盐效萃取分离部分互溶恒沸有机水溶液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过理论分析与实验研究相结合的方式研究了盐效萃取分离部分互溶的环己酮-水和正丁醇-水体系,其中包括盐析剂的选择、加盐液-液相平衡实验和盐效萃取分离工艺实验,并通过对液-液相平衡数据的关联计算建立了适用上述体系的盐效应模型。
     目前在工业上采用盐效萃取分离部分互溶的恒沸有机溶液体系具有重要的应用背景,相对于传统的共沸精馏或萃取精馏工艺,该方法能大幅度的降低能耗,符合低碳发展的趋势。所谓盐析效应是指将无机盐加入到互溶或部分互溶的恒沸有机物水溶液中时,由于无机盐与溶剂分子之间的相互作用,从而引起体系液-液相平衡的变化,即溶剂间分配系数的变化,从而实现混合体系的分离提纯。目前采用无机盐分离部分互溶的恒沸体系的相关研究报道较少,相平衡数据较为缺乏,给盐效萃取分离恒沸体系的研究和应用带来了许多的困难。本文主要研究了环己酮-水体系和正丁醇-水体系在加盐时的液-液相平衡,为其在工业中的应用提供了基础数据和理论依据,具有较高的理论价值和工业应用价值。具体完成了以下几个方面的工作:
     1盐效萃取工艺中盐析剂的选择:通过理论计算、文献查阅及实验研究相结合的方式分别确定了适用于环己酮-水体系和正丁醇-水体系的盐析剂,并通过实验验证比较了几种选盐理论模型的优缺点,得出了其各自的适用范围,为盐效萃取工艺中盐析剂的选择提供了理论依据。
     2环己酮-水-无机盐体系及正丁醇-水-无机盐体系液-液相平衡实验研究:系统的测定了环己酮-水-碳酸钾、环己酮-水-氟化钾、正丁醇-水-氟化钾、正丁醇-水-碳酸钾体系的液-液相平衡数据,为采用无机盐分离环己酮-水和正丁醇-水恒沸体系提供了基础数据。
     3环己酮-水-无机盐及正丁醇-水-无机盐体系液-液相平衡数学模型的研究:分别采用Pitzer理论和NRTL、Wilson或UNIQUAC方程计算了环己酮-水-碳酸钾、环己酮-水-氟化钾、正丁醇-水-氟化钾、正丁醇-水-碳酸钾体系的液-液相平衡数据,为采用无机盐分离环己酮-水和正丁醇-水恒沸体系提供了计算依据。
     4盐效萃取分离正丁醇-水体系工艺研究:根据液-液相平衡实验所得到的结果,采用碳酸钾水溶液萃取分离正丁醇-水体系,考察了碳酸钾水溶液的稳定性及溶液萃取比对萃取效果的影响,并确定了最佳萃取比。建立高浓度正丁醇废液资源化利用节能技术的工艺流程,为了对该流程与传统恒沸精馏流程的能耗情况进行比较,采用Aspen Plus流程模拟软件对新旧流程进行了模拟计算,结果发现盐效萃取工艺可大幅度的降低分离正丁醇-水体系的能耗。
The separation of partially miscible cyclohexanone - water and n-butanol - water systems based on salting-out principle is studied by the combined methods of theoretical analysis and experimental research, including the selection of inorganic salts, the liquid-liquid equilibrium(LLE) experiments and salting-out extraction process, and a theoretical model is established by the calculation of LLE data.
     Currently, it has an important application background for the salting-out extraction of partially miscible of azeotropic organic/water system in industry. Compared to conventional azeotropic distillation and extractive distillation process, this method can greatly reduce the energy consumption and is also consistent with the development of low-carbon. When the salt is added into the miscible azeotropic organic/water system, the interaction between the ions of salt and solvent molecules will change the LLE of this system and the partition coefficient of solvents to get the mixture separated. This is the salting-out effect of inorganic salts. Until now there are not so many reports about the research of partially miscible of azeotropic organic/water system by salting-out extraction exist and the LLE data of organic/water system is short, which brings a lot of difficulties to its research and application. In this paper the LLE of cyclohexanone-water-salts and n-butanol-water–salts systems are studied, providing the basic data and theoretical basis for the salting-out extraction’s application in industry. So it has an important academic theoretical significance and industrial application. The research works have been performed in this paper as follows:
     1 The selection of inorganic salt used in the process of salting-out extraction. By the combined methods of theoretical calculations, literature data and experimental study, the salts used in the separating process of cyclohexanone-water and 1-butanol-water systems are selected. The theoretical models of salt selection are studied by the experimental verification method and its scope of application is determinated, which provides theoretical data for the selection of inorganic salt in the process of salting-out extraction.
