工业非均相共沸精馏醋酸脱水过程的建模与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以工业精对苯二甲酸装置中以醋酸正丙酯为共沸剂的非均相共沸精馏醋酸脱水过程为研究对象,考虑溶剂醋酸中未反应的前体对二甲苯以及反应的副产物醋酸甲酯的影响及回收利用,从体系中所含五元混合物的相平衡及精馏特性入手,通过实验室相平衡实验,结合文献数据,关联获得了该体系中五元混合物系相平衡热力学参数,分析预测其多元相平衡行为及精馏特性,在此基础上建立了能正确描述实际超负荷工况的非均相共沸精馏醋酸脱水塔过程操作特性的工艺机理稳态模型,并在此模型基础上对关键操作参数进行了灵敏度分析,确定影响该醋酸脱水过程能耗的关键操作参数,分别对各单元设备及全流程进行了操作优化,确定了最佳操作条件,为提高现有生产装置的分离效率,降低能耗提供了严格的理论指导。主要研究内容如下:
     (1)选用循环法,利用Ellis平衡蒸馏器,通过测定对二甲苯+醋酸体系的相平衡数据与文献值对比验证了实验仪器和实验方法的可靠性,再在此基础上测定了文献中没有报道二甲苯+醋酸甲酯和对二甲苯+醋酸正丙酯以及文献数据不准确的醋酸甲酯+醋酸正丙酯三组二元体系等压汽液平衡数据,采用Herington的积分检验法对实验所得四组等压汽液相平衡数据的热力学一致性进行了检验,检验结果显示四组等压汽液平衡实验数据均满足热力学的一致性。
     (2)根据醋酸脱水过程中的醋酸+水+醋酸正丙酯+对二甲苯+醋酸甲酯五元体系的物系性质及特点分析,分别选择了HOC方程和UNIQUAC方程来修正体系汽液相非理想性。结合实验室测得的相平衡数据与文献数据,采用极大似然法关联了UNIQUAC模型中的二元交互作用参数,所得参数预测的汽液相平衡结果与测量数据吻合良好。在所得参数的基础上,通过三角相图及剩余曲线图讨论分析了本研究非均相共沸精馏醋酸脱水过程中五元体系的相平衡关系及其在各精馏塔中的精馏特性,为后面的模拟计算研究提供严格的理论指导及模型的初值预测参考。
     (3)建立了适用于非均相共沸精馏塔模拟计算的平衡级稳态机理模型,借助流程模拟计算软件Aspen Plus搭建了包括醋酸脱水塔、对二甲苯回收塔、倾析器和共沸剂回收塔在内醋酸脱水系统的流程模型,结合标准设计工况工艺数据,实现对该非均相共沸精馏醋酸脱水过程基于机理模型的流程模拟仿真。得到与流程数据吻合良好的模拟计算结果,关键流股的温度与流量误差大部分均在±3%以内,最大误差不超过±6%,验证了模拟计算该非均相共沸精馏醋酸脱水过程三塔体系所选用的热力学模型、关联拟合所得的二元交互作用参数、各单元模块模型及模拟方法的正确性。在标准设计工况流程模型的基础上,结合实际工况采集分析数据对模型进行修正,得到了能够正确描述该实际超负荷工况醋酸脱水过程的工艺机理及操作特性的流程模型,关键温度点以及关键组分的相对误差基本小于±0.5%,各流股流量误差小于士8%。在所得模型基础上,对该实际工况醋酸脱水过程影响能耗及分离效果的关键操作参数进行了灵敏度分析,灵敏度分析结果显示对醋酸脱水塔能耗影响最大的是回流(包括回流量、回流温度和回流中的醋酸甲酯含量)和塔釜水含量,低压饱合蒸汽进料直接影响对二甲苯回收塔的分离效果,共沸剂回收塔的分离效果也直接决定于其塔釜蒸汽量和侧线采出流量。
     (4)基于严格的机理模型计算,结合剩余曲线图、灵敏度分析及软件优化计算模块对工业醋酸脱水过程包括醋酸脱水塔、倾析器、共沸剂回收塔在内的三个单元设备分别进行了操作优化分析,在确保各单元设备的最优分离效果的前提下,以全流程总再沸加热量最小为优化目标,对该醋酸脱水过程进行了全流程操作优化,确定了以醋酸脱水塔釜水含量、醋酸脱水塔顶回流、倾析器操作温度、共沸剂回收塔塔顶采出量和中部侧线采出组成为关键操作变量。最后得到在最优操作条件下的醋酸脱水塔所需回流量大幅减少,釜水含量增加,醋酸甲酯回收率大幅提高,醋酸甲酯在流程内的累积量明显降低;醋酸脱水塔单塔每小时可以节约3.27吨低压饱合蒸汽,约合353万元每年,全流程每小时可节约2.56吨低压饱合蒸汽,约合276万元每年。可见本研究的优化策略使得工业醋酸脱水过程的分离效果得到了有效改善,能耗得到了明显降低,对工业实际过程的优化运行有良好的指导意义。
In the production of pure terephthalic acid, tiny amount of reactant p-xylene (PX) and by-product methyl acetate (MA) may enter into the acetic acid (HAc) dehydration system through the feed stream. In this work, considering PX and MA as feed impurities in the industrial HAc dehydration process via heterogeneous azeotropic distillation using n-propyl acetate (NPA) as entrainer, the binary parameters for the thermodynamic model of the quinary mixture were obtained by correlating the phase equilibrium data from experiment and literature. The phase equilibrium behavior and distillation character of the quinary system in the process were predicted and analyzed. Based upon the phase equilibrium thermodynamics, the models of the actual overloaded HAc dehydration process were developed and the process simulation was conducted. Then the sensitivity analyses of key operation parameters were conducted, and the operation optimization of each plant and the whole process was carried out. All these provide a new technical guidance for the operation optimization in HAc dehydration process. The main contents of this paper are summarized as follows:
     (1) The vapor-liquid equilibrium (VLE) of four bianry systems of PX+HAc, PX+MA、 PX+NPA and MA+NPA were measured under atmospheric pressure using cycle method with Ellis ebulliometer, in which the system of PX+HAc was employed to verify the reliability of our experimental approach, and the other three systems are not credible or can't be found in literature. To confirm the quality of experimental data, the thermodynamic consistency tests of the VLE data of these four systems were conducted with Herington's area test method, and the results shows all the four systems pass the tests.
