):173-177
    [17]Henze U, Sidow T, Wecke J, et al. Influence of femB on methicillin resistance and peptidoglycan metabolism in staphylococcus aureus. J Bacteriol,1993, 175(6):1612-1620
    [18]熊亚莉,范昕建,张磊,等.金黄色葡萄球菌耐药表型与femA表达水平关系研究.四川大学学报(医学版),2007.38(2):268-271
    [19]Ling B, Berger-Bachi B. Increased overall antibiotic susceptibility in Staphylococcus aureus femAB null mutants. J Antimicrob Agents Chemother,1998, 42:936-938.
    [20]Schneider T, Senn MM, Berger-Bachi B, et al. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid Ⅱ-Gly5) of Staphylococcus aureus. Mol Microbiol,2004,53(2):675-685
    [21]Grundling A, Missiakas DM, Schneewind O. Staphylococcus aureus mutants with increased lysostaphin resistance. J Bacteriol,2006,188(17):6286-6297
    [22]Hiibscher J, Berger-Bachi B, Kotte O, et al. Living with an imperfect cell wall: compensation of femAB inactivation in staphylococcus aureus. BMC Genomics 2007, 8(1):307-322
    [23]Sharif S, Sung JK, Labischinski H, et al. Characterization of peptidoglycan in Fem-Deletion mutants of Methicillin-resistant Staphylococcus aureus by Solid-State NMR. Biochemistry,2009,48(14):3100-3108
    [24]Kraus D, Kalbacher H, Berger-Bachi B, et al. Muropeptide modification-amidation of peptidoglycan D-glutamate does not affect the proinflammatory activity of staphylococcus aureus. J Infect Immun,2007, 75(4):2084-2087
    [25]McAleese F, Wu SW, Sieradzki K, et al. Overexpression of genes of the cell wall stimulon in clinical isolates of Staphylococcus aureus exhibiting vancomycin-intermediate S.aureus-type resistance to vancomycin. J Bacteriol,2006, 188:1120-1133
    [26]Komatsuzawa H, Ohta K, Labischinski H, et al. Characterization of fmtA:a gene that modulates the expression of methicillin resistance in staphylococcus aureus. J Antimicrob Agents Chemother,1999,43:2121-2125
    [27]Yang SJ, Xiong YQ, Dunman PM. Regulation of mprF in daptomycin-nonsusceptible staphylococcus aureus strains. J Antimicrob Agents Chemother,2009,53(6):2636-2637
    [28]Gardete S, Ludovice AM, Sobral RG, et al. Role of murE in the expression of β-Lactam antibiotic resistance in staphylococcus aureus. J Bacteriol,2004, 186(6):1705-1713
    [29]Gardete S, Ludovice AM, Sobral RG, et al. Role of murF in cell wall biosynthesis isolation and characterization of a murF conditional mutant of staphylococcus aureus. J Bacteriol,2006,188(7):2543-2553
    [30]Katayama Y, Zhang HZ, Chambem HF. PBP2a mutations producing very high-level resistance to beta-lactam. J Antimicrob Agents Chemother,2004, 48(2):453-459
    [31]Rohrer S, Berger-Bachi B. FemABX peptidyl transferases:a link between branched-chain cell wall peptide formation and β-Lactam resistance in Gram-Positive Cocci. J Antimicrob Agents Chemother,2003,47(3):837-846

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700