强震区泥石流发育特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥石流是山地自然灾害之一,暴发突然、破坏力大。构造断裂带附近泥石流活动尤为强烈。2008年5月12日发生在四川省汶川县的里氏8.0级地震,孕育了不计其数的滑坡、崩塌及潜在不稳定斜坡等不良地质体,为震区内泥石流的孕育及发生提供了有利条件。2008年9月24日,2009年7月17日,2010年8月12~14日先后在四川境内北川、安县、清坪、龙池、映秀等地暴发大规模泥石流,造成了重大损失,严重威胁着灾区的恢复重建工作。因而,对强震区泥石流活动特征进行分析,对防灾减灾工作具有较好的指导意义。
     本文以安县区11条泥石流为研究背景,结合实地调查与遥感影像图,分析了地震作用下泥石流物源的空间分布,与岩性的相关性,以及地震对泥石流沟地形条件的影响。研究发现“5.12”汶川大地震为强震区泥石流提供了丰富的物源。物源的分布除受区域地层岩性影响外,随高程的变化具有一定规律,主要分布在高程1000~1800m间。汶川地震影响了强震区泥石流沟的地形条件。强大的地震作用破坏了泥石流流域内植被和表层土壤,多处基岩出露,改变了流域汇水条件及流水径流条件。地震引起的崩塌、滑坡等灾害,堆积于沟道或坡脚,改变了沟道流通条件,局部造成堵塞。与震前相比,在相同降雨条件下,现有泥石流沟道更易暴发泥石流。
     此外,本文根据地震对泥石流物源条件和地形条件的影响分析结果,选取流域面积、沟道堵塞系数、植被覆盖率、岩性系数以及物源面积与泥石流流域面积的比值等5项因子,将泥石流活动性划分为5个低级,分别代表泥石流活动的5种频率,利用模糊数学综合评判法对研究区泥石流沟地震前后的活动性进行了对比分析。通过对评价因子的权重分配来看,物源与流域面积的比对泥石流活动性影响最大。研究发现地震前泥石流沟活动性评价结果与实际调查结果较吻合,体现了评价模型的可靠性;地震后泥石流沟活动性明显增强,可判定强震区泥石流活动频率将明显增加。据此对比分析地震前后泥石流的活动性,发现除梅子堂沟、麻柳沟、柿子园沟等活动性在地震后仍处于轻度外,其余8条沟都变为极强活动,因而可判定震区泥石流在震后明显增强,暴发频率将增大,大多5年内会暴发一次以上泥石流。本文还选取了两条典型泥石流沟,重点分析了泥石流的形成条件,对发育趋势进行了预测,能较好的代表研究区泥石流的活动特征。
Debris flow in mountain is one of natural disasters, which outbreaks of a sudden, devastating large. Construction debris flow activity near the fault zone is particularly strong. 12 May 2008 Wenchuan County in Sichuan Province, the magnitude 8.0 earthquake, gave birth to numerous landslides, avalanches and potential adverse geological unstable slopes, debris flow for the earthquake area and provide favorable breeding conditions. September 24, 2008, July 17, 2009, 2010 August 12 to 14 worked in Beichuan, Sichuan Province, County, Qing Ping, Longchi, Yingxiu large outbreak of debris flows and other places, causing heavy losses, serious threatening disaster restoration and reconstruction work. Thus, on the earthquake zone of debris flow activity characteristics, disaster prevention and mitigation work on guidance for good.
     In this paper, debris in Anxian County District 11 as the research background, combined with field survey and remote sensing image analysis of the seismic effect of the spatial distribution of debris flow source, the correlation with the lithology, and topographic conditions of earthquakes on the impact of debris flow. Study found that "5.12" Wenchuan earthquake zone provides a rich debris flow source. The distribution of source lithology is not only effected by the regional, with elevation changes with some regularity, mainly between 1000 ~ 1800m in elevation. Strong earthquake affected areas of the debris flow terrain conditions. A powerful earthquake destroyed the vegetation and surface debris basin soil, many bedrock outcrops, has changed conditions and the water catchment basin runoff conditions. Collapse caused by earthquakes, landslides and other disasters, or accumulated at the foot of the slope channel, changing the channel flow conditions, causing local congestion. Compared with the earthquake before in the same rainfall conditions, the current outbreak of more debris.
     In addition, the paper by a seismic source of debris impact conditions and terrain conditions, the results, select the drainage area, channel blocking factor, vegetation coverage, lithology factor and debris flow source area and the ratio of drainage area and other five factors, the debris flow activity is divided into five low-level, representing the frequency of debris flow activity 5, the use of fuzzy comprehensive evaluation method in the study area before and after the earthquake debris flow activity were compared. Evaluation factor by the weight allocation, source and drainage area of debris flow activity most. Study found that debris flow activity before the earthquake evaluation results agree well with the actual survey results, reflecting the reliability of the evaluation model; earthquake debris flow activity was significantly enhanced to determine the earthquake area will significantly increase the frequency of debris flow activity. Accordingly comparative analysis of debris flow activity before and after the earthquake, found that in addition Meizi Tang ditch, Maliu ditch, Shiziyuan ditch and other activities of persimmon garden after the earthquake is still mild, the other eight have become extremely active channel, which can be determined Earthquake debris flow significantly increased after the earthquake, outbreak frequency will increase, most of them more than 5 years will be an outbreak of a debris flow. The article also selected two typical debris flow, analyzes the formation of debris flow conditions, development trends are predicted, the study area can be a good representative of the activities of debris flow characteristics.
