汶川地震区映秀至耿达公路泥石流灾害发育特征及其危险性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“5.12”汶川地震强大的破坏力使得震区在复杂的地质背景条件下,产生了大量的崩塌、滑坡等次生地质灾害,形成了数量巨大的松散堆积体,为该地区泥石流的孕育和发生提供了丰富的物源条件,在强降雨作用下,灾区泥石流频发。由于目前国内外对地震产生的泥石流灾害缺乏系统的研究,特别是对它的危害程度以及破坏力度的认识不足,在灾后恢复重建过程中对泥石流的防护力度不够,措施不到位,导致泥石流在震后很长一段时间成为灾后恢复重建过程中影响范围最广,暴发频率最高、破坏性最大的地质灾害。特别是2010年8月14日前后暴发的特大山洪泥石流对省道303线映秀至耿达段公路造成了毁灭性的破坏。因此,对区域内泥石流灾害的进一步认识评价,可以为公路工程规划设计及减灾防灾提供了地质依据,具有很好的理论和实际意义,也为研究震后泥石流的形成条件、活动特征、形成机制提供了参考。
     论文的主要认识与成果如下:
     (1)“8.14”强降雨期间,映秀至耿达段公路发育有泥石流30条(处),其中沟谷型泥石流15条、坡面型泥石流15处。区域内泥石流的具有群发性、规模增大、频率增加、受降雨强度控制等特点。泥石流形成条件的变化主要体现在松散物质的急剧增加、流域微地貌的突变以及降雨入渗条件的变化以及临界雨强的降低。泥石流的形成机制主要为强降雨诱发的暴雨泥石流。
     (2)汶川地震后震区泥石流形成条件发生了较大变化,目前广泛运用的泥石流沟易发程度的评判方法没有突出震后泥石流易发的主要原因,采用现有方法对泥石流易发程度进行判定不甚合理。本文利用层次分析法对原评价参数加以修正后,对其所占的权重进行了计算,重点突出了影响震后泥石流易发的三个主要因素:物源、临界雨强、汇水条件。
     (3)在泥石流规模预测上通过对“8.14”泥石流的实际情况,采用一次最大冲出量与物源总量的类比法形成了泥石流物源估计法,根据类比结果,震区内单沟泥石流一次最大冲出量为流域内总物源的10%。将“8.14”泥石流中典型沟谷一次冲出量带入雨洪法公式中进行反演计算,修正公式中的堵塞系数基数,利用修正后的公式计算震区泥石流一次最大冲出量。两方法计算结果较接近,再结合老泥石流发生的历史规模进行综合预测,结论可信。说明三者结合的方法在本区域内比较适用。
     (4)对震后泥石流危险性评价主要是根据在极端暴雨(百年一遇)情况下泥石流的易发程度、规模预测结果以及将来可能产生的危害程度进行综合评价。得到结果如下:研究区内有8条泥石流沟危害程度中等,危险性中等;15条泥石流沟危害程度大,危险性高;坡面泥石流危险性小~中等。该区泥石流数量众多,危害性大,建议该段公路在规划设计过程中,应尽量绕避破坏性较大的泥石流沟谷,对于破坏性中等或者较小的泥石流可采取适当措施进行防护或治理。
The strong damage of 5.12 Wenchuan Earthquake produced considerable secondary geological disasters, such as collapse, landslide and debris flow, under the complicated geological background conditions. It has formed a huge of loose accumulation, gestated rich source conditions for the debris flow in this area. Under the action of the heavy rainfall, debris flow happened frequently. Due to the lack of systematic research on the debris generated by earthquake, especially for its harm degree and destruction dynamics. In addition, during the process of reconstruction, because inadequate protective and unconsciousness after the earthquake, in a long time of reconstruction, debris flow disaster become the highest frequency, most destructive and widest range influence disaster. On August 14th 2010, super flash flood debris caused the devastating damage to the provincial highway 303 along Yingxiu-Genda. Therefore, within a further understanding of debris flow hazards for highway engineering evaluation, planning and provides some prevention and reduction of geological basis, could be a very good theoretical and practical significance or reference for the study of forming condition, activity, characteristics and formation mechanism of this post-earthquake debris flow.
