汶川地震北川灾区林地土壤种子库研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汶川地震诱发的次生地质灾害破坏森林形成了大量的裸地,在植被恢复重建中具有诸多不利因素。土壤种子库是植被恢复的基础,为了解次生地质灾害土壤种子库特征及其植被恢复特点,在汶川地震重灾区四川省北川县采用野外取样和在当地自然环境下萌发相结合的办法,研究了5种不同灾害类型(包括滑坡、崩塌、泥石流、落石及堰塞湖)以及作为对比参照的5类(7种)未受损的当地主要林型(针叶林、阔叶林、针阔混交林、灌草林、竹林)的土壤种子库及其地上植被特征。主要结论如下:
     (1)损毁林地和未受损林地存在大规模的持久种子库,损毁地种子库密度介于30133.33±6776.03~93383.33±26499.81粒·m-2,未受损林地种子库密度介于40250.00±3224.86~93900.00±9104.84粒·m-2。
     (2)损毁林地种子库含有42个物种,独有物种4种;未受损林地含57个物种,独有物种19种。损毁地种子库植物主要由菊科(Asteraceae)、唇形科(Lamiaceae)、禾本科(Poaceae)组成,所占比例分别为26.19%、11.90%、7.14%,草本植物占90.48%,灌木占9.52%,没有乔木种。未受损林草本占91.23%,灌木占7.02%,乔木占1.75%。
     (3)损毁地和未受损地持久种子库密度垂直变化均不明显,O~5cm、5~10cm层都含有大量种子。
     (4)损毁林地和未受损林地地上植物优势种都属菊科(Asteraceae)、蔷薇科(Rosaceae)、禾本科(Poaceae)、豆科(Fabaceae)4科植物,但二者种类组成差别明显。损毁地均形成草本层,草本层盖度介于36.42%~86.25%,并且生长了较少量的灌木和乔木。
     (5)所有样地土壤种子库与地上植被的相似度很低,表明持久种子库对地上植被的更新直接贡献较小
     (6)各类损毁地的堆积体皆具有自我更新恢复的能力,但是种子库缺少乔木种。
     针对这些研究结果提出了一些关于灾害损毁地植被恢复的建议:对于人为活动较少区域的植被恢复宜采取自然恢复的措施。由于乔木种缺失,对于居民点、道路、景区等较迫切需要恢复的区域考虑引入乔木。在选择物种时,尽力选择北川县乡土树种,根据需要选择经济树种或者景观树种。损毁地自身的保水保土能力较差,采取简单的坡下拦挡、蓄水、排水等水土保持措施将能更好的促进植被群落的建立与恢复。
Secondary geological disasters induced by the earthquake destruction of forests formed a lot of bare ground, causing many unfavorable factors in vegetation rehabilitation. Soil seed bank is the basis of vegetation restoration. In order to understand the soil seed bank characteristics and vegetation recovery features of secondary geological disasters, studied soil seed bank and aboveground vegetation characteristics of five different disaster types (including landslides, avalanches, debris flow, rockfall and barrier lake) and five categories(7species) undamaged local forest types(including coniferous forest, broad-leaved forest, coniferous and broad-leaved mixed forest, shrub and grass forest, bamboo forest), combining field sampling with germination in the local natural environment, in Beichuan County, Sichuan which is the Wenchuan quake-hit. The main conclusions are as follows.
     (1)There was a large-scale persistent seed bank in damaged woodland and undamaged woodland. The seed bank density of damaged woodland was between30133.33±6776.03-93383.33±26499.81seeds·m-2. The seed bank density of undamaged woodland was40250.00±3224.86~93900.00±9104.84seeds·m-2
     (2)The damaged woodland contained42species,4unique species, undamaged woodland containing57species,19kinds of unique species. The plants of damaged woodland were mainly composed by Asteraceae, Labiatae, Gramineae, and the proportion was26.19%,11.90%,7.14%. The herbaceous plants and shrubs in seed banks of damaged woodland accounted for90.48%and9.52%, and there is no tree species in it. The herbaceous plants, shrubs and trees accounted for91.23%,7.02%,1.75%.