引文
[1]康志成,章书成.泥石流流体特征的初步分析[A ].河流泥沙国际学术讨论会论文集[C].北京:光华出版社, 1980: 74~78 .
    [2]康志成,李焯芬,罗锦添,等.中国泥石流研究[M ].北京:科学出版社,2004.
    [3]马宗晋.活动构造基础与工程地震[M].北京:地震出版杜, 1992.
    [4]黄润秋,等.汶川地震地质灾害研究[M].北京:科学出版社, 2009.12, 228:260~287.
    [5]李树德,任秀生,岳升阳,等.地震与泥石流活动[ J ].水土保持研究, 2001,8(2): 26~27.
    [6]钟敦伦,等.论地震在泥石流活动中的作用[C].泥石流论文集(1),重庆:科技文献出版社重庆分社, 1981:30~35.
    [7]唐川.汶川地震区暴雨滑坡泥石流活动趋势预测[J].山地学报, 2010, 28(13): 341~349.
    [8]刘希林,莫多闻.论泥石流及其学科性质[J],自然灾害学报,vol.10.No:3. 1~6.
    [9]崔鹏.泥石流起动条件及机理的实验研究[J].科学通报.1991.
    [10]吴积善,田连权等.泥石流及其综合治理(M).科学出版社.1993.
    [11]谭万沛,王成华等著.暴雨泥石流滑坡的区域预测与预报——以攀西地区为例[M].成都:四川科技出版社.1994.
    [12]陈景武,谭万沛,孟河清.暴雨泥石流预报[J].山地学报.1987(4).
    [13]水利部成都山地灾害与环境研究所.中国泥石流研究[M].商务印书馆.2000, l~212
    [14] Major J.J Iverson R.M. Debris-flow deposition: effects of pore-fluid pressure and friction concentrated at flow margins [J] Geological Society of America Bulletin. 1999,111(10):1424~1434.
    [15] Richard M. Iverson, Mark E. Reid Richard G. La Husen. Debris-flow mobilization from landlides [J].Annul. Rev. Earth Planet. Sci.1997.25;85~138.
    [16] Iverson R.M. The physics of debris-flows [J]. Reviews of Geophysics, 1997 35(3);245~296.
    [17] Iverson R M. et al. Dynamic pore-pressure fluctuations in rapidly shearing granular materials [J]. Science, 246: 796~799.
    [18] Sassa. 1998. Recent urban landslide disaster in Japan and their mechanisms. Proceedings 2nd International Symposium on Environmental Management,“Environmental Management”Australia,10~13,February, vol.1.Elsevier, Amsterdam,PP.47~58.
    [19] Sassa. 1998.Mechanism of landslide triggered debris flows.”Environmental Forest Science”, Proceedings IUFRO Davison 8 Conference, Kyoto,19~20 October. Kluwer Academic Publishing,Dordrecht,PP.499~518.
    [20] Sassa,K.,The mechanism of debris flow. Proceedings of 11th International Conference on Soil mechanics and Foundation Engineering, San Francisco,12~16 August,1985 vol.3.Balkema,Rotterdam, pp.37~55.
    [21] Sassa,K., Kaibori, M., Kitera, N. 1985. Liquefaction and undrained shear of torrent deposits as the cause of debris flows. Proceedings International Symposium on Erosion, Debris Flows Disaster Prevention, pp.231~236.
    [22]高橋保.土石の流発生と流動機構[J].土と基礎, 26(6), 1978:45~50.
    [23]杜榕桓,李德基,祁龙.我国山区城镇泥石流成灾特点与防治对策研究[A].见:中国科学院地学部编.中国自然灾害灾情分析与减灾对策.武汉:湖北科技出版社,1982:330~336.
    [24]杜榕桓,田连权.开展泥石流编目的一些看法[A].中国科学院成都地理研究所.泥石流(2)[C].重庆:科技文献出版社重庆分社,1983:41~43.
    [25]杜榕桓.我国泥石流研究的新进展(在第二届全国泥石流学术会议上的总结报告)[J]山地研究,1986(4).
    [26]杜榕桓,康志成.东川泥石流站开放以来的回顾与展望[J].山地研究, 9(3), 1991: 45~47.
    [27]杜榕桓,李鸿琏,唐邦兴等.三十年来中国泥石流研究[J].自然灾害学报,1995(2):64~73 .
    [28]杜榕桓等.中国城镇泥石流成灾特点与防御对策[J].中国地质灾害与防治学报,1991.
    [29]崔鹏,刘世建,谭万沛.中国泥石流监测预报研究现状与展望[J].自然灾害学报, 9(2),2000:11~15.