     The main Understanding of this paper are as follow:
     (1) There are 30 debris flow sites along the highway of Yingxiu-Genda (before or after the 8.14 heavy rainfall, 15 gully debris and 15 slope debris were break out). The development of debris flow was controlled by geological conditions, the change of the formation conditions are mainly embodied in the loose material sharp increasing, geomorphology mutation or the change of permeation of the rainfall condition, most of the debris flow caused by the heavy rainfall.
     (2) After the Wenchuan earthquake, the formation conditions of debris flow undergone great changes. At present, the evaluation method of the predisposition of the geologic hazards which have been widely used did not highlight the main reasons of the predisposition after the disaster. So, the current methods are unreasonable. This paper, by using AHP, the original evaluation parameters have been revised, highlighted the three main factors that influenced the predisposition of the debris flow: the material sources, the critical rainfall intensity and catchment.
     (3) The method study of the scale of the debris flow, on the based of typical debris flow surver along the roads during the 8.14 period, compared the single biggest rushed out of the debris of one ditch with the total content source. According to the results, the maximum debris of one time could be estimated as 10% of the total content sources (material source estimate). To ensure the accuracy of the results, took the content of debris flow that have been flowed out into the Rainfall flood law formula for back calculation to correct the blockage factor in this formula. Finally, used the modified formula to calculate the single biggest rushed out of the debris of one ditch and contrast with the material source estimate, then, combined with the scale of the old debris flow for integrated forecasting. That the method of combining three more applicable in the region.
     (4)According to the the debris flow-prone cases the degree of the scale of predicted results and the degree of harm that may arise in the future a comprehensive evaluation, this paper assessed the risk of the debris flow. The results show that 15 of the ditches in this area are high-risk areas, 8 ditches are medium, the risk of slope debris flow are small-medium, in extreme rainstorm (year storm) cases, susceptible to or secondary occurred the debris flow hazards. Large number of debris flow area, the danger, Several suggestions could be summarized from this paper are that in the process of reconstruction the highway along Yingxiu-Genda, we should try to avoid the high-risk and destructiveness ditches, for the smaller destructive debris flow, we should take the appropriate measures to defend or management.
引文
[1]陈宁生,邓明枫,胡桂胜.地震影响下西南干旱山区泥石流危险性特征与防治对策.四川大学学报(工程科学版).2010.42。增刊1
    [2]唐川,梁京涛,汶川震区北川9.24暴雨泥石流特征研究[J].工程地质学报,2008,16(6).751-758
    [3]许强.四川省8.13特大泥石流灾害特点、成因与启示.工程地质学报.2010,18(5).596-609.
    [4]朱平一,陈景武,汪凯.泥石流观测与研究[M].北京:科学出版社,1996.121-126
    [5]蒋忠信,姚令侃,艾南山,等.铁路泥石流非线性研究与防治新技术[M].成都:四川科学技术出版社,1999.1-23
    [6]陈宁生,张军.泥石流源区弱固结砾石土的渗透规律[J].山地学报,2001,19(1):169-171
    [7]王裕宜,邹仁元,刘帕峰.泥石流启动与渗透系数的相关研究[J].山地侵蚀与水土保持学报,1997,3(4):76-82
    [8]崔鹏,杨坤,陈杰.前期降雨对泥石流形成的贡献[J].中国水土保持科学,2003,1(1):11-15
    [9]谭炳炎.山区铁路沿线暴雨泥石流预报的研究[J].中国铁道科学,1994,15(4):67-78
    [10] Johnson A M,Rodine J R.Debris Flow.In:Brunsden,D.,Prior,D.B.(Eds.),Slope Instability.John Wiley and Sons Ltd.,Chichester,UK,1984,257–361.