     (2) According to the physical property of the quinary mixture of HAc+Water+NPA+PX+MA, HOC and UNIQUAC models were chose respectively to compute the strong nonideality of vapor and liquid phase caused by the association of HAc. The binary parameters of the quinary mixture in the UNIQUAC model were regressed with the equilibrium data from experiment and literature using Maximum Likelihood Method, and the estimated results of phase equilibrium agree well with the measured data. Based on these regressed parameters, the distillation characters of the quinary mixture in the industrial HAc dehydration columns were analyzed by triangle phase diagrams and residuce curve maps (RCM), which provides rigorous theory guidance and initial value prediction reference for the further modeling research.
     (3) The equilibrium stage steady-state mechanism model of heterogeneous azeotropic distillation was developed, and the simulation of the industrial HAc dehydration system including HAc dehydration column, PX pure column, decanter and NPA recovered column under standard design condintion was carried out with Aspen Plus. The simulation results agree well with the process data with the error being in±6%, which indicates the correctness of the thermodynamic model, the regressed binary parameters, the mechanism model and the simulated method used in the reseach. Then the simulated process model of the HAc dehydration process under actual overloaded condition was was conducted by amending the model of standard condition using the process data collected from acutual prodution, and the model can accurately describe process mechanism and operating characteristics of the actual overloaded process with the error of simulation results within±8%. Based on the model, the influences of key operation parameters to the energy consumption and separation effect were analysed. The results show that the greatest impact to the energy consumption of HAc desydration column are the reflux and the bottom water content; feed flow of saturated steam direcly influencs the separation effect of PX pure column; and the separation effect of NPA recycle column directly depends on the flow rate of saturated steam and side-draw.
     (4) Based on the strict calculation of mechanism model, the operation optimization analysis of each plant (HAc dehydration column, decanter and NPA recycle column) was conducted using RCMs, sensitivity analysis and software optimization module. Then the operation optimization of the whole dehytration process was carried out with the minimum total reboiler duty on the basis of best separating effect as optimal object, and the bottom water content and reflux of HAc dehydration column, temperature of decanter, component of side-draw and flowrate of top distillate of NPA recycle column were choosen to be the key operating variables. Under the optimized conditions, there is3.27t/hr saturated steam (about3.53million Yuan) can be saved for the single HAc dehytration column and2.56t/hr saturated steam (about2.76million Yuan) can be saved for the whole HAc dehytration process. Operating under the optimal conditions will enhance separating effect and reduce the energy consumption and thereby increase profit, which provids effective theoretical guidance for the optimizing operation of actual process.
