微纳米种子汽泡强化传热及抑制不稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集功能型与紧凑型为一体的微电子设备不断发展,微电子器件冷却技术发展和应用已成为设备维持其优良功能性及稳定性的主要制约问题。延续至今,微通道沸腾换热成为高热流密度芯片冷却热管理问题极具潜力的选择。本研究以丙酮为工质,对微通道内流动沸腾不稳定进行实验研究,对微通道内种子汽泡触发沸腾和抑制流动沸腾不稳定进行了模型构建及数值模拟,以期对微尺度沸腾换热领域进一步研究提供理论性指导。主要创新性工作如下:
     微通道沸腾不稳定性影响因素实验研究。以硅基并联三角形微通道为实验段,在热沉背面设计并加工三种长度(L1=4.5mm,L2=6.25mm,L3=8.0mm)加热膜。研究不同加热膜长度(L)和不同质量流量(G)条件下,微通道进出口压降(△P)和热沉背面加热膜中心点平均温度(TWC)随热流密度(q)变化规律。发现压降和加热膜温度随热流密度变化曲线包含单相液体对流传热区域和汽液两相流动沸腾不稳定区域,随热流密度增加,单相区域压降略微降低,加热膜温度线性升高;两相区域压降急剧增大,加热膜温度指数式上升;研究热流密度,质量流率和加热膜长度对压降,加热膜温度,温度标准偏差(Stdev),及传热系数(hwc)影响,发现高热流密度/低质量流率/长尺寸加热膜条件下,沸腾不稳定更容易被触发,系统压降增大,加热膜温度波动周期及振幅增大,标准温度偏差下降,传热系数波动周期及振幅增大,传热恶化。
     种子汽泡抑制微通道沸腾不稳定性实验研究。在每条微通道入口集成Pt薄膜微加热元,作为触发微汽泡(充当微通道中核化种源,称为“种子汽泡”)的发生器。研究不同触发频率(f)种子汽泡对沸腾不稳定性现象,发现随着触发频率增大,压降和传热系数不稳定波动逐渐消失,触发频率为1000Hz时,传热基本达到最佳,意味着对应质量流率下饱和触发频率fsat=1000Hz,分析本课题所设计工况发现相同Bo数范围内具有相同的饱和触发频率;研究不同触发频率下压降和加热膜温度随热流密度变化规律。发现种子汽泡在单相液体单相液体区域不起作用,两相区域,随着触发频率增加,压降和加热膜温度随热流密度变化曲线曲率下降,流动沸腾不稳定逐步得到抑制;研究种子汽泡触发频率抑制流动沸腾不稳定性效果。发现随着触发频率增加,压降和加热膜温度随时间不稳定波动周期和振幅逐渐减低,温度标准偏差增大,传热系数波动逐渐消失,换热得到强化。触发高频种子汽泡后,微通道内代表性流型由单相和环/雾状流周期性交替转换为稳定弹状流。
     种子汽泡强化微圆管蒸发传热数值模拟。在不考虑微圆管内自核化前提下,发展了微圆管内种子汽泡强化蒸发传热汽-液两相模型,汽-液界面蒸发蒸发过程采用本课题组开发的一种精确简单相变模型结合VOF(Volume of Fluid)方法进行描述,采用动态自适应网格技术结合预先固定分区并行计算方法精确捕捉汽泡行为;研究不同种子汽泡触发频率(f)下,微圆管壁面过热度(△Tw,x)和主流过热度(△Tb,x)随时间演化规律,以及流型和传热两者之间关系。发现了触发频率是影响传热关键因素,低频下,种子汽泡作用有限,壁面和主流过热度随时间呈明显的毫秒级(-ms)波动,高频下,微圆管内代表性流型为准稳态拉长汽泡流,壁面和主流过热度在时空分布上呈现较好温度均匀性。该模型还验证了实验中触发频率存在饱和频率的结论,发现了高频种子汽泡触发下微圆管内高效稳定传热机制由薄液膜蒸发主导,成功揭示了有限实验手段所不能揭示的种子汽泡强化微圆管传热微观(-ms)机理。
     种子汽泡抑制微圆管沸腾不稳定数值模拟。考虑微圆管内自核化效应,基于本课题组相关实验结论及一系列简化和假设,建立了中等Bo数下微圆管内关联核化准则(△TW)、核化频率(fn)、核化密度(Nn),以及种子汽泡触发频率(f)的种子汽泡抑制汽-液两相自沸腾不稳定模型;研究不同质量流率下,自沸腾时壁面过热度(△Tw,x)、主流过热度(△TB,x)、压降(△p)、传热系强化倍率((Nux-Nufull)/Nufull)随时间的演化规律。发现壁面和主流过热度,压降、传热系强化倍率随时间呈明显的同步周期性波动,且随着质量流率增大,核化频率增大,核化汽泡起始点越接近微圆管入口;研究不同质量流率条件下,不同触发频率种子汽泡对微圆管内流动及传热的影响。发现高频种子汽泡触发下,壁面和主流过热度,压降、传热系强化倍率大幅波动消失,时空分布呈现良好的均匀性,换热得到强化。研究还发现相同Bo数条件下,随着质量流率增大,饱和触发频率fsat不变;相同饱和触发频率下,随着质量流率增大,壁面残余过热度△Tw,resudial和主流过热度△Tb,resudial增大,但后者达到维持稳定传热所需最小过热度(Tb,x-Tsat)high f seed bubbles后变化并不明显。
With the continuing increase in the functionally and compactness of microelectronics, the demand for high heat flux dissipation from the high performance microprocessors increases. So the development and application of the cooling technique becomes the primary task to maintain the excellent performance and stability of the microelectronic device. Recently, microscale two-phase boiling heat transfer provides an alternative and potential way for thermal management of high-density commercial and defense electronic devices. To provide a guide to design and optimize the two-phase boiling heat transfer in microchannels, in this thesis, the acetone is used as the working fluid, and the experimental study is performed to study the mechanism of boiling flow instability in microchannels. At the same time, the seed bubble-triggered evaporation heat transfer and the seed bubble-depressed boiling instability models are developed and numerically studied. The main contents are as follows:
     Effect of running parameters on flow boiling instability in microchannels. The parallel triangle silicon microchannel heat sink is designed as the experiemntal section, and three different lengths (L1=4.5mm, L2=6.25mm, L3=8.0mm) for the main heater on the back of the heat sink are used. The demand curves of pressure drops (ΔP) and temperatures at the central point of the main heater (TWC) versus heat fluxes are examined for different mass fluxes and heater lengths. It is found that, both the single-phase liquid region and two-phase flow region are included in the plots. And in the single-phase liquid flow, the pressure drops slightly decrease and the main heater temperatures linearly increase with the heat flux increasing. And in the two-phase flow region, the pressure drops rapidly increase and the main heater temperatures exponentially increase with the heat flux increasing. The effects of heat fluxes(q), heat lengths(L), and mass fluxes (G) on pressure drops, main heater temperatures, the standard temperature deviations (Stdev), and the heat transfer coefficients (hWC) are experimently studied. The results show that, for the higher heat flux/lower mass flux/longer main heater length, the boiling instability is earlily triggered, the standard temperature deviations are decreased, the pressure drops are increased, also the cycle lengths and oscillation amplitudes of main heater temperatures and heat transfer coefficients are increased.