     (3)Density vertical change of damage and undamaged persistent seed bank was not obvious.0to5 cm,5to10cm layer both contained a large number of seeds.
     (4)Aboveground dominant species in both damaged woodland and undamaged woodland belonged to Asteraceae, Rosaceae, Poaceae, Fabaceae4families, but both species composition were significantly different. Damaged woodland formed herb layer, and the herb layer cover ranged from36.42%to86.25%. A small amount of shrubs and trees have been grown.
     (5)The similarity of all samples between soil seed bank and aboveground vegetation was very low, indicating that the persistent seed bank contributing less to the update on the ground vegetation.
     (6)A11kinds of accumulation bodies in damaged woodland had self-renewal ability to recover, but were lack of trees species in seed banks.
     These findings put forward some proposals about recovery of damaged woodland. Natural recovery should take measures to those areas with less human activities. Due to the lack of tree species, considered the introduction of trees in the regional where was urgent need to restore such as settlements, roads, scenic spots. Try to select Beichuan County native trees in the choice of species, and select economic tree species or landscape tree species when needed. Damaged woodland itself was less able to soil and water conservation. To take simple soil and water measures conservation such as retaining wall, water storage, drainage will be better able to promote the establishment and recovery of vegetation communities.
引文
[1]陈建华,付福明,徐霞,等.水土保持生态修复理论研究进展[J].全国水土保持生态修复研讨会论文汇编,2004.
    [2]程积民,程杰,赵凌平.黄土高原植被恢复与土壤种子库[M].北京:科学出版社,2012.
    [3]高俊.震后受损林地安全稳定性快速评价方法研究——以北川县为例[D].北京:北京林业大学,2012.
    [4]苟文龙,张新跃,李元华.四川汶川大地震灾区草原生态破坏与修复关键技术[J].亚热带水土保持,2010,(1):82-85.
    [5]郝利娜,张志.映秀_北川断裂带沿线崩滑体分布规律浅析[J].煤田地质与勘探,2009,37(5):43-46.
    [6]黄光忠,刘向东,何飞.岷江上游地震灾后受损植被状况及其恢复重建对策[J].四川林业科技,2009,(3):95-99.
    [7]黄庭,张志,谷延群,等.基于遥感和GIS技术的北川县地震次生地质灾害分布特征[J].遥感学报,2009,24(1):177-182.
    [8]黄云霞,程力,贾程,等.汶川地震区四川自然保护区受损状况与受损栖息地植被恢复技术模式[J].四川林业科技,2011,(4):83-88.
    [9]贾建中,邓武功,陈战是,等.汶川地震灾区风景名胜区灾后恢复重建研究(二)——恢复重建技术导则[J].中国园林,2008,(9):13-18.
    [10]李洪远,莫训强,郝翠.近30年来土壤种子库研究的回顾与展望[J].生态环境学报,2009,18(2):731-737.
    [11]李勇,黄润秋,周荣军,等.龙门山地震带的地质背景与汶川地震的地表破裂[J].工程地质学报,2009,17(1):3-18.
    [12]李有志,张灿明,林鹏.土壤种子库评述[J].草业科学,2009,(3):83-90.
    [13]林勇明,吴承祯,洪伟,等.汶川地震灾区典型区不同植被类型土壤种子库特征——以北川县苏保河、魏家沟流域为例[J].中国生态农业学报,2012,(1):99-104.
    [14]刘守江,张斌,杨清伟,等.汶川地震非规范滑坡体上植被的自然恢复能力研究——以彭州银厂沟谢家店子滑坡体为例[J].山地学报,2010,(3):373-378.
