间甲基苯胺的电子转移机理及组分协同效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环保和节能对汽油产品的质量提出更高的要求,导致了非金属抗爆剂的使用会逐渐增多,非金属抗爆剂抗爆机理的研究将在抗爆剂的发展中起到重要作用,明确抗爆机理对抗爆剂的研制开发有着重要的实践意义。苯胺类化合物是一类性能良好的非金属抗爆剂,间甲基苯胺就是其中的一种代表性物质。而且间甲基苯胺具有电子转移性质,适于电化学研究。本文采用电化学技术研究间甲基苯胺的电子转移性质、过氧化氢的影响以及新型抗爆剂TKC组分之间的协同效应,旨在探讨非金属抗爆剂的抗爆机理以及明确抗爆剂组分的性能,为组分优选工作与寻找最佳配比提供理论依据。
     本文采用循环伏安法分别研究了间甲基苯胺在1,2-二氯乙烷和甲醇溶液中的电子转移性质,实验结果表明:甲醇作为极性质子溶剂,可以结合质子形成质子化甲醇离子CH_3OH_2~+,有利于间甲基苯胺偶合过程中的脱质子,能够促进正离子自由基的生成;而1,2-二氯乙烷是一种非质子溶剂,没有该促进作用。通过现场紫外-可见光谱电化学法研究了间甲基苯胺在甲醇溶液中的紫外-可见光谱性质,在此基础上探讨了间甲基苯胺的电子转移机理。间甲基苯胺在甲醇中发生电化学氧化时首先产生正离子自由基,在随后的化学反应中,正离子自由基聚合方式主要为“尾-尾”耦合,电极反应机理为包含随后转化步骤的EECE反应过程。
     汽油抗爆剂抗爆性的本质在于消除汽油燃烧过程中产生的过氧化物。本文在分析间甲基苯胺电化学性质的基础上,通过研究间甲基苯胺与过氧化氢的作用,为芳香胺抗爆机理的研究提供了重要依据,并由此探讨抗爆剂的抗爆性与电化学性质的关系。实验结果表明:间甲基苯胺能与过氧化氢发生作用,添加到汽油中可能有效去除过氧化物,起到抗爆震作用。
     在汽油调合时,各种调合组份的调合辛烷值与该物料在纯净状态下的辛烷值是不尽相同的,各调合组份间存在着调合效应。本文以TKC主要组分甲苯、乙酸丁酯、四氯乙烯、1,2-二氯乙烷分别与甲醇混合,在室温条件下利用循环伏安法研究间甲基苯胺在不同实验组分中的电子转移性质及与过氧化氢的相互作用,进而分析甲醇与它们之间的协同作用。实验发现:当甲苯、乙酸丁酯、四氯乙烯添加量为10%时,间甲基苯胺的氧化峰电流最大。表明甲苯、乙酸丁酯、四氯乙烯添加量少时表现出正调合效应,有利于间甲基苯胺对过氧化物的消除。
The quality of gasoline is much higher with the reqirements of environmental protection and energy conservation. This leads to the more application of non-metal antiknock .The studies of the mechanisms of non-metal antiknock will play an important role in exploring new antiknock in the future. So clarifying the mechanisms of antiknock has important effects on developing new antiknock. Aniline compounds has a good performance of the non-metallic antiknock additive, m-Toluidine which has the nature of electron transfer is one of the representative material and suitable to research with electrochemical methods. In this paper, we have investigated the electron-transfer properties of m-Toluidine and the effects of hydrogen peroxide and the co-effect of constituents of TKC with electrochemical technique, aiming at exploring the mechanism of antiknock and definiting the properties of constituents of antiknock. This will provide the theoretical basis for selecting components and finding the best proportion.