     2 Research on the LLE of cyclohexanone - water - salts and n-butanol - water - salts systems.The LLE data of the systems of cyclohexanone - water - potassium carbonate, cyclohexanone - water - potassium fluoride, n-butanol - water - potassium fluoride, n-butanol - water - potassium carbonate are experimentally measured, providing basis data for the separation of cyclohexanone/water and n-butanol/water systems by salting-out extraction.
     3 Study on the mathematical model for the LLE of cyclohexanone - water - salts and n-butanol - water - salts systems. The LLE data of the systems of cyclohexanone - water - potassium carbonate, cyclohexanone - water - potassium fluoride, n-butanol - water - potassium fluoride, n-butanol - water - potassium carbonate are calculated by the Pitzer electrolyte solution theory and NRTL, Wilson or UNIQUAC equations, respectively. It provides a theoretical basis for the separation of cyclohexanone - water and n-butanol - water systems by using inorganic salts.
     4 The technical study on the separation of n-butanol - water system by Salting-out extraction ways. According to the experimental results of liquid - liquid equilibrium, the potassium carbonate is selected and used to separate n-butanol/water system by salting-out extraction. The stability of aqueous potassium carbonate and mass ratio of aqueous potassium carbonate to raw materials on the extraction efficiency are investigated, and the optimum extraction ratio is obtained. Then the utilization process of high concentrations of n-butanol effluent with lower energy consumption is established. To compare the energy consumption of azeotropic distillation process and the salting-out extraction process, the processes are simulated and calculated by Aspen Plus simulation software and result shows that salting-out extraction process can be greatly reduced energy consumption in the separating process of this system.
引文
[1]黄子卿.电解质溶液理论导论(修订版) [M].北京:科学出版社, 1983, 151-183.
    [2] Setsohnow. Complex properties of non-electrolytes aqueous containing salts, J. Ann. Chim. Phys, 1891, 25(6): 226-230.
    [3] Furter W F. Salt distillation review, Can. J. Chem. Eng., 1978, 25 (5): 33-38.
    [4] Debye P, Mcaulay J. Electrolyte solution theory: Static electrolytes theory, J. Physik. Z., 1925, 26: 22-27.
    [5]段占庭,雷良恒,周荣琪.加盐萃取精馏研究I:用乙二醇加醋酸钾制取无水乙醇[J],石油化工, 1980, 9(6): 350-353.
    [6]李扬.盐效应分离共沸混合物的研究: [博士学位论文],津:天津大学, 2007年.
    [7] G Kortum. Electrolyte solution theory: Vandehua force theory, Z. Electro. Chem., 1936, 42: 387-293.
    [8] J. C. Philip, Electrolyte solution theory: Hydration theory, J. Chem. Soc. 1907, 91: 711-715.
    [9] Stokes R H, R A Robinson. Electrolyte solution theory [J]. Chem. Soc, 1948.
    [10] Stokes R H, R A Robinson. Solu, Chem., 1973, 2: 17.
    [11] Jaquas D, Furter W F. Salt effect in vapor-liquid equilibrium [J] AIChE [J], 1972, 18(2): 343-346.
    [12] Pitzer KS. Electrolyte: From Dilute Solutions to Fused Salts. Amer. Chem. Soc, 1980, 102: 2902.
    [13] Pitzer. K. S, Li Y G.. Thermodynamics of aqueous sodium chloride to 823K and 1kbar (100MPa). Proc Natl Acad Sci, USA, Chem, 1983, 80: 76-89. [ 14] Clegg S L, Pitzer K S, [ J] Phys Chem ,1992, 96(8): 3513- 3520.
    [15]杨东杰,黄锦浩,陈玉珍等.定标粒子理论在加盐萃取分离醋酸甲酯的应用[J].化工学报, 2010, 61(6): 1475-1480.