     Experimental study of seed bubble-depressed flow boiling instability in microchannels. Seed bubbles can be considered as a type of intelligent and controllable'cavity'bubbles to control the flow boiling instability, which were producted on a set of microheaters upstream of microchannels driven by the pulse voltage signal. The effect of seed bubble frequencies (f) on boiling flow instability is experimentally studied. It is found that, the oscillation amplitudes of the pressure drops and main heater temperatures become smaller with the seed bubble frequency increasing. And the heat transfer enhancement attains the maximum degree for f=1000Hz, inferring that a saturation frequency of1000Hz for the corresponding mass flux. It is noted that for the middle boiling number of1.5×1e-03-3.21e-03there is only one saturation frequency. The demand curves of pressure drops (ΔP) and temperatures at the central point of the main heater (TWC) versus heat fluxes are investigated under different seed bubble triggering frequencies. It is found that, the seed bubble has no effect for the flow and heat transfer in the single-phase liquid flow. In the two-phase flow region, the slope of the pressure drops and the main heater temperatures decreases with the heat flux increasing, inferring to the progressive control of the boiling flow instabilities. The effects of seed bubble frequencies(f), on pressure drops, main heater temperatures, the standard temperature deviations, and the heat transfer coefficients are experimently studied. The results show that, with the seed bubble frequency increasing, the cycle lengths and oscillation amplitudes of pressure drops and main heater temperatures and heat transfer coefficient are decreased, the standard temperature deviations is increased. Naturally the heat transfer enhancement is induced. With the assistant of high frequency seed bubbles, the typical flow patterns in microchannesl can be converted from the alternating single-phase liquid flow and annular/mist flow to the quasi-stable slug flow.
     Numerical study of seed bubble-enhanced evaporation heat transfer in microchannels. Selfboiling in microchannels was ignored in this chapter, The seed bubble-triggered evaporation heat transfer model is in microchannels developed. A simple but accurate phase change model for vapor-liquid two phase flow proposed by our research team is used to describe the evaporation mass flux on the vapor-liquid interface. To reduce time consumption and avoid data transmission error at the allocation interface, the fixed grid allocation technique is proposed to successfully perform the parallel computation via a set of computer core solvers. The wall superehats (ΔTw,x) and bulk superheats(ΔTb,x) versus time under different triggering frequencies, and the relationship between the flow pattens and heat transfer are explored. It is found that the seed bubble frequency is a key parameter to influence the heat transfer performance. Low-frequency seed bubbles cause apparent spatial-time oscillations of wall and bulk superheats. High-frequency seed bubbles result in quasi-stable elongated bubbe flow, corresponding to quasi-uniform and stable wall and fluid superheats. And the evaporation of thin liquid film between the elongated bubble and the wall is responsible for the heat transfer enhancement. In addition, the experimental evidence that the saturation seed bubble beyond which no further performance improvement can be made is also verified by the numerical model, and the seed bubble-triggering evaporation heat transfer mechanism in ms-level, which is difficult to capture by the limitation of measurement technique, is successfully revealed by the present numerical study.