     We have investigated the electron-transfer properties of m-Toluidine in 1, 2-dichloroethane and methanol by cyclic voltammetry. The experimental results show that methanol as a polar protic solvent can combine with proton to form protonated methanol ion. It is propitious to delink proton in the coupling process of m-Toluidine, which can promote the formation of the free cation radical. 1, 2-dichloroethane as an aprotic solvent hasn't the promoting role. We also studied the spectral properties of m-Toluidine in methanol with situ UV spectra. The mechanism is that the free cation radical of m-Toluidine can form dimers by tail-tail coupling in methanol. The electrode process is considered to be followed by ECE mechanism.
     The role of antiknock is to eliminate peroxide produced by the combustion of gasoline in engine. We have presented some important evidences to the antiknocking mechanisms of m-Toluidine through investigating the reactions of m-Toluidine and hydrogen peroxide on the premise of analyzing the electrochemical properties of m-Toluidine. As a result, the relationship of antidetonating quality and electrochemical properties has been discussed. The experimental results indicate that m-Toluidine could eliminate hydrogen peroxide. m-Toluidine maybe eliminate peroxide effectively when it is added in the petrol and play a role of antiknock.
     As gasoline blending, the octane number of various blending components is different with the material in the pure state's, in which blending effect exists. In this paper, toluene, perchloroethylene, butyl acetate, 1, 2-dichloroethane, which are the main components of TKC, are blended with methanol respectively. We study the electron-transfer properties of m-Toluidine in different components and interaction with hydrogen peroxide by cyclic voltammetry at room temperature. It is found that when toluene, butyl acetate, perchloroethylene is added respectively to 10%, the oxidation peak current of m-Toluidine is the largest. When there is a little toluene, butyl acetate and perchloroethylene , it can manifest positive concocting effect and do good favor to eliminate peroxide with m-Toluidine.
引文
[1]邓致礼.车用汽油[M].北京:烃加工出版社,1985:47-49.
    [2]周正仁.几种提高汽油辛烷值的添加剂[J].化学工程师,1992,26(2):27-31.
    [3]Klingebiel W J.等著.沈宏孚译.何种含氧化合物能填补辛烷值差额[M].石油炼制译丛,1987,(10):19-24.
    [4]Zaharova E L,et al.Additives for improvement and Ecological Properties of Motor Gasolines[J].Chemistry and Technology of Fuels and Oils,1994,(2):35-38.
    [5]殷长龙,夏道宏.汽油辛烷值改进剂研究进展[J].石油大学学报(自然科学版),1998,22(6):129-133.
    [6]王金环.非铅汽油的抗爆剂及其配制[P].CN 1222562,1999.
    [7]韩秀山.燃料添加剂的发展现状及趋势[J].四川化工与腐蚀控制,2002,5(2):47-54.
    [8]李政.汽油辛烷值改进剂新进展[J].甘肃化工,1995,(3-4):19-24.
    [9]胡建良.乙醇汽油的生产与应用[J].中外能源,2006,11(5):90-94.
    [10]Brit U[P].GB 2106933,1983-4-20.
    [11]Iida T.Aromatics amines as antiknock compounds[J].Sekiyu Gakkai Shi 1971,14(7):512-517.
    [12]Burns L D.Motor fuel[P].United States Patent:4294587,1981-10-13.
    [13]Burns L D.Motor fuel[P].United States Patent:4321063,1982-3-23.
    [14]Svaigl O,Matejka,Hable K C.Antiknock mixture for lead-free and low-lead gasoline[P].CS 275640,1992-3.
    [15]Derosa T F,Studzinski W M,Russo J M,Kaufman B J,Habn R T.Non-metallic antiknock fuel additives[P].United States Patent:5468264,1995-11-21.
    [16]Derosa T F,Studzinski W M,Russo J M,Kaufman B J,Hahn R T.Non-metallic antiknock fuel additives[P].United States Patent:5536280,1996-7-16.
    [17]禹茂章主编.世界精细化工手册(续编)[M].北京:化学工业部科学技术情报研究所,1986:341-342.