    [11]崔鹏.泥石流起动条件及机理的实验研究[J].科学通报,1991,36(4):1650-1652
    [12]崔鹏,关君蔚.泥石流起动的突变学特征[J].自然灾害学报,1993,2(l):53-61
    [13]张丽萍,唐克丽,张平仓,等.泥石流源地松散体起动人工降雨模拟及放水冲刷实验[J].山地学报,1999,17(1):45-49
    [14]陈晓清,崔鹏,韦方强.泥石流起动原型试验及预报方法探索[J].中国地质灾害与防治学报,2006,17(4):73-78
    [15]胡平华,游勇.泥石流的观测与实验研究[M].地貌实验与模拟.北京:地震出版社,1995.59~661
    [16] Iverson R M.The physics of debris flows.Reviews of Geophysics,1997,35(3):245–296.
    [17] FlemingR.W.Transformation of dilative and eontractive landslide debris into debris flow.Engineering Geology,1989,27(4):201-223
    [18] Takahashi T.Debris flow.International Association for Hydraulic Research, Balkema,Rotterdam,1991.
    [19] S.Egashira,N.Honda,T.ftoh.Experiment Study on the Entrainment of Bed Material into Debris Flow.Phys,Chem.Earth,2001,26(9):645-650
    [20] Sassa K.Meehanisms of landslide triggered debris flow ,Proeeedings of IUFRODiv.8 Conferenee.Kluwer Aeademie Publishing,Kyoto,1998.471-490
    [21]戚国庆,黄润秋.泥石流成因机理的非饱和土力学理论研究[J].中国地质灾害与防治学报,2003,14(3):12-15
    [22]江兴旺,张骏,邹艳琴,等.黄土地区暴雨型泥石流的动力学特征及其成因机制探讨[J].中国地质灾害与防治学报,2002,13(3):29-33
    [23]钱宁,王兆印.泥石流运动机理的初步探讨[J].地理学报,1984,39(1):33-43
    [24]谭炳炎.泥石流沟严重程度的数量化综合评判,水土保持通报,6(1),1986,51-57.
    [25]唐晓春,唐邦兴.我国灾害地貌及其防治研究中的几个问题,自然灾害学报,3(1),1994,70-74.
    [26]唐邦兴、柳絮青、刘世建,中国泥石流灾害分布与危害区划图(1:6,000,000),成都地图出版社,1991.
    [27]王礼先.北京山区荒溪分类与危险区制图[J].山地研究,1995,13(3):141—146.
    [28]孙广仁,毕海良.模糊数学综合评判法在泥石流沟判别与危险度评价中的应用[J].青海环境,1997,7(2):72—77.
    [29]刘希林.张松林.唐川.等.沟谷泥石流危险度评价研究[J].水土保持学报.1993,7(3):20-25.
    [30]刘涌江.胡厚田.自志勇.泥石流危险度评价的神经网络法[J].地质与勘探.2001,37(2):84-87.
    [31] Yuan Lifeng,Debris Flow Hazard Assessment Based on Support Vector Machine,Wuhan University Journal of Natural Sciences,Volume 11,Number 4,2006.
    [32]铁水波,唐川.层次分析法在单沟泥石流危险度评价中的应用[J].中国地质灾害与防治学报.2006,17(4):79-84.
    [33] Brew G,Barazangi M,Sawaf T,et al.Tectonic map and geologic evolution of Syria:The role of GIS[J].The Leading Edge,2000,19:176-182.
    [34] Rayfield E J,Barrett P M,Mcdonnell R A,et al.A geographical information system(GIS) study of Triassic vertebrate biochronology[J].Geological Magazine,2005,142:327-354.
    [35]张会平,杨农,张岳桥,等.岷江水系流域地貌特征及其构造指示意义[J].第四纪研究,2006,26(1):126-135.
    [36]周启鸣,刘学军.数字地形分析[M].北京:科学出版社,2006:52-75.
    [37]汤国安,张勇,刘咏梅,等.不同比例尺DEM提取地面坡度精度研究[J].水土保持通报,2001,21(1):53-56.