     Numerical study of seed bubble-depressed flow boiling instability in microchannels. Selfboiling in microchannels is considered in this chapter. Based on the experimental conclusions by our research team and a series of assumptions, the seed bubble-depressed flow boiling instability vapor-liquid two phase model for middle boiling number is developed. The relevant parameters for the model consist of the nucleation criterion(ΔTw), nucleation-frequency (fn), nucleation density (Nn), and seed bubble triggering frequency(/). The wall superheats (ΔTW,x), bulk superheats(ΔTb,x), pressure drops(AP) and enhanced heat transfer coefficient((Nux-Nufull)/Nufull) versus time for different mass fluxes (G) are examined. It is found that the wall superheats, bulk superheats, pressure drops and enhanced heat transfer coefficient varies synchronously with apparent oscillation amplitudes and cycle lengths. With the mass flux increasing, the nucleation frequency is increased and the first nucleate point is more close to the microtube entrance. And the effect of seed bubble frequencies on the flow boiling instability and heat transfer enhancement under different mass fluxes is also studied. It is found that, the intense oscillation of the wall superheats, bulk superheats, pressure drops and enhanced heat transfer coefficient is successfully depressed, corresponding to a nice quasi-stable spatial-time distribution. However, the saturation seed bubble frequency is not changed with the mass flux increasing. And for the same saturation frequency, the residual wall and bulk superheats increase with mass flux increasing, when the latter reaches the required minimum temperature difference to maintain the evaporation heat transfer, the ingored change will be induced.
引文
[1]T. Harirchian. Two-phase flow and heat transfer in microchanenls [D]. West Lafayette:Purdue University,2010
    [2]S. G. Kandlikar. High flux heat removal with microchannels-a roadmap of challenges and opportunities [J]. Heat Transfer Engineering,2005,26(8):5-14
    [3]M. P. David, T. Khurana, C. Hidrovo, B.1. Pruitt, K. E. Goodson. Vapor-venting, micromachined heat exchanger for electronics cooling [C]. International Mechanical Engineering Congress and Exposition,2007 ASME Proceedings, Seattle, Washington, USA,2007,8, IMECE2007-42553:951-960
    [4]D. J. Faulkner, R. Shekarriz. Forced convective boiling in microchannels for KW/CM2 electronics cooling [C].2003 ASME Summer Heat Transfer Conference, Las Vegas, Nevada, USA,2003:HT2003-47160
    [5]S. G. Kandlikar. Nanoscale surface modification techniques for Pool Boiling Enhancement-A critical review and future directions [J]. Heat Transfer Engineering,2011,32(10):827-842
    [6]C. Fang, M. David, A. Rogacs, K. Goodson. Volume of fluid simulation of boiling two-phase flow in a vapor-venting microchannel [J]. Frontiers in Heat and Mass transfer,2010,1:1-11
    [7]D. B. Tuckerman, R. F. W. Pease. High performance heat sink for VLSI [J]. IEEE Electron Device Letters,1981, ELD-2(5):126-129
    [8]C. M. Rops, L. F. G. Geers, R. Lindken, J. Westerweel. Explosive bubble growth during flow boiling in micro-channels [C].5th European Thermal-Science Conference, The Netherlands,2008
    [9]Y. W. Na. Forced convective flow boiling and two-phase flow phenomena in a microchannel [D]. Florida:University of Florida,2008
    [10]S. G. Kandlikar, W. Grande. Evaluation of single phase flow in microchannels for high flux chip cooling thermohydraulic performance enhancement and fabrication technology [J]. Heat transfer Engineering,2004,25:5-16
    [11]S. Garimella, V. Singhal. Single phase flow and heat transport and pumping consideration in microchannel heat sinks [J]. Heat transfer Engineering,2004, 25:15-25
    [12]J.R. Thome. Boiling in microchannels:a review of experiment and theory [J]. International Journal of Heat and Fluid Flow,2004,25:128-139
    [13]L. Zhang, Jae-Mo Koo, Linan Jiang. Measurements and modeling of two-phase flow in microchannels with nearly constant heat flux boundary conditions [J]. Journal of Microchannel systems,2002,11(1):12-19
    [14]T. Harirchin, S. V. Garimella. Microchannel size effects on local flow boiling heat transfer to a dielectric fluid [J]. International Journal of Heat and Mass Transfer,2010,51:3724-3735
    [15]J. R. Thome. Start-of-the-art overview of boiling and two-phase flows in microchannels [J]. Heat Transfer Engineering,2006,27 (9):4-19
    [16]辛明道.沸腾传热及其强化[M].重庆:重庆大学出版社,1987:78-93
    [17]林瑞泰.沸腾换热[M].北京:科学出版社,1988:10-27
    [18]王国栋.微通道内稳定流动沸腾的换热特性及沸腾不稳定性研究[D].上海:上海交通大学,2008