    [18]Palkovics I,Zalka L,Peter I.Improved process for products of N,N-dialkylphenylenediamines useful as octane boosters.Hang.Teljes HU 40400,1986.
    [19]Licke G C.Gsoline containing N-sulfinyl amines as antiknock agents[P].United States Patent:3554712,1971.
    [20]Edmund L.N.Motor fuels[P].United States Patent:3373005,1968-3-12.
    [21]Vis J H.,Leder W R J.Motor fuel containing dimine additives[P].United States Patent:3685976,1972.
    [22]Milnovic I,Humski K.Ues of MTBE as a gasoline additives[J].Goriva Maziva,1977,16(5-6):11-24.
    [23]Burns,L D.Motor fuel[P].US 4295862,1981-3-23.
    [24]Burns,L D.Motor fuel.additives[P].United States Patent:4295861,1981-10-20.
    [25]Parlman R M,Lee R C,Burns L D.Motor fuel[P].United States Patent:4321061,1982-3-23.
    [26]于天荣,王绍勤,秦平.TKC助剂提高催化裂化汽油辛烷值的工业应用[J].炼油设计,1997,27(3):56-57.
    [27]李贵勤,陈巨星,李鸿根.无铅高辛烷值车用汽油的调合[J].上海化工,1999,24(21):18-21.
    [28]Ahadiat N.Effects of the additives aminobenzene and methanol in gaeoline formuiation on physical~chemical characterisitics and octane numbeer[J].Lembaran Publ.Lemigas,1988,22(2):173-177.
    [29]Svaigl O M,Hable K C.Antiknock mixture for lead-free and low-lead gasoline[P].CS 275640,1992.
    [30]王贺武,边耀璋.FE-1抗爆剂对汽油性能影响的研究[J].西安公路交通大学学报,1997,17(3):71-74.
    [31]格根托雅,叶秋梅,刘炎武,几种无铅汽油抗爆剂作用机理及工业应用[J].辽宁化工,1999,28(3):151-154.
    [32]Borisv Y A,Kllepov Y.Antiknock properties of gasoline components containing added methanol or formaldehyde[J].Fiz Goreniya Vzryva,1986,22(2):130-133.
    [33]袁晓东.烃类爆震燃烧机理和抗爆剂作用机理的探讨[J].石油与天然气化工,2002,31(2):78-81.
    [34]Gavrilov B G.(USSR).Zh pikl Khim(Leningrad),1968,41(5):1155-1158.
    [35]Salooja K C.Decomposition of peroxides by lead oxides:accompanying changes in the nature of lead oxides[J].Combust.Flame,1968,12(4):302-306.
    [36]Rao V K,Prasad C R.Knock suooression in gasoline engines[J].Combust Flame,1972,18(2):167-172.
    [37]Benson S W.Themechanism of inhibition of knock by lead additives,a chain debranching reaction[J].Phys.Chem.1988,92(6):1531-1533.
    [38]Erhard K L.Studies of knock and antiknock by kinetic spectroscopy[J].ProcRoy Soc,1956,234A:178-191.
    [39]Girelli A.Antiknock action and working mechanism of MMT in fuels of different composition[J].Riv Combust,1962,16(9):371-378.
    [40]王一平,黄群武,张金利,郭翠梨,韩立君.甲基环戊二烯基三羰基锰的合成和应用进展[J].化学工业与工程,2001,18(3):172-175.
    [41]郁章玉,齐丽云,秦梅,郭道军,王慧云.甲苯-乙醇介质中二茂铁催化分解过氧化 氢机理的探讨[J].应用化学,2004,21(1):41-44.
    [42]Springer K J.Gasoline and Diesel Fuel Qualification,Energysouces Technology Conference and Exhibition,1990,(1):14-18.
    [43]王绍勤,郭宇光,卜凡宏.新型汽油辛烷值改进剂研究进展[J].油气加工,1997,7(3):76-78.