    [38] Florinsky I V.Accuracy of local topographic variable derived from digital elevation models[J].INT.J.Geographical Information Science,1998,12(1):47-61.
    [39]冯保成,模糊数学实用集粹[M].北京:中国建筑工业出版社,1991.
    [40]张跃等.模糊数学方法及其应用[M].北京:煤炭工业出版社,1992.
    [41]刘家龙,吕希奎,刘贵应.模糊综合评判法在泥石流灾度评价中的应用[J],地质科技情报,2001,20(4):86-88.
    [42]陈燕庆,鹿洁.神经网络理论在控制工程中的应用[M].西安:西北工业大学出版社,1991.32261.
    [43]赵源,刘希林.人工神经网络在泥石流风险评价中的应用[J].地质灾害与环境保护,2005,16(2):1352138.
    [44]魏永明,谢又予,伍永秋.关联度分析法和模糊综合评判法在泥石流沟谷危险度划分中的应用.自然灾害学报.1998.7(2):109-117.
    [45]张跃,宿芬,邹寿平.模糊数学方法及其应用[M].北京:煤炭工业出版社,1992.[13].
    [46]唐川,周钜乾,朱静,等.云南崩塌滑坡危险度分区的模糊综合分析法[J].水土保持学报,1994,8(4):48-54.
    [47] Gao Kechang,Probability Forecast of Regional Landslide Based on Weather Forecast,Wuhan University Journal of Natural Sciences,Volume 11,Number 4,2006.
    [48]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987.73-81.
    [49]刘希林.灰色模型和回归分析在泥石流预测中的应用——以蒋家沟泥石流年输沙量预测为例[J].灾害学,1989,4(2)26-30.
    [50] M.Quecedo,M.Pastor,M.I.Herreros,et al.Fer2nandez Merodo Mumerical Modeling of the Propagation of Fast Landslides Using t he Finite Element Met hod,INTER2NATIONAL JOURNAL FOR NUMERICAL METHODESIN ENGINEERING[J],2004,59:755-794.
    [51] D ikau R,Cavallin A,Jager S.Databases and GIS fo r landslide research in Europe[J]. Geomo rpho logy,1996,15(3-4):227-239.
    [52] Gup ta R P,Jo sh iB.L andslides hazard zoning using the GIS app roach:A case study from the Ramganga Catchment H i2 malayas[J].Engineering Geo logy,1990,28:119-131.
    [53] M ejia-N avarro M,Woh l E E,O ak s S D.Geo logical hazards,vulnerability,and risk assessment using GIS:model for Glenwod Sp rings,Co lo rado[J].Geomo rpho logy,1994, 10(1)331-354.
    [54] V anW esten C J,RengersN,TerlienM T J,et al.P redict ion of the occurrence of slope instability phenomena th rough GIS based hazard zonat ion[J].Geo logische Rundschau, 1997,86(4)1-14.
    [55] TerlienM T J,C J V anW esten,T W J V an A sch.Determ inist ic modeling in GIS2based landslide hazard assessment[A].(A Carraa F Guzzet t i)Geograph ic Info rmat ion System sin A ssessing N atural Hazards[M].Do rdrech t:Kluw er A 2cadem ic Publishers,1995.57-78.
    [56] B inagh i E L,L uzi P M adella,F Pergalani,et al.Slope instability zonat ion:A comparision between certainty facto randfuzzy demp ster-shafer app roaches[J].N at rial Hazards, 1998,17:77-97.
    [57] DhakalA S,Amada A,A nlyaM.L andslide hazard mapp ing and its evaluat ion using GIS:An invest igat ion of samp lingschemes fo r a grid cell based quant itativemethod[J].Photogrammet ric Engineering&Reso te Sensing,1999,66(8):981-989.
    [58] DhakalA S.L andslide hazard mapping and the app licat ion of GIS in the Kulehaniw atershed N epal[J].Mountain Re2search and Development,1999,19(1)3-16.
