儿童胸部有限元模型开发及损伤机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在儿童意外伤害的研究中发现,儿童胸部遭受损伤时,容易形成严重损伤并伴有较高的死亡率。人体胸腔内保护着维持人体生命机能的呼吸和血液循环系统以及包括肝在内的一些其他重要腹部器官,因此,当儿童乘车时,需要对其胸部给予充分的保护。由于儿童与成人在解剖结构和材料特性上的差异,使得成人的胸部损伤准则和容忍极限并不适用于儿童。基于这些损伤准则和容忍极限开发出的成人约束系统也可能无法很好地保护儿童,甚至反而给儿童造成致命的伤害。因此,研究儿童胸部损伤准则、容忍极限及防护方法具有重要的现实意义。生物力学实验和计算机仿真模拟是研究人体损伤机理和容忍极限的常用方法。因此,本文在大量文献研究的基础上,开展了儿童胸部有限元建模及儿童胸部生物力学实验研究,并利用有限元分析方法对儿童胸部损伤机理、损伤准则和容忍极限及儿童胸部缩放响应数据进行了研究。
     由于缺少相应的儿童建模数据,包括几何数据、材料数据以及验证数据,导致可用于儿童安全研究的详细儿童胸部模型十分缺乏。本文通过收集多个临床治疗中获得的儿童患者CT (Electronic Computer X-ray Tomography Technique)和MRI(Magnetic Resonance Imaging)图像,结合Hypermesh (10.0, Altair, Tory, MI)软件将多名患者的数据整合成标准的10岁儿童几何模型。利用ANSYS ICEM (ANSYS,Canonsburg, Pennsylvania, U.S.A)的Block-Controlled对骨骼和内脏进行了纯六面体网格划分。模型具有详细的儿童解剖学结构,包括皮肤、肋骨、肋软骨、心脏、肺、大血管、膈膜及腹部器官等等。各组织的的材料特性则基于国内外文献中成人模型的材料参数,利用比例缩放的方法获得。
     精确的儿童胸部力-变形响应数据是开发儿童有限元模型及儿童假人模型的关键数据之一。然而,由于伦理道德的限制,很难大量开展传统的尸体实验来获得儿童响应数据。本文再次利用临床治疗过程中获取的儿童CPR胸部响应数据对建立的有限元模型进行了静态验证、材料的参数化研究及边界加载条件的影响研究,这些研究有助于提高模型的生物逼真度,获得精确的儿童材料参数,为今后临床CPR获得更为精确的人体胸部响应数据提供指导。此外,结合儿童在临床CPR中加载和损伤情况,利用模型开展静态加载下的损伤分析,研究结果有利于提高模型在静态加载下的损伤预测能力。
     CPR中的加载属于静态加载的范畴,若要将建立的儿童有限元模型用于汽车安全等高速冲击条件下的损伤研究,还需对模型进行动态响应的验证。基于目前国内外少量的与儿童胸部相关的尸体实验数据,对模型在撞击及斜拉式安全带加载下的动态响应进行了仿真分析。主要对比分析了仿真和实验中获得的胸部的力-变形响应及肋骨、内脏等的损伤情况,进一步验证了模型的生物逼真度。同时,损伤分析的结果表明成人胸部压缩量损伤准则和黏性损伤准则可用于儿童胸部损伤的预测,但儿童的损伤容忍极限值均要低于成人的容忍极限值。
     由于缺乏用于儿童模型验证的响应数据,目前的儿童假人模型及部分有限元模型验证工作中采用了比例缩放获得的数据。然而比例缩放获得的响应数据本身没有经过实验数据的验证,本文利用开发的有限模型仿真分析了模型在比例缩放条件下的响应情况,对比了模型胸部响应结果与缩放获得的胸部通道数据。同时,研究了肋骨骨密质杨氏模量对缩放结果的影响及摆锤质量、直径和初始撞击速度对胸部响应的影响。研究结果有利于提高缩放数据的准确性。
     最后,开展了儿童胸部尸体实验。设计了一种新的儿童胸部尸体实验方案,并利用Q6儿童假人对该实验方案进行了充分的验证。在此基础上,利用非新鲜的儿童尸体样本,开展了正式的儿童胸部尸体实验,获得了儿童胸部力-变形曲线。为今后进一步开展儿童胸部损伤生物力学研究奠定了基础。
     当今儿童意外伤害问题逐渐突出,开展儿童有限元建模和生物力学实验研究,有利于加快儿童数学模型及机械模型的发展,从而可通过利用这些儿童模型及生物力学实验了解儿童损伤机理并在此基础上开展损伤防护措施的研究,对儿童安全的提高具有重大的现实意义。
In the study of pediatric accident injuries, Thoracic injury in the pediatricpopulation is a marker of injury severity and signifies a high mortality rate. As the ribcage protects the primary elements of the respiratory and circulatory systems andseveral abdominal organs. As such that, the pediatric thorax needs to be saved whenthe child is a car-passenger. Due to the large difference between anatomical structuresand material properties of child thorax and those of adult, the thoracic injury criteriaand tolerances associated with pediatric population may vary greatly from those ofadult. The protection devices for adults are not useful for the children, even cause childinjury. Therefore, studying of child thoracic injury and protection has the importanttheoretical significance and practical value. Biomechanical experiments andcomputational simulations are the primary methods used to study human injurymechanisms and to determine tolerances to reduce the severity of injury.Therefore,based on massive literature review, this paper focused on the study ofdevelopment of pediatric thorax finite element model and pediatric thoraxbiomechanical experiment. Finally, the injury mechanisms, injury criteria andtolerances, and scaling response data for the pediatric thorax were studied by the finiteelemtn method.