    [30]蔡祥兴,丁永建,王珍兰.宝成铁路宝略段泥石流的分布及特征初探[A].见:中国科学院兰州冰川冻土研究所,甘肃省交通科学研究所.泥石流学术讨论会兰州会议文集[C].成都:四川科学技术出版社,1986:51~57.
    [31]施雅风,杨宗辉,谢自楚等.西藏古乡地区的冰川泥石流[J].科学通报,64(6), 1964:542~544.
    [32]邓养鑫.冰碛转化为泥石流堆积过程及其沉积特征[J].沉积学报, 13(4), 1995:37~46.
    [33]唐邦兴,柳素清,刘世建.我国山地灾害及其防治[J].山地研究, 14(2), 1996:103~109.
    [34]章书成,陈英燕,袁晓凤等.粘性泥石流一维运动数学模型[J].自然灾害学报.1996,5(4):68~75.
    [35]章书成.泥石流研究评述IJ].力学进展, 19(3), 1989:365~37.
    [36]吴积善,康志成,田连权等.云南蒋家沟泥石流观测研究[M].北京:科学出版社,1990.
    [37]崔鹏.泥石流启动机理研究[D].北京林业大学博士学位论文,1990.5.
    [38]崔鹏.泥石流启动条件及机理的实验研究[J].科学通报,21,1991:1650~1652.
    [39]崔鹏,关君蔚.泥石流启动的突变学特征[J].自然灾害学报,2,1983:53~61.
    [40]唐晓春,唐邦兴.我国灾害地貌及其防治研究中的几个问题[J].自然灾害学报, 1994, 3(1):70~74.
    [41]刘希林.泥石流危险度判定的研究[J].灾害学, 3(3) ,1988: 10~15.
    [42]朱静.泥石流沟判别与危险度评价研究[J].干旱区地理, 18(3) ,1995: 63~71.
    [43]唐川,刘洪江.泥石流堆积扇危险度分区定量评价研究[J].土壤侵蚀与水土保持学报, 1997, 3(3): 63~70.
    [44]刘希林,唐川,张松林.中国山区沟谷泥石流危险度的定量判定法[J].灾害学, 1993, 8(2): 1~7.
    [45]朱平一,尊兰,汪阳春.长江上游暴雨泥石流与环境研究[J].水土保持学报, 5(3), 1996:51~59.
    [46]刘希林.我国泥石流危险度评价研究:回顾与展望[J].自然灾害学报,11(4),2002.
    [47] Henk van Steijn. Debris-flow magnitude-frequency relationships for mountainous regions of Central and Northwest Europe[J]. Geomorphology 15. 1996:259~273.
    [48] C.R.HUPP. Dendrogeomorphic Evidence of Debris Flow Frequency and Magnitude at Mount Shasta, California[J]. Environment Geology Water Science Vol 6, No.2, 121~128.
    [49] M. M. Helsen, P. J. M. Koop, H. Van Steijn. Magnitude–frequency relationship for debris flows on the fan of the chalance torrent, valgaudemar (French alps)[J].Earth Surface Processes and Landforms.27, 2002:1299~1307.
    [50] Manuela Pelfini, Maurizio Santilli. Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy[J]. Geomorphology 101, 2008: 721~730.
    [51]马东涛,石玉成.试论地震在泥石流形成中的作用[J].西北地震学报,18(4).1996(12):38~42.
    [52]马东涛.陇南山区斜坡重力地质作用特征.第四届全国泥石流学生讨论会论文集.甘肃文化出版社, 1994: 67~71.
    [53] Ching-Weei Lin, Shou-Heng Liu, et al. Impacts of the Chi-Chi earthquake on subsequent rainfall-inducedlandslides in central Taiwan[J].Engineering Geology 86 ,2006: 87~101.
    [54] Ching-Weei Lin, Chjeng-Lun Shieh,et al. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan[J]. Engineering Geology 71 ,2003:49~61.
    [55] Fi-John Chang, Yen-Ming Chiang , Wong-Shuo Lee. Investigating the impact of the Chi-Chi earthquake on the occurrence of debris flows using artificial neural networks [J]. Hydrological Processes 23,2009:2728~2736.
    [56]唐川,梁京涛.汶川震区北川9.24暴雨泥石流特征研究[J].工程地质学报,16(6), 2008:751~758.
    [57]唐川,铁永波.汶川震区北川县城魏家沟暴雨泥石流灾害调查分析[J].山地学报,27(5),2009:625~630.
    [58]游勇,柳金峰,等.“5·12”汶川地震后北川苏保河流域泥石流危害及特征[J].山地学报,28(3)2010:358~366.
    [59]许强.四川省8·13特大泥石流灾害特点、成因与启示[J].工程地质学报, 18(5),2010:596~608.
    [60]许强,裴向军等.汶川地震大型滑坡研究[M].北京:科学出版社,2009.
    [61]吴积善,王成华等.中国山地灾害防治工程[M].成都:四川科学技术出版社,1997.
    [62]陈燕庆,鹿洁.神经网络理论在控制工程中的应用[M].西安:西北工业大学出版社, 1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700