    [19]V. Hessel, A. Renken, J. C. Schouten, J. I. Yoshida. Boiling and Two-phase Flow in Microchannels, Volume 1:Fundamental, Operations and Catalysts, Mirco Process Engineering, A Comprehensive Handbook, lth ed [M]. German: Wiley-VCH GmbH & Co. KGaA, Weinheim,2009:17-18,72-76
    [20]L. Lin. Microscale thermal bubble formation:thermophysical phenomena and applications [J]. Microscale Thermophysical Engineering,1998,2:71-85
    [21]J. H. Lienhard, A. H. Karimi. Corresponding states correlations of the extreme liquid superheat and vapor subcooling [J]. Journal of Heat Transfer,1978,100: 492-495
    [22]S. G. Kandlikar. Nucleation characteristics and stability considerations during flow boiling in microchanenls [J]. Experimental Thermal Fluid Science,2006, 30(5):441-447
    [23]J. G. Myers, K. Vamsee, Yerramilli, et al.. Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions [J]. International Journal of Heat and Mass Transfer,2005,48:2429-2442
    [24]H. Y. Hu, G. P. Peterson, X. F. Peng, B. X. Wang. Interphase fluctuation propagation and superposition model for boiling nucleation [J]. International Journal of Heat and Mass Transfer,1998,41(22):3483-3490
    [25]J. Mitrovic. Survival conditions of a vapor bubble in saturated liquid flowing inside a micro-channel [J]. International Journal of Heat and Mass Transfer, 2001,44(11):2177-2181
    [26]S. M. Ghiaasiaan, R. C. Chedester. Boiling incipience in microchannels [J]. International Journal of Heat Mass Transfer,2002,45:4599-4606
    [27]S. G. Kandlikar. Heat transfer mechanisms during flow boiling in microchannels [J]. Journal of Heat Transfer,2004,126 (1):8-16
    [28]S. M. You, T. W. Simon, A. Bar-Cohen, Y. S. Hong. Effects of dissolved gas content on pool boiling of a highly wetting fluid [J]. Journal of Heat Transfer, 1995,117:687-692
    [29]Linan Jiang, M. Wong, Y. Zohar. Forced convective boiling in a microchannel heat sink [J]. Journal of Microelectromechanical Systems,2001,10(1):80-87
    [30]A. Kosar, C. J. Kuo, Y. Peles. Boiling heat transfer in rectangular microchannels with reentrant cavities [J]. International Journal of Heat and Mass Transfer,2005,48(23-24):4867-4886
    [31]C.J. Kuo, Y. Peles. Local measurement of flow boiling in structured surface microchannels [J]. Journal of Heat Transfer,2007,50:4513-4526
    [32]T. Y. Liu, P. L. Li, C. W. Liu, C. Gau. Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface [J]. International Journal of Heat and Mass Transfer,2011,54:126-134
    [33]J. Li, P. Cheng. Bubble cavitation in a microchannel [J], International Journal of Heat Mass Transfer,2004,47:2689-2698
    [34]J. L. Xu, Y. H. Gan, D. C. Zhang, X. H. Li. Microscale boiling heat transfer in a micro-timescale at high heat fluxes [J]. Journal of Micromechanics Microengineering,2005,15:362-376
    [35]G. H. Liu, J. L. Xu, Y. P. Yang. Seed bubble trigger boiling heat transfer in silicon microchannels [J]. Microfluid Nanofluid,2010,8:341-359
    [36]P. Griffith, J. D. Wallis. The role of surface condition in nucleate boiling [J]. Chemical Engineering Progress Symposium Series,1959,56(29):103-110
    [37]Y.Y. Hsu. On the size range of active nucleation cavities on a heating surface [J]. Journal of Heat Transfer,1962,41:207-216.
    [38]Sato Takashi, Matsumura, Hirohisa. On the conditions of incipient subcooled-boiling with forced convection flow [J]. Bulletin of the Japan Society of Mechanical Engineers,1964-05,7(26):392-398.
    [39]R. Hino, T. Ueda. Studies on heat transfer and flow characteristics in subcooled flow boiling Part I:Boiling Characteristics [J]. International Journal of Multiphase Flow,1985,11(3):269-281
    [40]E. Hahne, K. K. Spindle, N. Shen. Incipience of Flow boiling in subcooled well wetting fluids [C].9th International Heat Transfer Conference, Iseael,1990,2: 69-74
    [41]S. G. Kandlikar, V. Mizo, M. Cartwright, E. Ikenze. Bubble nucleation and growth characteristics in subcooled flow boiling of water [C]. National Heat Transfer Conference,32nd ASME Proceedings, Baltimore, Maryland,1997,4, HTD-Vol.342:11-18
    [42]A. E. Bergles, W. M. Rohsenow. The determination forced-convection surface boiling heat transfer [J]. Journal of Heat Transfer,1964,86:365-372
    [43]E. J. Davis, G. H. Anderson. The incipience of nucleate boiling in forced convection flow [J]. AIChE Journal,1966,12(4):774-780
    [44]S. M. Ghiaasiaan, R. C. Chedester. Boiling incipience in microchannels [J]. International Journal of Heat and Mass Transfer,2002,45:4599-4606
    [45]L. Dong, P. S. Lee, S. V. Garimella. Prediction of the onset of nucleate boiling in microchannel flow [J]. International Journal of Heat and Mas Transfer,2005, 48:5134-5149