     Due to lack of available data on pediatric material properties, quantitativeage-dependent anatomical data, and pediatric impact response data, no complexpediatric chest component model has been developed directly from pediatric data.Clinical CT (Electronic Computer X-ray Tomography Technique) and MRI (MagneticResonance Imaging) scans of children treated at hospital were collected to obtain thegeometric data. A linear geometric scaling procedure was adopted for the rawgeometric data to obtain the final average geometric model using Hypermesh (10.0,Altair, Tory, MI). Based on the Block-controlled meshing method, the ANSYS ICEM(ANSYS, Canonsburg, Pennsylvania, U.S.A) was used to mesh solid elements for thebony skeleton and organs. Lastly, the FE model with the detail anatomical structuresincluded skin, rib, costal cartilage, heart, vessel, diaphragm, abdominal organs and soon. The material property parameters for the model were scaled from adult data basedon the literature.
     Accurate pediatric thoracic force-deflection data are critical to develop pediatricdummy/model. Due to regulatory and ethical concerns, using the traditional cadaver experiments to obtain the pediatric response data was greatly limited. As such, theclinical data which was collected in the clinical environment during pediatric CPR wasused to static verify the model, parametric study the material properties and CPRboundary conditions. All of these studies favored to improve the biofiedelity of model,obtain the accurate parameters of tissues’ material properties, and guide the futurework to obtain the accurate thoracic response data from the clinical CPR. In addition,the information of the pediatric injury and loading in the clinical environment duringCPR was used with the FE model to conduct analysis of injury under the quasi-staticloading. The results of injury analysis could to improve the injury prediction capabilityof model under the quasi-static loading.
     The CPR experiment was performed at a relatively low speed. The dynamicvalidation was needed for better understanding of pediatric injury mechanisms andinjury tolerances during high-speed impact such as traffic accident and development ofinjury protection countermeasures. The experimental pediatric cadaver data in frontpendulum impacts and diagonal belt dynamic loading test were used to validate themodel. The results of simulation, such as thoracic force-deflection curve and injuriesof rib and thoracic internal organs were compared with the test data. the results ofdynamic validation indicate that this pediatric FE model has good biofidelity under thedynamic loading conditions. The thoracic injuries analysis demonstrates that the FEmodel could be useful for prediction and research of thoracic injuries, and the adultthoracic compression criteria and viscous criterion can be used to predict the pediatricthoracic injuries. However, the pediatric tolerances should be lower than adults’.
     Due to lack of available data on pediatric validation response data, the scalingdata was used to verify the child dummy and mostly child computer models. However,no experiment cadaver data has been verified the veracity of scaling data. In this paper,the impact simulations were conducted under the loading conditions obtained fromscaling data. The thoracic response results predicted by the FE model were comparedwith the scaling corridor data. The effect of Young’s modulus of rib cortical bone forthe scaling data was studied. The mass, diameter and initial velocity of impactor werealso considered in this study. The results of this study could improve the veracity of thescaling data.
     At last, the pediatric cadaver test was conducted to obtain the thoracic responsedata. A new experimental program for the pediatric thorax was designed and verifiedby the Q6child dummy. Based on the dummy test results data, a non-fresh pediatriccadaver was tested to obtain the thoracic force-deflection curve. This work laid the foundation for further study of the pediatric thoracic injury biomechanics.
     The problem of pediatric safety becomes more apparent. The above describedwork can help to improve the pediatric mathematic model and mechanical dummy andunderstand pediatric injury mechanisms which provided background knowledge fordevelopment of pediatric protective devices. As such, this work has important practicalmeaning to improve the pediatric safety.