    [44]郁章玉,靳明,齐丽云,二苯胺在抗爆剂TKC组分1,2-二氯乙烷中电子转移性质的研究[J].临沂师范学院报,2003,25(6):1-4.
    [45]Martijn M W,Rene A.J.J.,Stable Triplet-State Di(Cation Radicals)of a Meta-Para Aniline Oligomer by "Acid Doping"[J].Am.Chem.Soc.,1996,118(43)10626-10628.
    [46]Hand R.L.,Nelson R.F.Anodic Oxidation Pathways of N-Alkylaniline[J].Am.Chem.Soc.1974,96(3):850-860.
    [47]Bacon J,Adams R N.Anodic oxidations of aromatic amines Substituted anilines in aqueous media[J].Am.Chem.Soc.,1968,90(24):6596-6600.
    [48]David M.M.,Admas R.N.,Argersinger W.J.Investigation of the kinetics and mechanism of the anodic oxidations of aniline in aqueous sulfuric acid solution at a platinum electrode[J].Am.Chem.Soc 1962,84:3618-3622.
    [49]Nelson R.F.,Admas R.N.Anodic oxidation pathways of substituted triphenylamines.Quantitative studies of benzidine formation[J].Am.Chem.Soc.,1967,90(15):3925-3930.
    [50]Stiwell D E,Su-Moon Park.Electrochemistry of conducive polymers.Electrochemical studies on growth properties of polyaniline.Electrochem[J].Soc.,1988,135(9):2254-2262.
    [51]Neubert G,Prater K B.The electro-oxidative coupling of N,N-dimethylaniline:A rotating ring-disk electrode study[J].Electrochem.Soc,1974:745-749.
    [52]Cases F,Huerta F,Garce's P,Morallo'n E,Va'zquez J L.Voltammetric and in situ FTIRS syudy of the electrochemical oxidation of aniline from aqueous solutions buffered at pH5[J].Electroanal Chem,2001,501:186-192.
    [53]魏守强,陆嘉星,张五昌.苯胺电化学聚合机理的研究[J].合成化学,1994,2(3):258-262.
    [54]刘春艳,任新民.苯胺类化合物的电化学氧化及随后化学反应[J].应用化学,1990,7(3):19-23.
    [55]Graff G.Chemical Week,1985,136(1~2):20-26.
    [56]祝伟.导电高分子材料研究进展[J].黎明化工,1997,(5):31.
    [57]曾幸荣,龚克成.聚苯胺的掺杂及其性能的研究[J].高分子材料科学与工程,1991,(6):73.
    [58]MacDIArmia A G,Shaolin Mu,Somasifi N L D et al.Electrochemical characteristics of polyaniline,cathodes and anodes in aqueous electrolytes[J].Mol.cryst.Liq.Cryst.,1985,121:187-190.
    [59]穆绍林.聚苯胺电池充放电特征[J].科学通报,1988,19:1484-1486.
    [60]Baochen Wang,Gi Li,Changzi Li,Fosong Wang.Large-scale polyaniline batteries[J].Power Sources,1988:115-120.
    [61]Kobayashi T,Yoneyama H,Tamura H.Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrode[J].Electroanal.Chem.,1984,177:281-291.
    [62]沈鹤柏,张五昌.电解聚合法合成导电高分子[J].大学化学,1990,5(3):31-34.
    [63]王扬勇,强军锋,井新利,姚胜.导电高分子聚苯胺及其应用[J].化工新型材料,2003,31(3):1-6.
    [64]钟平,黄承玲,王青豪.Pan/Pt修饰电极的电色效应及其在滴定分析中的应用[J].理化检验-化学分册,2002,38(12):595-599.
    [65]Mongoli,G.etal,J.Appl.Poly.Sci.,1981,26:4207-4213.
    [66]丁克强,贾振斌,曹江林,等.聚苯胺/聚硫橡胶复合膜的电化学行为的研究[J]河北师范大学学报(自然科学版),2001,25(1):66-69.