    [59]赵士鹏,周成虎,谢又予,等.泥石流危险性评价的GIS与专家系统集成方法研[J].环境遥感,1996,11(3):212-218.
    [60]闫满存.GIS支持的澜沧江下游区泥石流暴发危险性评价[J].地理科学,2001,21 (4):335-338.
    [61]许信旺.地理信息系统支持下泥石流危险度评估研究[J].安庆师范学院学报(自然科学版),1997,3(1):19-21.
    [62]刘涌江,胡厚田,白志勇.泥石流危险度评价[J].水土保持学报,2000,14(2):84-87.
    [63]魏永明等,关联度分析法和模糊综合评判法在泥石流沟谷危险度划分中的应用,自然灾害学报,1998.7(2).
    [64] Gao Kechang,Probability Forecast of Regional Landslide Based on Weather Forecast,Wuhan University Journal of Natural Sciences,Volume 11,Number 4,2006.
    [65] Yuan Lifeng,Debris Flow Hazard Assessment Based on Support Vector Machine,Wuhan University Journal of Natural Sciences,Volume 11,Number 4,2006.
    [66]高桥保,中川一,佐藤宏章.扇状地にぉける土砂泛滥灾害危险度の评价[J].京都大学防灾研究所年报,1988,,31(B-2):655-676.
    [67]久保田哲也,正务章,板垣昭彦.流域の任意地点における短时间降雨预测手法と土石流发生危险度判定图の开发[J].新砂防,1990,42 (6):11-17.
    [68]姚一江.坡面泥石流的类型、分布规律及防治[J].中国水土保持,1991,10(9):24-25.
    [69]崔鹏,庄建琦,陈兴长.汶川地震区震后泥石流活动特征与防治对策.四川大学学报(工程科学版).2010.42(5).
    [70]唐川,梁京涛.汶川震区北川“9 24”暴雨泥石流特征研究[J].工程地质学报,2008,16(4):283-284.
    [71]姜亭亭,孙世国,王丹.泥石流危险性研究现状与发展趋势分析.北方工业大学学报.2009.21(1).
    [72] Liu C W,Huang H F,Dong J J.Impacts of September 21,1999 Chi-Chi earthquake on the characteristics of gully-type debris flows in central Taiwan[J].Natural Hazards,2008,47(3):349-368.
    [73] Chen Y S.An influence of earthquake on the occurrence oflandslide and debris flow[D].Taipei:National Cheng KungUniversity,2008.
    [74]陈果,贾苍琴.沟谷泥石流灾害风险评价.内蒙古大学学报(自然科学版).2009.40(2).
    [75]刘希林,王全才,孔纪名.都(江堰)汶(川)公路泥石流危险性评价及活动趋势.防灾减灾工程学报.2004.24(1).
    [76]陈红旗,王晓东,陈亮.单沟泥石流灾害风险简易评价模型[J].中国地质灾害与防治学报.2009.20(3).
    [77]穆成林.成昆铁路线K494-K727段泥石流危险性评价与防治.西南交通大学硕士论文.2010.05.
    [78]刘希林,莫多闻.泥石流风险及沟谷泥石流风险度评价[J].工程地质学报.2002.10(03)-0266-08.
    [79]刘涌江,胡厚田,白志勇.泥石流危险度评价的神经网络法[J].地质与勘探.2001.37(2).
    [80]邹小虎,沈军辉,崔建凯.鲜水河下游泥石流发育分布特征研究[J].地质灾害与环境保护.2007.18(1).
    [81]唐川.汶川地震区暴雨滑坡泥石流活动趋势预测[J].山地学报. 2010,28(13): 341~349.
    [82]孙家炳.遥感原理与应用(第2版)[M].武汉:武汉大学出版社,2009.
    [83]唐小明,冯杭建,赵建康,等.基于虚拟GIS和空间分析的小流域泥石流地质灾害遥感解译———以嵊州市为例[J].地质科技情报, 2008, 27(2): 12-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700