    [15]刘志民,蒋德明,高红瑛,等.植物生活史繁殖对策与干扰关系的研究[J].应用生态学报,2003,(3):418-422.
    [16]刘志民,赵文智,李志刚.西藏雅鲁藏布江中游河谷砂生槐种群种子库特征[J].生态学报,2002,22(5):715-721.
    [17]彭闪江,黄忠良,彭少麟,等.植物天然更新过程中种子和幼苗死亡的影响因素[J].广西植物,2004,(2):113-121.
    [18]沈有信,赵春燕.中国土壤种子库研究进展与挑战[J].应用生态学报,2009,20(2):467-473.
    [19]施文婧,王兆印,刘丹丹,等.震区花岗岩崩塌体上的植被修复.中国地理学会百年庆典,中国北京,2009.
    [20]唐勇,曹敏,张建侯,等.西双版纳白背桐次生林土壤种子库、种子雨研究[J].植物生态学报,1998,(6):26-33.
    [21]田佳,田涛,赵廷宁,等.微立地因子植被恢复法在汶川地震植被重建中的应用[J].中国水土保持科学,2008,(5):16-20.
    [22]王根龙,张军慧,刘红帅.汶川地震北川县城地质灾害调查与初步分析[J].中国地质灾害与防治学报,2009,20(3):47-51.
    [23]王猛,王军,江煜,等.汶川地震地质灾害遥感调查与空间特征分析[J].地球信息科学学报,2010,(4):480-486.
    [24]王青,李国蓉,梁斌,等.龙门山地震带5.12汶川地震余震空间分布特征[J].地质科技情报,2009,(2):1-6.
    [25]王仁卿,藤原一绘,尤海梅.森林植被恢复的理论和实践:用乡土树种重建当地森林——宫胁森林重建法介绍[J].植物生态学报,2002:133-139.
    [26]徐天献,王玉宽,傅斌.汶川地震重灾区土壤侵蚀敏感性评价[J].中国水土保持,2011,(1):39-42.
    [27]杨建军.川西高山峡谷区震后生态植被破坏与修复[J].中国林业,2010,(6):59.
    [28]于顺利,陈宏伟,郎南军.土壤种子库的分类系统和种子在土壤中的持久性[J].生态学报,2007,(5):2099-2108.
    [29]于顺利,蒋高明.土壤种子库的研究进展及若干研究热点[J].植物生态学报,2003,(4).
    [30]张翔,王庆安,方自力,等.汶川地震灾区自然植被恢复的先锋植物特征分析[J].中国水土保持,2011,(4):47-50.
    [31]张翔,王庆安,王文国,等.汶川地震极重灾区植被恢复分区研究[J].中国水土保持,2010,(5):48-51.
    [32]张咏梅,何静,潘开文,等.土壤种子库对原有植被恢复的贡献[J].应用与环境生物学报,2003,(3):326-332.
    [33]周显辉.青藏高原高寒草甸土壤种子库研究[D]:兰州大学,2006.
    [34]朱再昱,刘水平,刘登柱,等.四川“5·12”地震后植被恢复和生态重建的对策思考[J].安徽农业科学,2009,(11):5072-5073.
    [35]安树青,林向阳,洪必恭.宝华山主要植被类型土壤种子库初探[J].植物生态学报,1996,20(1):41-50.
    [36]国家减灾委员会抗震求灾专家组,科学技术部抗震求灾专家组.汶川地震灾害综合分析与评估[M].北京:科学出版社,2008.
    [37]Alcantara J M, Rey P J, Valera F, et al. FACTORS SHAPING THE SEEDFALL PATTERNOF A BIRD-DISPERSED PLANT[J]. Ecology,2000,81(7):1937-1950.
    [38]Araki S, Shiozawa S, Washitani I. An experimental device for studying seed responses to naturally fluctuating temperature of surface soil under a constant water table[J]. Functional Ecology,1998, 12(3):492-499.