引文
[1]李瑞忠,郗凤云,杨宁,邹劲松.2010年世界能源供需分析-《BP世界能源统计2011》解读[J].当代石油石化.2011,7:009
    [2]何卫兵.强化节能降耗提高经济效益[J].石油知识.2008,(4):51-51
    [3]岳金彩,闫飞,邹亮,杨霞.精馏过程节能技术[J].节能技术.2008,26(1):64-67
    [4]Darton R, Weve D. Distillation-the importance of equipment choice[J]. Chemical Engineer.1991:19
    [5]Luyben W L, Chien I L. Design and control of distillation systems for separating azeotropes[M]. John Wiley & Sons.2011
    [6]薛美盛,祁飞,吴刚,孙德敏.精馏塔控制与节能优化研究综述[J].化工自动化及仪表.2007,33(6):1-7
    [7]王俐.世界醋酸工业发展近况[J].国内外石油化工快报.2005,35(3):1-6
    [8]王鑫根.国内外PTA的市场分析[J].石油化工技术经济.2003,19(3):26-30
    [9]闻治中.国外几家PTA生产技术分析、比较[J].聚酯工业.1994,1:7-16
    [10]吴俊生,邵惠鹤.精馏设计、操作和控制[M].中国石化出版社.1997
    [11]张志强.精馏过程模拟、优化与控制研究及其应用[D].上海:上海交通大学,2000
    [12]Widagdo S, Seider W D. Journal review. Azeotropic distillation[J]. AIChE journal. 1996,42(1):96-130
    [13]Matsuyama H, Nishimura H. Topological and thermodynamic classification of ternary vapor-liquid equilibria[J]. Journal of Chemical Engineering of Japan.1977,10(3): 181-187
    [14]Pham H N, Doherty M F. Design and synthesis of heterogeneous azeotropic distillations--I. Heterogeneous phase diagrams[J]. Chemical Engineering Science.1990, 45(7):1823-1836
    [15]Foucher E R, Doherty M F, Malone M F. Automatic screening of entrainers for homogeneous azeotropic distillation[J]. Industrial & Engineering Chemistry Research. 1991,30(4):760-772
    [16]Laroche L, Bekiaris N, Andersen H W, Morari M. The curious behavior of homogeneous azeotropic distillation—implications for entrainer selection[J]. AIChE journal.1992,38(9):1309-1328
    [17]Rodriguez-Donis I, Gerbaud V, Joulia X. Entrainer selection rules for the separation of azeotropic and close-boiling-temperature mixtures by homogeneous batch distillation process[J]. Industrial & Engineering Chemistry Research.2001,40(12):2729-2741
    [18]Skouras S, Kiva V, Skogestad S. Feasible separations and entrainer selection rules for heteroazeotropic batch distillation[J]. Chemical Engineering Science.2005,60(11): 2895-2909
    [19]宋华,陈颖.化工分离工程[M].哈尔滨工业大学出版社.2003
    [20]Ladisch M R, Dyck K. Dehydration of ethanol- New approach gives positive energy balance[J]. Science.1979,205(4409):898-900
    [21]Chianese A, Zinnamosca F. Ethanol dehydration by azeotropic distillation with a mixed-solvent entrainer[J]. The Chemical Engineering Journal.1990,43(2):59-65
    [22]Garcia-Villaluenga J, Tabe-Mohammadi A. A review on the separation of benzene/cyclohexane mixtures by pervaporation processes[J]. Journal of Membrane Science.2000,169(2):159-174
    [23]Othmer D F. Azeotropic distillation for dehydrating acetic acid[J]. Chemical and Metallurgical Engineering.1941,40:91-95
    [24]Chang W T, Huang C T, Cheng S H. Design and Control of a Complete Azeotropic Distillation System Incorporating Stripping Columns for Isopropyl Alcohol Dehydration[J]. Industrial & Engineering Chemistry Research.2012,51(7):2997-3006
    [25]Widagdo S, Seider W D, Sebastian D H. Dynamic analysis of heterogeneous azeotropic distillation[J].AIChE journal.1992,38(8):1229-1242
    [26]Li J W, Lei Z G, Ding Z W, Li C Y, Chen B H. Azeotropic distillation: A review of mathematical models[J]. Separation and Purification Reviews.2005,34(1):87-129
    [27]Poling B E, Prausnitz J M, John Paul O C, Reid R C. The properties of gases and liquids[M]. McGraw-Hill New York.2001
    [28]Redlich O, Kwong J. On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions[J]. Chemical Reviews.1949,44(1):233-244
    [29]Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science.1972,27(6):1197-1203
    [30]Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals.1976,15(1):59-64
    [31]Pitzer K S. Thermodynamics of electrolytes. I. Theoretical basis and general equations[J]. The Journal of Physical Chemistry.1973,77(2):268-277
    [32]Tsonopoulos C. An empirical correlation of second virial coefficients[J]. AIChE journal. 1974,20(2):263-272
    [33]Hayden J G, O'Connell J P. A generalized method for predicting second virial coefficients [J]. Industrial & Engineering Chemistry Process Design and Development. 1975,14(3):209-216
    [34]Wilson G M. Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing[J]. Journal of the American Chemical Society.1964,86(2):127-130
    [35]Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE journal.1968,14(1):135-144