    [46]W. Qu, I. Mudawar. Prediction and measurement of incipience boiling heat flux in micro-channel heat sink [J]. International Journal of Heat and Mass Transfer, 2002,45:3933-3945
    [47]L. Zhang, E. N. Wang, K. E. Goodson, W. K. Thomas. Phase change phenomena in silicon microchannels [J]. International Journal of Heat and Mass Transfer,2005,48:1572-1582
    [48]J. Y. Lee, M. Hwan, M. Kaviany, S. Y. Son. Bubble nucleation in microchannel flow boiling using single artificial cavity [J]. International Journal of Heat and Mass Transfer,2011,54:5139-5148
    [49]A. Sitar, I. Sedmak, I. Golobic. Boiling of water anf FC-72 in microchannels enhanced with novel features [J]. International Journal of Heat and Mass Transfer,2012,55:6446-6457
    [50]Fritz Wolfgang London, Van der Ende. Maximum Volume of Vapor Bubbles [J]. Physikalische Zeitschrift,1935,36:379-384
    [51]N. Zuber. Nucleate boiling the region of isolated bubble-similarity with nature convection [J]. International Journal of Heat and Mass Transfer,1963,6:53-65
    [52]C. Y. Han, P. Griffith. The mechanism of heat transfer in nucleate pool boiling-Part I:Bubble initiaton, growth and departure [J]. International Journal of Heat and Mass Transfer,1965,8(6):887-904
    [53]I. G. Malenkov. Detachment frequency as a function of size for vapor bubbles [J]. Journal of engineering physics,1971,20(6):704-708
    [54]R. Situ, M. Ishii, T. Hibiki, et al.. Bubble departure frequency in forced convective subcooled boiling flow [J]. International Journal of Heat and Mass Transfer,2008,51:6268-6282
    [55]P. Balasubramanian, S. G. Kandlikar. Experimental study of flow patterns, pressure drop, and flow instabilities in parallel rectangular minichannels [J]. Heat Transfer Engineering,2005,26(3):20-27
    [56]H. J. Wang, X. P. Lin, D. M. Christopher. Nucleate boiling bubble dynamics in a PDMS microchannel with a single nucleation site [C]. Proceeding of the ASME/JSME 20118th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA,2011, AJTEC2011-44336
    [57]P. C. Lee, F. G. Tseng, C. Pan. Bubble dynamics in microchannels, Part I: single microchannel [J]. International Journal of Heat and Mass Transfer,2004, 47:5575-5589
    [58]M. Lee, L. S. L. Cheung, Y. K. Lee, Y. Zohar. Height effect on nucleation-site activity and size-dependent bubble dynamics in microchannel convective boiling [J]. Journal of Micromechanics and Microengineering,2005,15: 2121-2129
    [59]P. C. Lee, C. Pan. On the eruptive boiling in silicon-based microchannels [J]. International Journal of Heat and Mass Transfer,2008,51:4841-4849
    [60]A. M. Jacobi, J. R. Thome. Heat transfer model for evaporation of elongated bubble flow in microchannels [J]. Journal of Heat Transfer,2002,124: 1131-1136
    [61]M. S. Plesset, S. A. Zwick, The growth of vapour bubble in superheated liquid [J]. Journal of Applied Physics,1954,25:493-500
    [62]C. Huh, C. W. Choi, M. H. Kim. Elongated bubble behavior during flow boiling in a microchannel [J]. Journal of Mechanical Science and Technology, 2007,21:1819-1827
    [63]R. F. Gaertner, J. W. Westwater. Population of active sites in nucleate boiling heat transfer [J]. Chemical Engineering Progress Symposium Series (Heat Transfer-Storrs),1960,56(30):39-48
    [63]W. T. Brown. A study of flow surface boiling [D]. USA:Mechanical Engineering Department, Massachusetts Institute of Technology,1967
    [65]B. B. Mikic, W. M. Rohsenow. A new correlation of pool-boiling data including the effect of heating surface characteristics [J]. Journal of Heat Transfer,1969,91(2):245-250
    [66]K. Cornwell, R. D. Brown. Boiling surface topography [C]. Proceeding of 6th International Heat Transfer Conference, Roronto,1978,1:157-161
    [67]C. X. Yang. Reexamination of Correlations for nucleate site distribution on boiling surface by fractal theory [J]. Journal of Thermal Science,1997,6(2): 128-131
    [68]吴玉庭,杨春信,袁修干.低温液体核沸腾表面的活化核心分布密度[J].低温工程,1999,108(2):44-48
    [69]王安良,吴玉庭,杨春信.沸腾表面凹坑的尺度分布特征[J].热能与动力工程,2003,18(3):291-296
    [70]D. D. Paul, S. I. Abdel-Khalik. Astatistical analysis of saturated nucleate boiling along a heated wire [J]. International Journal of Heat and Mass Transfer, 1983,26:509-519
    [71]C. Ramaswamy, Y. Joshi, W. Nakayama, W. B. Johnson. High-speed visualization of boiling from an enhanced structure [J]. International Journal of Heat and Mass Transfer,2002,45:4761-4771
    [72]J. L. Xu, S. Shen, Y. H. Gan, Y X. Li, W. Zhang, Q. C. Su. Transient flow pattern based microscale boiling heat transfer mechanisms [J]. Journal of Micromechanics and Microengineering,2005,15:1344-1361