    [39]Augusto L, Dupouey J, Picard J, et al. Potential contribution of the seed bank in coniferous plantations to the restoration of native deciduous forest vegetation[J]. Acta Oecologica,2001, 22(2):87-98.
    [40]Bakker J P. Nature management by grazing and cutting:on the ecological significance of grazing and cutting regimes applied to restore former species-rich grassland communities in the Netherlands[M]. Dordrecht:Kluwer Academic Publishers,1989.
    [41]Baskin C C, Baskin J M. Seeds:ecology, biogeography, and evolution of dormancy and germination.[M]:Academic press,1998.
    [42]Benoit D L, Kenkel N C, Cavers P B. Factors influencing the precision of soil seed bank estimates[J]. Canadian Journal of Botany,1989,67(10):2833-2840.
    [43]Bewley J D, Black M. Seeds[M]:Springer,1985.
    [44]Bigwood D W, Inouye D W. Spatial pattern analysis of seed banks:an improved method and optimized sampling[J]. Ecology,1988:497-507.
    [45]Bisigato A J, Bertiller M B. Seedling recruitment of perennial grasses in degraded areas of the Patagonian Monte[J]. Rangeland Ecology & Management,2004,57(2):191-196.
    [46]Bossuyt B, Butaye J, Honnay O. Seed bank composition of open and overgrown calcareous grassland soils-a case study from Southern Belgium[J]. Journal of environmental management, 2006,79(4):364-371.
    [47]Boudell J A, Link S O, Johansen J R. Effect of soil microtopography on seed bank distribution in the shrub-steppe[J]. Western North American Naturalist,2002,62(1):14-24.
    [48]Bradshaw A D, Chadwick M J. The Restoration of Land, the Ecology:Reclamation of Derelict And Degraded Land[M]:Univ of California Press,1980.
    [49]Brenchley W E. Buried weed seeds[J]. The Journal of Agricultural Science,1918,9(01):1-31.
    [50]Brown M T, Odum H T. Studies of a method of wetland reconstruction following phosphate mining. Final report[R]:Florida Univ., Gainesville (USA). Center for Wetlands,1985.
    [51]Chambers J C, Macmahon J A, Haefner J H. Seed entrapment in alpine ecosystems:effects of soil particle size and diaspore morphology[J]. Ecology,1991:1668-1677.
    [52]Cousens R D, Rawlinson A A. When will plant morphology affect the shape of a seed dispersal "kernel"?[J]. Journal of Theoretical Biology,2001,211(3):229-238.
    [53]Culver D C, Beattie A J. The fate of Viola seeds dispersed by ants[J]. American Journal of Botany, 1980:710-714.
    [54]Cummins R P, Miller G R. Altitudinal gradients in seed dynamics of Calluna vulgaris in eastern Scotland[J]. Journal of Vegetation Science,2002,13(6):859-866.
    [55]Dalling J W, Swaine M D, Garwood N C. Soil seed bank community dynamics in seasonally moist lowland tropical forest, Panama[J]. Journal of Tropical Ecology,1997,13(05):659-680.
    [56]Darwin C. On the origin of species, or the preservation of favoured races in the struggle for life[J]. J. Murray, London,1859.
    [57]Erwin K L, Best G R, Dunn W J, et al. Marsh and forested wetland reclamation of a central Florida phosphate mine[J]. Wetlands,1984,4(1):87-104.
    [58]Fay P K, Olson W A. Technique for separating weed seed from soil[J]. Weed Science,1978: 530-533.
    [59]Fenner M. Seed ecology.[M]:Chapman and Hall,1985.
    [60]Fenner M, Thompson K. The ecology of seeds[M]:Cambridge University Press,2005.
    [61]Forcella F. A species-area curve for buried viable seeds[J]. Crop and Pasture Science,1984,35(5): 645-652.
    [62]Forcella F. Prediction of weed seedling densities from buried seed reserves[J]. Weed Research, 1992,32(1):29-38.