    [16] David Meranda, W. F. Furter, Vapor-Liquid equilibrium in alcohol-water systems containing dissolved halide salts and salt mixture, AICHE J, 1992, 18(1): 111-116.
    [17] Vicente Gomis, Equilibrium for the ternary system: water+NaCl+ethylacetate, ibid, 1993, 38: 589-590.
    [18]许文友,赵强,陈小平.环己酮-水-氟化钾及环己酮-水-碳酸钾的液-液相平衡[J].化工学报, 2010, 38(03): 57-60.
    [19]刘军生.采用碳酸钾分离吡啶-水恒沸物[J].化学工程师, 2009, 116(7): 71-73.
    [20]陈小平,王涛等.盐效萃取法从制药废液中回收正丁醇[J].环境科学与技术, 2008, 31(4): 85-100.
    [21]蔡振波,姜飞燕等.加盐萃取精馏双塔连续操作的PRO/II模拟[J].广东化工, 2010, 37(8): 61-65.
    [22] Pitzer K S. Thermodynamic of electrolyte I: theoretical based general eauation [J]. Phys. Chem., 1973, 77 (2): 268-277.
    [23] Sander B, Fredensulund A, Rasmussen P.Calculation of vapor-liquid equilibrium in mixed solvent/salt systems using an extended UNIQUAC equation. Chem Eng Sci, 1986, 41(5):1171-1183.
    [24] SUN Ren-yi, ZHUYuan-ju, LENG Chun-li. Variation of Boiling Point with Salting Effect in Vapor-Liquid Equilibrium [J].CHMICAL RESEARCH, 2003, 14(3): 13-17.
    [25] Achard.Representation of vapor-liquid equilibrium in water-alcohol-electrolyte mixtures with a modified UNIFAC group-contribution method. Fluid Phase Equilibrium, 1994, 98:71-89.
    [26] Schmitt D, Predicition of the salt effect on vapor-liquid equilibrium of binary mixtures. Fluid Phase Equilibria, 1982, (9): 167-176.
    [27]王卫东,张建银.苯和甲苯在盐水溶液中活度系数及其盐效应的研究[J].盐湖研究, 2006, 14(5):52-55.
    [28] Furter W.F. Salt effect in distillation: A tecbnique review. Chem.Enggineer, 7: 1968, 173-177.
    [29]崔现宝,李杨等.加盐萃取精馏分离乙腈-水物系[J].石油化工, 2007, 36(12): 1229-1233.
    [30]陆春宏,白鹏.加盐萃取精馏分离环己烷-四氢呋喃的研究[J].天津化工, 2008, 22(6): 23-25.
    [31]雷良恒,周荣琪,王民法等.“加盐萃取-恒沸精馏”联合过程的研究I醋酸-水体系的分离[J].石油化工, 1985, 14(8): 439-443.
    [32]李伯耿,骆有寿,朱自强.含盐溶液汽液平衡的状态方程法研究-单一溶剂盐溶液蒸汽压的测定及关联[J].化工学报, 1986, (1): 51-57.
    [33] Kashinath R, Ratil A.D, Tripathi, Thermodynamic properties of aqueous electrolyte solutions of LiCl, LiBr, LiI, [J]. Chen. Eng. Data, 1990, 35: 166-168.
    [34] Tzu-Jen Chou, Akihiko Tanioka. A vapor pressure model for aqueous solutions of single and mixed electrolyte systems. Fluid Phase Equilibrium, 1997, 137: 17-32.
    [35] David Meranda, W.F.Furter. Vapor-Liquid equilibrium in alcohol-water systerms containing dissolved halide salts and sale mixture. AICHE J, 1992, 18(1):111-116.
    [36] Tan T C. New screening technique and classification of salt for salt distillation of close-boiling and azeotropic solvent mixtures. Chem. Eng. Res. Des., 1987, 65 (9): 421-425.
    [37]潘晓梅.关于盐效应及其在分离过程中的应用研究. [博士学位论文],津:天津大学,2002年.
    [38] Stephen, Solubility of ingrganic and organic compounds V.1. Pt.1, London, 1953.
    [39] G.J, Janz, R.P. Tomkins, Nonaqueous eletrolytes handbook V.II. 1962
    [40] C.赖卡特.有机化学中的溶剂效应[M].北京:化学工业出版社, 1987年.4-33.
    [41]王风云,陈民生.溶剂化热力学的理论研究(Ι)[J].华东化工学院学报, 1990,55(3):71-76.