    [73]J. A. Boure, A. E. Bergles, L. S. Tong. Review of two-phase flow instability [J]. Nuclear Engineering and Design,1973,25:165-192
    [74]H. Yuncu, P. T. Y.ildirim, S. Kakac. Two-phase flow instabilities in a horizontal single boiling channel [J]. Journal of Applied Science Research,1991,48: 83-104
    [75]Q. Wang, X. J. Chen, S. Kakac, Y. Ding. Boiling onset oscillation:a new type of dynamic instability in a forced-convection upflow boiling system [J]. International Journal of Heat Fluid Flow,1996,17:418-423
    [76]G. Yun, S. Z. Qiu, G. H. Su, D. N. Jia. Theoretical investigations on two-phase flow instability in parallel multichannel system[J]. Annals of Nuclear Energy, 2008,35:665-676
    [77]S. G. Kandlikar. Thermofluid dynamics of boiling in microchannels, Volume 43, Advances in heat transfer [M]. Amsterdam, Netherlands:Elsevier science Inc,2011:150-156
    [78]L. Consolini, G. Ribatski, Z. Wei, J. Xu, J. R. Thome. Heat Transfer in confined boiling [J]. Heat transfer Engineering,2008,28:826-833
    [79]S. G. Kandlikar, M. E. Steinke, S. Tian, L. A. Campbell. High speed photographic observation of flow boiling of water in parallel minichannels [C]. ASME National Heat Transfer Conference, Los Angeles, Canada,2001:10-12
    [80]W. L. Qu, I. Mudawar. Measurement and prediction of pressure drop in two-phase micro-channel heat sinks [J]. International Journal of Heat and Mass Transfer,2003,46:2737-2753
    [81]H. Y. Wu, P. Cheng. Boiling instability in parallel silicon microchannels at different heat flux [J]. International Journal of Heat and Mass Transfer,2004, 47:3631-3641
    [82]T. L. Chen, S. V. Garimella. Effects of Dissolved Air on Subcooled Flow Boiling of a Dielectric Coolant in a Microchannel Heat Sink [J]. Journal of Heat Transfer,2006,128:398-404
    [83]T. Hariechian, S. V. Garimella. Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels [J]. International Journal of Multiphase Flow,2009,35:349-362
    [84]R. Muwanga, I. Hassan, R. MacDonald. Characteristics of Flow Boiling Oscillations in Silicon Microchannel Heat Sinks [J]. Journal of Heat Transfer, 2007,129:1341-1351
    [85]C. J. Kuo, Y. Peles. Pressure effects on flow boiling instabilities in parallel microchannels [J]. International Journal of Heat Mass Transfer,2009,52: 271-280
    [86]G. Hetstroni, A. Mosyak, E. Pogrebnyak, Z. Segal. Explosive boiling of water in parallel micro-channels [J]. International Journal of Multiphase Flow,2005, 31:371-392
    [87]J. Lee, I. Mudawar. Two-phase flow in high heat flux microchannel for refrigeration cooling application:Part II:Heat transfer characteristics [J]. International Journal of Heat and Mass Transfer,2005,48:941-955
    [88]J. L. Xu, H. J. Zhou, Y. H. Gan, Y. Chen. Unsteady flow phenomenon in a heated microchannel at high heat fluxes [J]. Experimental Heat Transfer,2004, 17:299-319
    [89]J. L. Xu, J. J. Zhou, Y. H. Gan. Static and dynamic flow instability of a parallel microchannel heat sink at high heat fluxes [J]. Energy Conversion and Management,2005,46:313-334
    [90]G. D. Wang, P. Cheng. An experimental study of flow boiling instability in a single microchannel [J]. International Communications in Heat and Mass Transfer,2008,35:1229-1234
    [91]B. Agostini, J. R. Thome, M. Fabbri, et al.. High heat flux flow boiling in silicon multi-microchannels, Part III:Saturated critical heat flux of R 236fa and two-phase pressure drops. International Journal of Heat and Mass Transfer, 2008,51,5426-5442
    [92]S. G. Kandlikar, D. A. Willistein, J. Borrelli. Experimental evaluation of pressure drop elements and fabricated nucleation sites for stabilizing flow boiling in minichannels and microchannels [C]. Proceedings of 3rd International Conference on Microchannels and Minichannels, Toronto, Ontrrio, Canada,2005:No. ICMM2005-75197
    [93]S. G. Kandlikar, W. K. Kuan, D. A. Willistein, J. Borrelli. Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites [J]. Journal of Heat Transfer,2006,128:389-396
    [94]A. Kosar, C. J. Kuo, Y. Peles. Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors [J]. Journal of Heat Transfer,2006, 128:251-260
    [95]C. J. Kuo, Y. Peles. Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities [J]. Journal of Heat Transfer,2008,130 (072402):1-10
    [96]P. C. Lee, C. Pan. Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section [J]. Journal of Micromechanics and Microengineering,2008,18(2):25005