    [63]Funes G, Basconcelo S, Diaz S, et al. Seed bank dynamics in tall-tussock grasslands along an altitudinal gradient[J]. Journal of Vegetation Science,2003,14(2):253-258.
    [64]Garwood N C. Tropical soil seed banks:a review[J]. Ecology of soil seed banks,1989,149:210.
    [65]Grime J P. The role of seed dormancy in vegetation dynamics[J]. Annals of Applied Biology,1981, 98(3):555-558.
    [66]Grubb P J. The uncoupling of disturbance and recruitment, two kinds of seed bank, and persistence of plant populations at the regional and local scales.[C],1988.
    [67]Guo Q, Rundel P W, Goodall D W. Horizontal and vertical distribution of desert seed banks: patterns, causes, and implications[J]. Journal of Arid Environments,1998,38(3):465-478.
    [68]Harper J L. Population Biology of Plants. London:Academic press,1977a:56-61.
    [69]Harper J L. Population Biology of Plants. London:Academic press,1977b:256-263.
    [70]Hill M O, Stevens P A. The density of viable seed in soils of forest plantations in upland BritainfJ]. The Journal of Ecology,1981:693-709.
    [71]Holzapfel C, Schmidt W, Shmida A. Effects of human-caused disturbances on the flora along a Mediterranean-desert gradient[J]. Flora,1992,186(3-4):261-270.
    [72]Ishikawa-Goto M, Tsuyuzaki S. Methods of estimating seed banks with reference to long-term seed burial[J]. Journal of Plant Research,2004,117(3):245-248.
    [73]Johnston A, Smoliak S, Stringer P W. Viable seed populations in Alberta prairie topsoils[J]. Canadian Journal of Plant Science,1969,49(1):75-82.
    [74]Jonathan W S. INTRODUCTION TO PLANT POPULATION ECOLOGY.[Z].1982.
    [75]Keeley J E. Seed production, seed populations in soil, and seedling production after fire for two congeneric pairs of sprouting and nonsprouting chaparal shrubs[J]. Ecology,1977:820-829.
    [76]Leck M A, Leck C F. A ten-year seed bank study of old field succession in central New Jersey[J]. Journal of the Torrey Botanical Society,1998:11-32.
    [77]Leck M A, Parker T V, Simpson R L. Ecology of soil seed banks.[M]:Academic Press Inc.,1993.
    [78]Leck M A, Simpson R L. Tidal freshwater wetland zonation:seed and seedling dynamics[J]. Aquatic Botany,1994,47(1):61-75.
    [79]Lundgren L N. A new method for the determination of glyphosate and (aminomethyl) phosphonic acid residues in soils[J]. Journal of agricultural and food chemistry,1986,34(3):535-538.
    [80]Lunt I D. Germinable soil seed banks of anthropogenic native grasslands and grassy forest remnants in temperate south-eastern Australia[J]. Plant Ecology,1997,130(1):21-34.
    [81]Malo J E. Potential ballistic dispersal of Cytisus scoparius (Fabaceae) seeds[J]. Australian Journal of Botany,2004,52(5):653-658.
    [82]Malone C. A rapid method for enumeration of viable seeds in soil[J]. Weeds,1967,15:381-382.
    [83]Marks P L. On the origin of the field plants of the northeastern United States[J]. The American Naturalist,1983,122(2):210-228.
    [84]Marks P L. The role of pin cherry (Prunus pensylvanica L.) in the maintenance of stability in northern hardwood ecosystems[J]. Ecological Monographs,1974:73-88.
    [85]Mcgraw J B, Vavrek M C. The role of buried viable seeds in arctic and alpine plant communities [J]. Ecology of soil seed banks,1989:91-105.
    [86]Milton W. The occurrence of buried viable seeds in soils at different elevations and on a salt marsh[J]. The Journal of Ecology,1939:149-159.