    [42] Pierrotti. R.A.A scaled particle theory of aqueous and non-aqueous solution. [J]. Chem Rev, 1976, 76:717-726.
    [43]李伯耿,骆有寿,朱自强.含盐溶液汽液平衡的状态方程法研究-单一溶剂盐溶液蒸汽压的测定及关联[J].化工学报,1986,(1):51-57.
    [44] Abraham. M.H. The thermodynamics of solvation of ions [J]. JCSF I, 1986, 82: 3255-3274.
    [45]张有民,赵新生.单原子离子溶剂化的研究[J].物理化学学报,1986,2(2):110-118.
    [46]王风云,檀革江,陈民生.势能参数的确定与估算[J].华东工学院学报,1992,3:35-42.
    [47] Abraham. M.H. Calculation of ionic solvations [J]. JCSF I,1980,76:1219-1231.
    [48]温元凯.邵俊.离子极化导论[M].合肥:安徽教育出版社,1985年, 97-104.
    [49] Donaldson T C, Phase separation of organics-water mixtures Using Salts,.CONF-840509-3, Oak Ridge National Lab, 1984, 1-9.
    [50] Korenman etal, salting-out in a two-phase system. Journal of physical chemistry, 1975, 49(6): 1490-1493.
    [51] Stephen H, Stephen T, Solubilities of Inorganic Compounds, Ternary System. Oxford: Pergamon Press Ltd., 1979, 344-345.
    [52]许文友,采用无机盐分离恒沸有机水溶液体系的研究. [博士学位论文],津:天津大学,2005年.
    [53]廖丽华,张祝蒙,程建民等.加盐NMP法萃取精馏分离裂解碳五馏分[J].石油化工, 2010, 39(2):167-172.
    [54] M.V.Vavrukh, S.B.Slobodyan. Electron-plasmon model in the electron liquid theory [J]. Condensed Matter Physics, 2005, 3(43): 453–472.
    [55]胡柏玲,邱学青,杨东杰.用排斥萃取分离正丁醇-丙酮-水体系[J].华南理工大学学报(自然科学版), 2003,31(12):58-62.
    [56] Pan X M, Xiao G M, Yang Z C. A new combination process of distillation with salt extraction for separating organic solvent-water azeotropes [J]. Journal of Southeast University (English Edition), 2004, 20(2):226-228.
    [57] Stephen H, Stephen T, Solubilities of Inorganic Compounds, Ternary System. Oxford: Pergamon Press Ltd., 1979, 344-345.
    [58]陈玉珍,邱学青等.定标粒子理论在加盐萃取分离醋酸丙酯-丙醇-水中的应用[J].高校化学工程学报, 2009, 23(2 ): 216-222.
    [59]许文友,袁希钢.吡啶-水-氟化钾体系的液液相平衡[J].天津大学学报. 2004, 37(8): 667-669.
    [60]杨运泉.乙醇-苯乙烯-水三元体系液-液相平衡[J].化工学报, 2002, 53(4): 432-435.
    [61]江丽葵,宋航,付超.异戊醇-乙二醇体系等压汽液相平衡研究[J].化学工程, 2002, 30(2):68-71.
    [62] GmehlingJ, OnkenU, ArltW. VaPor-Liquid Equilibrium Data Collection (Aqueous-Organic Systems), Frankufrt: DECHEMA Press, 1981, 116-116-157, 236-250, 328-345.
    [63]姚加,李浩然,韩世钧.电解质溶液汽液平衡的热力学一致性检验[C].第九届全国化学工程科技报告会论文集,青岛1998. 51-54.
    [64] Kolker A, Pablo J de.Thermodynamic modeling of vapor-liquid equilibrium in mixed aqueous-organic systems with salts. Ind Eng Chem Res, 1996, 35(1):234-240.
    [65] FurterWF, Salt Effect on Vapor-Liquid Equilibrium and its Usage in Separation Process. [Ph.D D Thesis], Toronto: university of totonto, 1985.
    [66]赵霞,杨勇.碳酸二乙酯-甲苯二元体系相平衡数据的测定与关联[J].天然气化工,2010, 35:76-78.
    [67]田庆来,谢全安.加盐萃取分离吡啶水混合物[J].河北化工, 2002. 25(2):44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700