    [36]Abrams D S, Prausnitz J M. Statistical thermodynamics of liquid mixtures:A new expression for the excess Gibbs energy of partly or completely miscible systems [J]. AIChE journal.1975,21(1):116-128
    [37]Simonetty J, Yee D, Tassios D. Prediction and correlation of liquid-liquid equilibriums [J]. Industrial & Engineering Chemistry Process Design and Development. 1982,21(1):174-180
    [38]宋海华.多级分离理论:精馏模拟.天津:天津大学出版社.2005
    [39]Sorel E. La rectification de l'alcool[M]. Gauthier-Villars et fils.1893
    [40]Sorel E. Distillation et rectification industrielles[M]. G. Carre et C. Naud.1899
    [41]Taylor R. Distill modeling after all these years:A view of the state of the art-Catching up with the Past[J]. Industrial & Engineering Chemistry Research.2007,46(13): 4349-4357
    [42]Tyner K H, Westerberg A W. Multiperiod design of azeotropic separation systems II: approximate models[J]. Computers & Chemical Engineering.2001,25(11-12): 1569-1583
    [43]Biardi G, Grottoli M. Development of a new simulation model for real trays distillation column[J]. Computers & Chemical Engineering.1989,13(4):441-449
    [44]Chen G X, Chuang K T. Prediction of point efficiency for sieve trays in distillation[J]. Industrial & Engineering Chemistry Research.1993,32(4):701-708
    [45]宋海华,王忠诚.非理想多元物系精馏点效率预测[J].天津大学学报.1995,28(3):309-315
    [46]King C J. Separation processes[M]. McGraw-Hill.1980
    [47]王威,苏宏业,胡永有,褚健.填料塔精馏过程的建模与优化[J].化工自动化及仪表.2002,29(3):25-28
    [48]Taylor R, Krishna R. Multicomponent mass transfer[M]. Wiley New York.1993
    [49]Wesselingh J, Krishna R. Mass transfer in multicomponent mixtures[M]. Delft University Press Delft.2000
    [50]Goldstein R, Stanfield R. Flexible method for the solution of distillation design problems using the Newton-Raphson technique[J]. Industrial & Engineering Chemistry Process Design and Development.1970,9(1):78-84
    [51]Naphtali L M, Sandholm D P. Multicomponent separation calculations by linearization[J]. AIChE journal.1971,17(1):148-153
    [52]郭敏强.三相精馏过程的非平衡模型与优化研究[D].杭州:浙江大学,2004
    [53]杨友麒.化工过程模拟[J].化工进展.1996,(3):1-7
    [54]Marquardt W. Trends in computer-aided process modeling[J]. Computers & Chemical Engineering.1996,20(6):591-609
    [55]Koch D H. The future:Benefiting from new tools, techniques, and teaching[J]. Chemical engineering progress.1997,93(1):66-72
    [56]杨友麒.过程流程模拟[J].计算机与应用化学.1995,12(1):1-6
    [57]刘兴高.精馏过程的建模、优化与控制[M].科学出版社.2007
    [58]Motard R, Shacham M, Rosen E. Steady state chemical process simulation[J]. AIChE journal.1975,21(3):417-436
    [59]Hlavacek V. Analysis of a complex plant-steady state and transient behavior[J]. Computers & Chemical Engineering.1977,1(1):75-100
    [60]Chen H S, Stadtherr M. A simultaneous-modular approach to process flowsheeting and optimization. Part I:Theory and implementation[J]. AIChE journal.1985,31(11): 1843-1856
    [61]杨友麒.实用化工系统工程[M].化学工业出版社.1989
    [62]杨友麒,成思危.现代过程系统工程[M].化学工业出版社.2003
    [63]李希,王丽军,成有为,谢刚,王勤波,王丽雅.PTA技术国产化研究进展[J].聚酯工业.2004,17(4):1-5
    [64]王新兰.PTA装置中溶剂脱水系统工艺流程浅析[J].聚酯工业.2008,21(5):4
    [65]Berg L. Dehydration of acetic acid by azeotropic distillation[P]. US:5160412.1992
    [66]Industries M P. Process for Azeotropic Distillation[P]. JP:1576787.1978
    [67]Parten W D, Ure A M. Dehydration of acetic acid by azeotropic distillation in the production of an aromatic acid[P]. WO:9606065.1999
    [68]Parten W D. Method for recovering methyl acetate and residual acetic acid in the production acid of pure terephthalic acid[P]. US:6150553.2000
    [69]Parten W D. Azeotropic Distillation Process[P]. WO:9729068.1997
    [70]Okoshi F, Okayama-ken. Process for the production of aromatic carboxylic acids[P]. US:5959140.1999
    [71]Costantini G, Paoli P, Serafini M. Process for the recovery of the solvent and of the by-produced methylacetate in the synthesis of terephthalic acid[P]. US:4250330.1981
    [72]Parten W D. Water Separation Process[P]. WO:9845239.1998
    [73]帕滕W D.具有改进的前体、溶剂和醋酸甲酯回收的产生纯对苯二甲酸的方法[P].CN:1374937.2002
    [74]沼田园千,矶贝隆行.共沸蒸馏方法[P].CN:1492850.2004
    [75]王丽军,李希,张宏建.乙酸-水-乙酸正丁酯三相体系的热力学分析与共沸精馏过程模拟[J].化工学报.2005,56(7):1260-1269
    [76]Jang J Y, Kim H J, Wu K. System and method for acetic acid recovery during terephthalic acid production[P]. US:20030150706.2002
    [77]Fujimoto M, Miyanari T, Nishino H, Sasaki T. Process for purifying acetic acid[P]. US:5662780.1997