    [87]Moriuchi K S, Venable D L, Pake C E, et al. Direct measurement of the seed bank age structure of a Sonoran Desert annual plant[J]. Ecology,2000,81(4):1133-1138.
    [88]Nakagoshi N. Buried viable seeds in temperate forests.[J]. The population structure of vegetation, 1985:551-570.
    [89]Parker V T, Kelly V R. Seed banks in California chaparral and other Mediterranean climate shrublands[J]. Ecology of soil seed banks,1989:231-255.
    [90]Peng J, Li X, Fu Y, et al. Seed rain and seed bank of constructive species in evergreen broadleaved forest at Chongqing Simian Mountain].[J]. Ying yong sheng tai xue bao= The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban,2000,11(1):22.
    [91]Price M V, Joyner J W. What resources are available to desert granivores:seed rain or soil seed bank?[J]. Ecology,1997,78(3):764-773.
    [92]Roberts H A. Seed banks in soils.[J]. Advances in applied biology,1981,6:1-55.
    [93]Sem G, Enright N J. The relationship between seed rain and the soil seed bank in a temperate rainforest stand near Auckland, New Zealand[J]. New Zealand Journal of Botany,1996,34(2): 215-226.
    [94]Simpson R L. Ecology of soil seed banks[M]. San Diego:Academic Press,1989:149-209.
    [95]Smith C C, Fretwell S D. The optimal balance between size and number of offspring[J]. American Naturalist,1974:499-506.
    [96]Standifer L C. A technique for estimating weed seed populations in cultivated soil[J]. Weed Science,1980:134-138.
    [97]Sternberg M, Yu S L. Soil seed banks, habitat heterogeneity, and regeneration strategies in a Mediterranean coastal sand dune[J]. Israel Journal of Plant Sciences,2004,52(3):213-221.
    [98]Tacey W H, Glossop B L. Assessment of topsoil handling techniques for rehabilitation of sites mined for bauxite within the jarrah forest of Western Australia[J]. Journal of Applied Ecology, 1980:195-201.
    [99]Thompson K. Seeds and seed banks[J]. New Phytologist,1987:23-34.
    [100]Thompson K. Buried seed banks as indicators of seed output along an altitudinal gradient[J]. Journal of Biological Education,1985,19(2):137-140.
    [101]Thompson K. Small-scale heterogeneity in the seed bank of an acidic grassland[J]. The Journal of Ecology,1986:733-738.
    [102]Thompson K, Bakker J P, Bekker R M. The soil seed banks of North West Europe:methodology, density and longevity[M]:Cambridge university press,1997.
    [103]Thompson K, Band S R, Hodgson J G. Seed size and shape predict persistence in soil[J]. Functional Ecology,1993:236-241.
    [104]Thompson K, Grime J P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats[J]. The Journal of Ecology,1979:893-921.
    [105]Van der Valk A G, Pederson R L, Davis C B. Restoration and creation of freshwater wetlands using seed banks[J]. Wetlands Ecology and Management,1992,1(4):191-197.
    [106]Warr S J, Kent M, Thompson K. Seed bank composition and variability in five woodlands in south-west England[J]. Journal of Biogeography,1994:151-168.
    [107]Westoby M, Jurado E, Leishman M. Comparative evolutionary ecology of seed size[J]. Trends in Ecology & Evolution,1992,7(11):368-372.
    [108]Whipple S A. The relationship of buried, germinating seeds to vegetation in an old-growth Colorado subalpine forest[J]. Canadian Journal of Botany,1978,56(13):1505-1509.
    [109]Williams P R, Congdon R A, Grice A C, et al. Germinable soil seed banks in a tropical savanna: seasonal dynamics and effects of fire.[J]. Austral Ecology,2005,30(1):79-90.
    [110]Wolters M, Bakker J P. Soil seed bank and driftline composition along a successional gradient on a temperate salt marsh[J]. Applied Vegetation Science,2002,5(1):55-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700