    [67]李红,马文石.聚苯胺对DMcT氧化还原反应的电催化作用[J].电源技术,2002,26(1):32-35.
    [68]郭景东,陈衍珍,田昭武.物理化学学报[J],1988,4(5),5055-09.
    [69]孙东豪,丁进青,张展屏.聚邻甲苯胺合成及性能研究[J].塑料工业,1999,27(1):3-6.
    [70]David E.Stiwell,Su~Moon Park[J].Electrochem.Soc.,1988,135(9):2254-2262.
    [71]Tetsuhiko Kobayashi[J].Electroanal.Chem.,1984,161:419-423.
    [72]宋发益,蔡铎昌.二苯胺的电化学聚合机理[J].四川师范学院学报,1994,15(2):162-166.
    [73]Genies,E M,Tsintavis,C Redox mechanism and electrochemical behaviour of polyaniline deposits[J].Electroanal.Chem.,1985,195:109-128.
    [74]Britta Lindholm,Michael Sharp[J].Electroanal.Chem.,1987,235:169-177.
    [75]Glarum S H,Marshall J H[J].Eectrochem.Soc.,1987,134(1):142-147.
    [76]廖川平,顾明元.苯胺自催化聚合反应的混合电位[J].物理化学学报,2001,17(10):904-907.
    [77]Wawzonek S.,Mclntyre T.W.Electrolytic oxidation of aromatic amines[J].Eectrochem.Soc.,1967,114(10):1025-1029.
    [78]张升水,仇卫华,刘庆国.Pan/PEO-LiClO_4界面交流阻抗研究[J].物理化学学报,1992,8(4):515-517.
    [79]贾振斌,龚克成.苯胺与聚硫橡胶复合膜阻抗表征[J].河北师范大学学报(自然科学版),1999,23(1):697-3.
    [80]何创龙,高宇.电位扫描椭圆法对苯胺电聚合的研究[J].渝州大学学报(自然科学版),2002,19(2):60-63.
    [81]黄梅芳.可溶性导电聚苯胺的研究现状及其发展[J].湘潭大学学报,2000,24(1)2:185-188.
    [82]孙东豪,穆绍林.苯胺的电聚合研究[J].苏州丝稠工学院学报,1991,19(3):21-25.
    [83]郑海鹏,张瑞丰,吴芳,等.聚(N,N-二甲基苯胺)中稳定自由基的性质研究[J].功能高分子学报,1998,11(2):183-186.
    [84]穆绍林,阚锦晴,张爱光.苯胺在碱性溶液中的电化学聚合和聚合物的性质[J].电化学,1996,2(1):54-60.
    [85]孙再成,邝力.景遐斌,等.化学和电化学方法合成苯/胺封端苯胺四聚体[J].高等学校化学学报,2002,23(3):496-499.
    [86]颜流水,魏洽,王承宜,等.聚苯胺膜的电化学合成机理及掺杂行为[J].功能材料,2000,3 1(5):548-550.
    [87]Stiwell,D.e.;Park,S.M.;J.Electrochem.Soc.,1988,135:2254.
    [88]靳明.苯胺类化合物的电子转移性质及抗爆机理研究[D].曲阜:曲阜师范大学硕士学位论文,2004.
    [89]陈琪.邻甲苯胺的电子转移机理及组分协同效应研究[D].曲阜:曲阜师范大学硕士学位论文,2006.
    [90]高俊侠.N-苯胺的电子转移机理及组分协同效应研究[D].曲阜:曲阜师范大学硕士学位论文,2007.
    [91]Bard A.J.,电化学方法原理及应用[M].北京.化学工业出版社.1987.
    [92][日]藤屿 昭,相泽益男,井上 澈著.电化学测定方法[M].北京:北京大学出版社,1995,147-163.
    [93]查全性.电极过程动力学导论(第3版)[M].北京:科学出版社,2002.