    [78]大越二三夫,稻荷雅人,在间文哉.生产高纯度对苯二甲酸的方法[P].CN:1149574.1997
    [79]Othmer D F. Azeotropic separation[J]. Chemical Engineering Progress.1936,59(6): 67-78
    [80]Othmer D F. Process for dehydration of acetic acid and other lower fatty acids[P]. United States:2050234.1936
    [81]Tanaka S, Yamada J. Graphical calculation method for minimum reflux ratio in azeotropic distillation[J]. Journal of Chemical Engineering of Japan.1972,5:20-26
    [82]Costantini G, Serafini M, Paoli P. Process for the recovery of the solvent and of the by-produced methylacetate in the synthesis of terephthalic acid. Google Patents.1981
    [83]Parten W D, Ure A M. Dehydration of acetic acid by azeotropic distillation in the production of an aromatic acid[P]. United States:5980696.1999
    [84]张培辉,韦奇.水-甲酸-乙酸混合物的恒沸分馏[J].华东化工学院学报.1993,19(4):427-431
    [85]Wasylkiewicz S K, Kobylka L C, Castillo F J L. Optimal design of complex azeotropic distillation columns[J]. Chemical Engineering Journal.2000,79(3):219-227
    [86]Huang H J, Chien I L. Choice of suitable entrainer in heteroazeotropic batch distillation system for acetic acid dehydration[J]. Journal Of The Chinese Institute Of Chemical Engineers.2008,39(5):503-516
    [87]Doherty M, Perkins J. On the dynamics of distillation processes II. The simple distillation of model solutions[J]. Chem Eng Sci.1978,33:569-578
    [88]Doherty M, Perkins J. On the Dynamics of Distillation Processes III. The Topological Structure of Ternary Residue Curve Maps[J]. Chem Eng Sci.1979,34(12):1401-1414
    [89]Doherty M, Perkins J. On the dynamics of distillation processes. Pt.4:uniqueness and stability of the steady state in homogeneous continuous distillations[J]. Chemical Engineering Science.1982,37(3):381-392
    [90]Doherty M, Perkins J. On the dynamics of distillation processes--I::The simple distillation of multicomponent non-reacting, homogeneous liquid mixtures [J]. Chemical Engineering Science.1978,33(3):281-301
    [91]Van Dongen D B, Doherty M F. On the dynamics of distillation processes-V: The topology of the boiling temperature surface and its relation to azeotropic distillation[J]. Chemical Engineering Science.1984,39(5):883-892
    [92]Van Dongen D B, Doherty M F. On the dynamics of distillation processes--Ⅵ. batch distillation[J]. Chemical Engineering Science.1985,40(11):2087-2093
    [93]Doherty M, Malone M. Conceptual design of distillation systems[M]. McGraw-Hill New York.2001
    [94]Balashov M I, Serafimov L A. Liquid-vapor phase equilibriums in the methyl acetate-water-acetic acid system at atmospheric pressure[J]. Mosk Inst Tonkoi Khim Tekhnol im Lomonosova, Moscow, USSR Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya.1967,10(8):867-871
    [95]Murogova R A, Tudorovskaya G L, Pleskach N I, Safonova N A, Gridin I D, Serafimov L A. Liquid-vapor equilibrium in the system water-acetic acid-p-xylene at 760 mm[J]. Journal of Applied Chemistry of the USSR.1973,46(1):2615-2617
    [96]Xiao X, Wang L, Ding G, Li X. Liquid-Liquid Equilibria for the Ternary System Water-Acetic Acid-Propyl Acetate[J]. Journal of Chemical & Engineering Data.2005, 51(2):582-583
    [97]万辉.醋酸-水体系的精馏过程研究[D].南京:南京工业大学,2003
    [98]霍俊丽.乙酸-水体系非均相共沸精馏过程的研究[D].天津:河北工业大学,2003
    [99]周杰.对苯二甲酸生产中溶剂脱水共沸精馏技术研究[D].南京:南京工业大学,2006
    [100]林庆桦,李亮三.水-醋酸-乙酸甲酯-对二甲苯四成分系统在101.32kPa下之汽液与 汽液液相平衡研究[D].台湾:国立中央大学,2006
    [101]邱竑森,李亮三.水-醋酸-对二甲苯三成分系统在101.32kPa下之汽液与汽液液相平衡研究[D].台湾:国立中央大学,2007
    [102]Toikka M A, Ralis R V, Shcherbakov I Y. Experimental study and modeling of liquid-liquid equilibrium in the water-acetic acid-n- propyl acetate system at 293.15, 303.15, and 313.15 K[J]. St Petersburg State University, St Petersburg, Russia Vestnik Sankt-Peterburgskogo Universiteta, Seriya 4:Fizika, Khimiya.2009,3:66-79
    [103]Bekiaris N, Guttinger T E, Morari M. Multiple steady states in distillation:Effect of VL(L)E inaccuracies[J]. AIChE journal.2000,46(5):955-979
    [104]Bekiaris N, Meski G A, Moraxi M. Multiple steady states in heterogeneous azeotropic distillation[J]. Computers & Chemical Engineering.1995,19(Supplement 1):21-26
    [105]Gaubert M A, Gerbaud V, Joulia X, Sere Peyrigain P, Pons M. Analysis and Multiple Steady States of an Industrial Heterogeneous Azeotropic Distillation[J]. Industrial & Engineering Chemistry Research.2001,40(13):2914-2924