    [97]H. J. Lee, D. Y. Liu, S. C. Yao. Flow instability of evaporative micro-channels [J]. International Journal of Heat and Mass Transfer,2010,53:1740-1749
    [98]T. J. Zhang, J. T. Wen, A. Julius, Y. Peles, M. K. Jensen. Stability analysis and maldistribution control of two-phase flow in parallel evaporating channels [J]. International Journal of Heat and Mass Transfer,2011,54:5298-5305
    [99]J. L. Xu, G. H. Liu, W. Zhang, et al.. Seed bubbles stabilize flow and heat transfer in parallel microchanenls [J]. International Journal of Multiphase Flow, 2009,35:773-790
    [100]袁德文.窄流道内高过冷流动沸腾条件下的汽泡演化特性及机制[D].重庆:重庆大学,2010
    [101]D. W. Fogg, J. M. Koo, L. Jiang, K. E. Goodson. Numerical simulation of transient boiling convection in microchannels [C]. Proceeding of ASME Summer Heat Transfer Conference, Las Vegas, Nevada,2003:HT2003-47300
    [102]G. Son, V. K. Dhir, N. K. Ramanujapu. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface [J]. Journal of Heat Transfer,1999,121:623-631
    [103]A. Mukherjee, N. K. Dhir. Numerical study of LATERAL Merger of vapor bubbles during nucleate pool boiling [C], Proceeding of ASME Summer Heat Transfer Conference, Las Vegas, Nevada,2003:HT2003-47203
    [104]W. Lee, G. Son. Bubble dynamics and heat transfer during nucleate boiling in a microchannel [J]. Numerical Heat Transfer, Part A,2008,53:1074-1090
    [105]A. Mukherjee, S. G. Kandlikar. Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel [J]. Journal of Microchannels and Minichannels,2004,1(2):137-145
    [106]A. Mukherjee, S. G. Kandlikar. The effect of inlet construction on bubble growth during flow boiling in microchannels [J]. International Journal of Heat and Mass Transfer,2009,52:5204-5212
    [107]A. Mukherjee, S. G. Kandlikar, Z. J. Edel. Numerical study of bubble growth and wall heat transfer during flow boiling in a microchannel [J]. International Journal Heat and Mass Transfer,2011,54:3702-3718
    [108]B. A. Nichita, J. R. Thome. A level set method and a heat transfer model implemented into FLUENT for modeling of microscale two phase flows [J]. NATO/PFP UNCLASSIFIFD,2010, RTO-MP-AVT-178(26):1-15
    [109]毛文斌.微流控系统中混合及汽液相变传热的数值模拟[D].广州:中国科学院研究生院,2009
    [110]于勇等.FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008
    [111]S. W. J. Welch, J. Wilson. A volume of fluid based method for fluid flows with phase change [J]. Journal of Computational Physics,2000,160(2):662-682
    [112]D. Z. Guo, D. L. Sun, Z. Y. Li, et al. Phase change heat transfer simulation for boiling bubbles arising from a vapor film by VOSET method [J]. Numerical Heat Transfer:Part A,2011,59(11):857-881
    [113]Z. Yang, X. F. Peng, P. Ye. Numerical and experimental investigation of two phase flow during boiling in a coiled tube [J]. International Journal of Heat and Mass Transfer,2008,51:1003-1016
    [114]W. H. Lee. A Pressure Iteration Scheme for Two-Phase Flow Modeling, Multiphase Transport Fundamentals, Reactor Safety, Applications [M]. Washington D C:Hemisphere Publishing,1980
    [115]S. C. K. De Schepper, G. J. Heynderichx, G. B. Marin. Modeling the Evaporation of a Hydrocarbon Feedstock in the Convection Section of a Steam Cracker [J]. Computers and Chemical Engineering,2009,33:122-132
    [116]A. Alizadehdakhel, M. Rahimi, A. A. Alsairafi. CFD Modeling of Flow and Heat Transfer in a Thermosyphon [J]. International Communications in Heat and Mass Transfer,2010,37:312-318
    [117]郭雷,张树生,陈雅群,程林.竖直狭缝通道内水沸腾换热的气泡动力学研究[J].西安交通大学学报,2010,44(11):12-16
    [118]袁德文,潘良明,陈德奇.竖直窄流道内过冷流动沸腾的单汽泡生长模型[J].化工学报,2009,60(11):2723-2728
    [119]杨世铭,陶文铨.传热学(第四版)[M].北京:中国教育出版社,2009
    [120]R. Mareka, J. Straub. Analysis of the evaporation coefficient and the condensation coefficient of water [J]. International Journal of Heat and Mass Transfer,2001,44(1):39-53
    [121]R. Mareka, J. Straub. The origin of thermocapillary convection in subcooled nucleate pool boiling [J]. International Journal of Heat and Mass Transfer,2001, 44(3):619-632
    [122]R. Zhuan, W. Wang. Simulation on nucleate boiling in micro-channel [J]. International Journal of Heat and Mass Transfer,2010,53:502-512
    [123]J. L. McGrew, F. L. Bamford, T. R. Rehm. Marangoni flow:an additional mechanism in boiling heat transfer, Science [J]. International Journal of Heat and Mass Transfer,1966,47:5115-5128
    [124]S. Petrovic, T. Robinson, R. L. Judd. Marangoni heat transfer in subcooled nucleate pool boiling [J]. International Journal of Heat and Mass Transfer,2004, 47:5115-5128
    [125]N. L. Zhang, D. F. Chat. Models for enhanced boiling heat transfer by unusual Marangoni effects under micro gravity conditions [J]. International Communications in Heat and Mass Transfer,1999,26:1081-1090