    [94]Dognadze R R,Knznetso VAM,Marsagishvil TA.Elec.Acta,1980,25:1.
    [95]田昭武.电化学研究方法[M].北京:科学出版社,1984.230-239.
    [96]Anson F.电化学与电分析化学[M].北京:北京大学出版社,1981.
    [97]董绍俊.薄层光谱电化学[J].分析化学,1985,13(1):70.
    [98]谢远武,董绍俊.光谱电化学方法-理论与应用[M].长春:吉林科学出版社,1993.
    [99]朱元保,谢青季,何双娥.光谱电化学的研究及应用[J].化学传感器,1991,11(1):1.
    [100]K A Rubinson,E Itabashi,et al.,Inorg.Chem.,1982,21:3571.
    [101]焦奎,吕刚,孙伟,等.紫外可见薄层光谱电化学[J].青岛化工学院学报,2001,22(3):201-208.
    [102]J W Strojek,T Kuwana,[J]Electroanal.Chem.,1968,16:471.
    [103]J F Tyson and T S West,Talanta,1979,26,117.
    [104]谢远武,程广金,董绍俊.平行入射式光谱电化学池的制作及分析应用[J].分析化学,1991,19(6):636.
    [105]Heineman W R,Norris B J,Goelz J F.Measurement of enzyme EO' values by optically transparent thin layer electrochemical cells[J].Anal Chem,1975,47(1):79-84.
    [106]Boschloo G,Hagfeldt A.Spectroelectrochemistry of nanostructured NiO[J].J Phys Chem B,2001,105(15):3039-3044.
    [107]Rapta P,Faber R,Dunsch L,et al.In situ EPR and UV-vis spectroelectrochemistry of hole-transporting organic substrates[J].Spectrochim Acta Part A,2000,56(2):357-362.
    [108]Boschloo G,Fitzmaurice D.Spectroelectrochemistry of highly doped nanostructured tin dioxide electrodes[J].J Phys Chem B,1999,103(16):3093-3098.
    [109]Comtat M,Durliat H.Some examples of use of thinlayer spectroelectrochemistry in the study of electrontransfer between metals and enzymes[J].Biosensors & bioelectronics,1994,9(9~10):663-668.
    [110]Zak J,Porter M D,Kuwana T.Thin-layer electrochemical cell for long optical path length observation of solution species[J].Anal.Chem.,1983,55(14):2219-2222.
    [111]Qui Yupeng,Porter Mare P,Kuwana Theodere.Anal Chem.,1985,57:1474.
    [112]Dong Shaojun,Zhu Yongchun,Cheng guangjin.Langmuir,1991,7:389.
    [113]Dong Shaojun,Zhu Yongchun.Langrnuir,1991,7:394.
    [114]郁章玉,张为超,翟翠萍,汪汉卿.长光程薄层光谱电化学技术及应用[J].实验室研究与探索,2003,22(6):40-44.
    [115]郁章玉,李海英,李春英,顾登平.[Co(H_2O)_4(NCS)_2](18-C-6)的薄层光谱电化学研究[J].应用化学,1989,6(03):59.
    [116]李海英,郁章玉,李春英,顾登平.用分光光度法研究[Fe(H_2O)_3(NCS)_3](18-C-6)在微栅电极上的电化学性质[J].物理化学学报,1990,6(6):735.
    [117]李海英,郁章玉,顾登平.薄层光谱电化学方法研究[Ag(lO_6)_2]~(7-)和[Cu(lO_6)_2]~(7-)的阴极还原[J].应用化学,1989,6(2):92.
    [118]吴霞琴,市村彰南,葛瑾,章宗穰.细胞色素C的薄层光谱电化学研究[J].高等学校化学学报,1991,12(11),1529-1531.
    [119]穆绍林,阚锦晴,张爱光.苯胺在碱性溶液中的电化学聚合和聚合物的性质.电化学,1996,2(1):54-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700