    [106]Guedes B P, Feitosa M F, Vasconcelos L S, Araujo A B, Brito R P. Sensitivity and dynamic behavior analysis of an industrial azeotropic distillation column[J]. Separation and Purification Technology.2007,56(3):270-277
    [107]Rodriguez-Donis I, Pardillo-Fontdevila E, Gerbaud V, Joulia X. Synthesis, experiments and simulation of heterogeneous batch distillation processes [J]. Computers & Chemical Engineering.2001,25(4-6):799-806
    [108]Siirola J J. An industrial perspective on process synthesis[J]. AIChE Symposium Series. 1995,304(91):222-233
    [109]Springer P A M, Krishna R. Crossing of boundaries in ternary azeotropic distillation: influence of interphase mass transfer[J]. International Communications in Heat and Mass Transfer.2001,28(3):347-356
    [110]Springer P A M, Baur R, Krishna R. Influence of interphase mass transfer on the composition trajectories and crossing of boundaries in ternary azeotropic distillation[J]. Separation and Purification Technology.2002,29(1):1-13
    [111]Springer P A M, Krishna R, Johan Grievink and Jan van S. Boundary crossing during azeotropic distillation of water-ethanol-methanol at total reflux:Influence of interphase mass transfer[M]. Computer Aided Chemical Engineering. Elsevier.2002:355-360
    [112]Springer P A M, van der Molen S, Krishna R. The need for using rigorous rate-based models for simulations of ternary azeotropic distillation[J]. Computers & Chemical Engineering.2002,26(9):1265-1279
    [113]Kano M, Makita H, Hasebe S. Prediction of Multiple Steady States in Distillation through Simple Mass and Heat Balance Analysis[J]. Industrial & Engineering Chemistry Research.2010,50(3):1346-1351
    [114]Li S, Huang D. Simulation and Analysis on Multiple Steady States of an Industrial Acetic Acid Dehydration System[J]. Chinese Journal of Chemical Engineering.2011, 19(6):983-989
    [115]Chien I L, Zeng K L, Chao H Y, Hong Liu J. Design and control of acetic acid dehydration system via heterogeneous azeotropic distillation[J]. Chemical Engineering Science.2004,59(21):4547-4567
    [116]Chien I L, Huang H P, Gau T K, Wang C H. Influence of Feed Impurity on the Design and Operation of an Industrial Acetic Acid Dehydration Column[J]. Industrial & Engineering Chemistry Research.2005,44(10):3510-3521
    [117]王磊.PTA生产工艺醋酸回收系统过程模拟与开发研究[D].天津:天津大学,2007
    [118]孙清涛,颜学峰.PTA装置溶剂脱水塔模拟及塔板效率分析[J].化工自动化及仪表.2010,37(8):
    [119]Li C. Dynamic Simulation and Analysis of Industrial Purified Terephthalic Acid Solvent Dehydration Process[J]. Chinese Journal of Chemical Engineering.2011,19(1): 89-96
    [120]Li S J. Influence of p-Xylene (PX) Accumulation on the Operation of Pure Terephthalic Acid (PTA) Solvent Dehydratic Distillation Column[J]. Industrial & Engineering Chemistry Research.2009,48(13):6358-6362
    [121]黄定伟,李绍军.精对苯二甲酸装置溶剂脱水塔水相回流对分离效果影响的研究[J].计算机与应用化学.2010,27(6):
    [122]Wang S J, Wong D S H. Online switching of entrainers for acetic acid dehydration by heterogeneous azeotropic distillation[J]. Journal of Process Control.2013,23(1):78-88
    [123]Wang S J, Huang K. Design and control of acetic acid dehydration system via heterogeneous azeotropic distillation using p-xylene as an entrainer[J]. Chemical Engineering and Processing:Process Intensification.2012,60(0):65-76
    [124]Pirola C, Gallia F, Bianchia C L, Carvolib G. Heterogeneous Distillation of theSystem Water-Acetic Acid-p-Xylene:Study of its Fluid Phase Equilibria, Micro-Pilot Column Experimental Results and Computer Simulation[J]. CHEMICAL ENGINEERING. 2013,32:
    [125]Ciric A R, Mumtaz H S, Corbett G, Reagan M, Seider W D, Fabiano L A, Kolesar D M, Widagdo S. Azeotropic distillation with an internal decanter[J]. Computers & Chemical Engineering.2000,24(11):2435-2446
    [126]Gutierrez-Antonio C, Jimenez-Gutierrez A. Design of Side-Stream Azeotropic Distillation Columns[J]. Chemical Engineering Research and Design.2007,85(10): 1384-1389
    [127]Rev E, Mizsey P, Fonyo Z. Framework for designing feasible schemes of multicomponent azeotropic distillation[J]. Computers & Chemical Engineering.1994, 18:S43-S47
    [128]Luyben W L. Realistic Models for Distillation Columns with Partial Condensers Producing Both Liquid and Vapor Products[J]. Industrial & Engineering Chemistry Research.2012,51(24):8334-8339