    [126]J. R. Thome, V. Dupont, A. M. Jacobi. Heat transfer model for evaporation in microchannels, Part I:presentation of the model [J]. International Journal Heat Mass transfer,2004,47:3375-3385
    [127]R. Zhuan, W. Wang. Simulation of subcooled flow boiling in a micro-channel [J]. International Journal of Refrigeration,2011,34:781-795
    [128]R. Zhuan, W. Wang. Flow pattern of boiling in micro-channel by numerical simulation [J]. International Journal of Heat and Mass Transfer,2012,55: 1741-1753
    [129]S. Gedupudi, Y. Q. Zu, T. G. Karayiannis, B. R. Kenning, Y. Y Yan. Confined bubble growth during flow boiling in a mini/micro-channel of rectangular cross-section Part I:Experiments and 1-D modelling [J]. International Journal of Thermal Sciences,2011,50:250-266
    [130]Y. Q. Zu, Y. Y. Yan, S. Gedupudi, T. G. Karayiannis, D. B. R. Kenning. Confined bubble growth during flow boiling in a mini-/micro-channel of rectangular cross-section part Ⅱ:Approximate 3-D numerical simulation [J]. International Journal of Thermal Sciences,2011,50:267-273
    [131]R. Gupta, D. F. Fletcher, B. S. Haynes. Taylor flow in microchanels:a review of experimental and Computational work [J]. The Journal of Computational Multiphase Flows,2010,2:1-32
    [132]A. Mehdizadeh, S. A. Sherif, W. E. Lear. Numerical simulation of thermofluid characteristics of two-phase slug flow in microchannels [J]. International Journal of Heat and Mass transfer,2011,54:3457-3465
    [133]A. Mehdizadeh, S. A. Sherif, W. E. Lear. Numerical simulation of two-phase slug flows in microchannels [C]. Proceeding of ASME 2009 Heat Transfer Summer Conference, San Francisco, California, UAS,2009:HT2009-88126
    [134]A. Mehdizadeh, S. A. Sherif, W. E. Lear. CFD modeling of two-phase gas-liquid slug flow using VOF method in microchannels [C]. Proceeding of the ASME 2009 Fluids Engineering Division Summer Meeting Vail, Colorado, USA,2009:FEDSM2009-78438
    [135]D. Qian, A. Lawal. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel [J]. Chemical Engineering Science,2006,61(3): 7609-7625
    [136]A. Carlson, P. Kudinov, C. Narayanan. Prediction of two-phase flow in small tubes:a systematic comparison of state-of-the-art CMFE codes [C]. In Proceedings:Fifth European Thermal-Science Conference, Eindhoven, Netherlands,2008
    [137]V. Kumar, S. Vashisth, Y. Hoarau, K. D. P. Nigam. Slug flow in curved microreactors:hydrodynamic study [J]. Chemical Engineering Science,2007, 62(24):7494-7504
    [138]R. Gupta, D. F. Fletcher, B. S. Haynes. On the CFD modeling of Taylor flow in microchannels [J]. Chemical Engineering Science,2009,64:2941-2950
    [139]H.Ganapathy, A. Shooshtari, K. Choo, S.Dessiatoun, M. Alshehhi, M. Ohadi. Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels [J]. International Journal of Heat and Mass Transfer,2013,65:62-72
    [140]M. Magnini, B. Pulvirenti, J. R. Thome. Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel [J]. International Journal of Heat and Mass Transfer,2013,59: 451-471
    [141]M. Magnini, B. Pulvirenti, J. R. Thome. Numerical investigation of influence of leading and sequential bubbles on slug flow boiling within a microchannel [J]. International Journal of Thermal Science,2013,71:36-52
    [142]I. Tanasawa. Advances in condensation heat transfer, Volume 21, Advances in Heat Transfer [M]. San Diego:Academic Press,1991
    [143]孙东亮,徐进良,王丽.求解两相蒸发和冷凝问题的汽液相变模型[J].西安交通大学学报,2012,46(27):7-11
    [144]D. L. Sun, J. L. Xu, L. Wang. Development of a Vapor-Liquid Phase Change Model for Volume-of-Fluid Method in FLUENT [J]. International of Communications in Heat Mass Transfer,2012,39(8):1101-1106
    [145]孙志强,周子民,张宏建.热电偶测温系统的不确定度评定与分析[J].传感 技术学报,2007,20(5):1061-1063.
    [146]G. H. Liu, J. L. Xu, Y. P. Yang, W. Zhang, Active control of flow and heat transfer in silicon microchannels[J], Journal of Micromechanics and Microengineering,2010,20:045006.
    [147]T.Harirchian, S.V.Garimella, Microchannel Size Effects on Local Flow Boiling Heat Transfer to a Dielectric Fluid[J], International Journal of Heat and Mass Transfer,2008,51(15-16):3724-3735.
    [148]G. R. Warriera, V. K. Dhira, L. A. Momodab, Heat transfer and pressure drop in narrow rectangular channels[J], Experimental Thermal and Fluid Science,2002, 26(1):53-64.
    [149]甘云华.硅基微通道内流动与传热的可视化测量及其规律的研究[D].合肥:中国科学技术大学,2006.
    [150]D. L. Sun, J. L. Xu, Q. C. Chen, Modeling of Evaporation and Condensation Phase-Change Problems with FLUENT, Numerical Heat Transfer, Part B,2014, accepted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700