    [129]Luyben W L. Effect of Tray Pressure Drop on the Trade-off between Trays and Energy[J]. Industrial & Engineering Chemistry Research.2012,51(26):9186-9190
    [130]Ryll O, Blagov S, Hasse H.∞/∞-Analysis of heterogeneous distillation processes[J]. Chemical Engineering Science.2013,104(0):374-388
    [131]尚长军.溶剂脱水塔的建模与优化研究[D].杭州:浙江大学,2003
    [132]万辉,管国锋,柏正奉,叶国祥,姚虎卿.醋酸-水体系复杂精馏过程模拟与优化[J].化学工程.2004,32(5):5-9
    [133]吴超腾,李绍军.溶剂脱水塔共沸精馏过程模拟与优化[J].计算机与应用化学.2009,26(1):109-113
    [134]许周凯.醋酸脱水共沸精馏过程模拟与优化[D].上海:华东理工大学,2012
    [135]唐守胜.醋酸脱水系统的节能策略研究[D].上海:华东理工大学,2013
    [136]Mortaheb H R, Kosuge H. Simulation and optimization of heterogeneous azeotropic distillation process with a rate-based model[J]. Chemical Engineering and Processing. 2004,43(3):317-326
    [137]Bruggemann S, Marquardt W. Design and optimization of recycle policies for multicomponent azeotropic distillation processes with bifurcation analysis [M]. Computer Aided Chemical Engineering. Elsevier.2004:349-354
    [138]Luyben W L. Economic Optimum Design of the Heterogeneous Azeotropic Dehydration of Ethanol[J]. Industrial & Engineering Chemistry Research.2012,51(50): 16427-16432
    [139]Cho J, Jeon J K. Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration[J]. Korean Journal of Chemical Engineering.2006,23(1):1-7
    [140]Bauer M H, Stichlmair J. Synthesis and optimization of distillation sequences for the separation of azeotropic mixtures [J]. Computers & Chemical Engineering.1995, 19(Supplement 1):15-20
    [141]Bauer M H, Stichlmair J. Superstructures for the mixed integer optimization of nonideal and azeotropic distillation processes[J]. Computers & Chemical Engineering.1996, 20(Supplement 1):S25-S30
    [142]Bauer M H, Stichlmair J. Design and economic optimization of azeotropic distillation processes using mixed-integer nonlinear programming[J]. Computers & Chemical Engineering.1998,22(9):1271-1286
    [143]Briones-Ramirez A, Gutierrez-Antonio C. Dividing wall distillation columns for separation of azeotropic mixtures:feasibility procedure and rigorous optimization[M]. Computer Aided Chemical Engineering. Elsevier.2009:555-560
    [144]Ramanathan S P, Mukherjee S, Dahule R K, Ghosh S, Rahman I, Tambe S S, Ravetkar D D, Kulkarni B D. Optimization of Continuous Distillation Columns Using Stochastic Optimization Approaches[J]. Chemical Engineering Research and Design.2001,79(3): 310-322
    [145]Leboreiro J, Acevedo J. Processes synthesis and design of distillation sequences using modular simulators:a genetic algorithm framework[J]. Computers & Chemical Engineering.2004,28(8):1223-1236
    [146]Chien I L, Chen W H, Chang T S. Operation and decoupling control of a heterogeneous azeotropic distillatin column[J]. Computers & Chemical Engineering.2000,24(2-7): 893-899
    [147]Chien I L, Kuo C L. Investigating the need of a pre-concentrator column for acetic acid dehydration system via heterogeneous azeotropic distillation[J]. Chemical Engineering Science.2006,61(2):569-585
    [148]Chien I L, Wang C J, Wong D S H. Dynamics and Control of a Heterogeneous Azeotropic Distillation Column: Conventional Control Approach[J]. Industrial & Engineering Chemistry Research.1999,38(2):468-478
    [149]Chien I L, Zeng K L, Chao H Y, Teng Y P. Control of isopropyl alcohol dehydration system: Case with single temperature break in azeotropic column[J]. Journal Of The Chinese Institute Of Chemical Engineers.2004,35(3):267-283
    [150]Huang H P, Lee H Y, Gau T K, Chien I L. Design and control of acetic acid dehydration column with p-xylene or m-xylene feed impurity.1. Importance of feed tray location on the process design[J]. Industrial & Engineering Chemistry Research.2007,46(2): 505-517
    [151]Lee H Y, Huang H P, Chien I L. Design and control of an acetic acid dehydration column with p-xylene or m-xylene feed impurity.2. Bifurcation analysis and control[J]. Industrial & Engineering Chemistry Research.2008,47(9):3046-3059
    [152]Luyben W L. Control of a multiunit heterogeneous azeotropic distillation process[J]. AIChE journal.2006,52(2):623-637
    [153]Luyben W L. Control of the Heterogeneous Azeotropic n-Butanol/Water Distillation System[J]. Energy & Fuels.2008,22(6):4249-4258
    [154]Thomas E R, Newman B A, Nicolaides G L, Eckert C A. Limiting activity coefficients from differential ebulliometry[J]. Journal of Chemical and Engineering Data.1982, 27(3):233-240
    [155]Maher P J, Smith B D. A new total pressure vapor-liquid equilibrium apparatus. The ethanol+aniline system at 313.15,350.81, and 386.67 K[J]. Journal of Chemical and Engineering Data.1979,24(1):16-22
    [156]周星风,倪良.动态法进行等温和等压汽液平衡的测定和控制研究[J].化工学报.1990,41(3):334-339
    [157]Rogalski M, Malanowski S. Ebulliometers modified for the accurate determination of vapour—liquid equilibrium[J]. Fluid Phase Equilibria.1980,5(1):97-112
    [158]Rogalski M, Rybakiewicz K, Malanowski S. Rapid and Accurate Method for Determination of Vapour-Liquid Equilibrium[J]. Berichte der Bunsengesellschaft fur physikalische Chemie.1977,81(10):1070-1073
    [159]Malanowski S. Experimental methods for vapour-liquid equilibria. Part I. Circulation methods[J]. Fluid Phase Equilibria.1982,8(2):197-219
    [160]Kato M, Konishi H, Sato T, Hirata M. Measurement of vapor-liquid equilibria by dew-bubble point method and bubble-condensation point method[J]. Journal of Chemical Engineering of Japan.1971,4(1):6-10
    [161]Korovina T, Pisarenko Y, Balashov M. Mathematical modelling of the phase relations of binary components of the system methyl formate-methyl acetate-propyl formate-propyl acetate at 760mm Hg[J]. Deposited Doc VINITI (Russia).1977,3634: 3677
    [162]Marek J. Vapor-Liquid Equilibria in Mixtures Containing an Association Substance II. Binary Mixtures of Acetic Acid at Atmospheric Pressure[J]. Collection of Czechoslovak Chemical Communications.1955,20:1490-1495
    [163]Herington E F G. Tests for the consistency of experimental isobaric vapour-liquid equilibrium data[J]. Journal of Institute of Petroleum.1951,37:457-470
    [164]Prausnitz J M, Anderson F F, Grens E A, Eckert C A, Hsieh R, O'connell J P. Computer calculations for multicomponent vapor-liquid and liquid-liquid equilibria[M]. Prentice-Hall Englewood Cliffs, NJ.1980
    [165]Poling B E, Prausnitz J M, John Paul O C. The properties of gases and liquids[M].5 ed.: McGraw-Hill New York.2001
    [166]傅吉全.特殊体系的相平衡和精馏模拟计算[M].中国石化出版社.2002
    [167]邓修,吴俊生.化工分离工程[M].科学出版社.2000
    [168]Vercher E, Vazquez M I, Martinez-Andreu A. Isobaric Vapor-Liquid Equilibria for Water+Acetic Acid+ Lithium Acetate [J]. Journal of Chemical & Engineering Data. 2001,46(6):1584-1588
    [169]付慧,陈庚华,韩世钧.含缔合组分体系汽液平衡的础究(二)——乙酸-水;乙酸-丁酮;乙酸-戊酮以及乙酸-乙酸丙酯二元体系的汽液平衡[J].化学工程.1986,(06):56-61
    [170]Sawistowski H, Pilavakis P A. Vapor-liquid equilibrium with association in both phases. Multicomponent systems containing acetic acid[J]. Journal of Chemical & Engineering Data.1982,27(1):64-71
    [171]Prausnitz J M. Computer Calculation for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibra[M]. Prentice-Hall INC.1980
    [172]Anderson T F, Prausnitz J M. Application of the UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria.2. Liquid-Liquid Equilibria[J]. Industrial & Engineering Chemistry Process Design and Development.1978,17(4):561-567
    [173]Kemeny S, Manczinger J, Skjold-J(?)rgensen S, Toth K. Reduction of thermodynamic data by means of the multiresponse maximum likelihood principle[J]. AIChE journal. 1982,28(1):20-30
    [174]邱竑森,李亮三.水-醋酸-对二甲苯三成分系统在101.32kPa下之汽液与汽液液相平衡研究[D].台湾:国立中央大学,2007
    [175]Fu H, Chen G H, Han S J. VLE research of system containing associating components (II)-VLE of binary systems:Acetic acid-Water, Acetic acid-Butanone, Acetic acid-Pentanone and Acetic acid-Propyl acetate[J]. Chemical Engineering (China).1986, 6:56-61
    [176]Perelygin V M, Volkov A G. Vapor-liquid phase equilibrium in the systems ethanol-methyl acetate and water-methyl acetate[J]. Izv Vyssh Uchebn Zaved Pishch Tekhnol.1970,3:124-126
    [177]Chiu H s, Lee L S. Phase equilibria of water+acetic acid+ p-xylene mixture at 101.32 kPa[D]. Taiwan: National Central University,2007
    [178]Ryan P J, Doherty M F. Design/optimization of ternary heterogeneous azeotropic distillation sequences[J]. AIChE journal.1989,35(10):1592-1601
    [179]Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science.1983,38(5):745-763
    [180]Majer V, Svoboda V, Kehiaian H V. Enthalpies of vaporization of organic compounds: a critical review and data compilation[M]. Blackwell Scientific Oxford.1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700