引文
[1] Harvey A, Towner E, Scott I, et al. World report on child injury prevention:unicef WHO,2008
    [2]公安部交通管理科学研究所.中华人民共和国道路交通事故统计年报(2007年度).无锡:公安部交通管理局,2008
    [3]公安部交通管理科学研究所.中华人民共和国道路交通事故统计年报(2008年度).无锡:公安部交通管理局,2009
    [4]公安部交通管理科学研究所.中华人民共和国道路交通事故统计年报(2009年度).无锡:公安部交通管理局,2010
    [5]公安部交通管理科学研究所.中华人民共和国道路交通事故统计年报(2010年度).无锡:公安部交通管理局,2011
    [6]公安部交通管理科学研究所.中华人民共和国道路交通事故统计年报(2006年度).无锡:公安部交通管理局,2007
    [7] Black T L, Snyder C L, Miller J P, et al. Significance of chest trauma in children.Southern Medical Journal,1996.89(5):494-496
    [8] Maltese M R, Castner T, Niles D, et al. Methods for determining pediatricthoracic force-deflection characteristics from cardiopulmonary resuscitation.Stapp car crash journal,2008.52:83-105
    [9] Ouyang J, Zhao W D, Xu Y Q, et al. Thoracic impact testing of pediatriccadaveric subjects. Journal of Trauma-Injury Infection and Critical Care,2006.61(6):1492-1500
    [10] Garcia V F, Gotschall C S, Eichelberger M R, et al. Rib fractures in children: amarker of severe trauma. Journal of Trauma-Injury Infection and Critical Care,1990.30(6):695-700
    [11] Holmes J F, Sokolove P E, Brant W E, et al. A clinical decision rule foridentifying children with thoracic injuries after blunt torso trauma. Annals ofemergency medicine,2002.39(5):492-499
    [12] Kent R, Lopez-Valdes F J, Lamp J, et al. Characterization of the pediatic chestand abdomen using three post-mortem human subjects. In: the22th ESV. PaperNumber11-0394. Washington, D.C.:2011, Paper Number11-0394
    [13] Kent R, Salzar R, Kerrigan J, et al. Pediatric thoracoabdominal biomechanics.Stapp car crash journal,2009.53:373-401
    [14] Parent D P, Crandall J R, Bolton J R, et al. Comparison of Hybrid III child testdummies to pediatric PMHS in blunt thoracic impact response. Traffic Inj Prev,2010.11(4):399-410
    [15] Irwin A, Mertz H J. Biomechanical Basis for the CRABI and Hybrid III ChildDummies. In: Stapp Car Crash Conference. Warrendale, PA.,1997,261-272
    [16] Liu X J, Yang J K. Development of Child Pedestrian Mathematical Models andEvaluation with Accident Reconstruction. Traffic Injury Prevention2001.3(4):321-329
    [17] Van Rooij L, Harkema C, de Lange R, et al. Child poses in child restraintsystems related to injury potential: investigations by virtual testing. In:19thInternational Technical Conference on the Enhanced Safety of Vehicles.Washington DC, USA:2005
    [18] Van Rooij L, Meissner M, Bhalla K, et al. A comparative evaluation ofpedestrian kinematics and injury prediction for adults and children upon impactwith a passenger car. In: SAE. no.2004-01-16062004
    [19] Forbes P A, Van Rooij L, Rodarius C, et al. Child human model development: ahybrid validation approach. In: IRCOBI. Kyoto, Japan:2008
    [20] Okamoto M, Takahashi Y, Mori F, et al. Development of finite element model forchild pedestrian protection. In:18th ESV Conference.2003
    [21] Mizuno K, Iwata K, Deguchi T, et al. Development of a three-year-old child FEmodel. Traffic Inj Prev,2005.6(4):361-71
    [22] NHTSA, Child restraint systems.2002.1.
    [23] Europe-UNEC, ECE R44.03, in Uniform Provisions Concerning the Approval ofRrstrainting Devices for Child Occupants of Power—Driven Vehicles.1998.6.
    [24] Lvarsson B, Crandall J R, Longhitano D, et al. Lateral Injury Criteria for the6-year-old Pedestrian-Part II: Criteria for the Upper and Lower Extremities. In:SAE. no.2004-01-17552004
    [25] Lvarsson B, Crandall J R, Longhitano D, et al. Lateral injury criteria for the6-year-old pedestrian-part I: Criteria for the head, neck, thorax, abdomen andpelvis. In: SAE. no.2004-01-0323:2004
    [26] NHTSA. Revised Estimates of Child Restraint Effectiveness,1996.12
    [27]邓锋,宋锦瞵,戴红卫, et al.儿童“颞下颌关节一下颌骨一颏兜矫治器系统”三维有限元模型的建立.重庆医科大学学报,2003.28(5):620-622
    [28]杜玉勇,尹芸生,薛晓峰, et al.构建并验证儿童肱骨髁上骨折三维有限元模型.中国组织工程研究与临床康复,2008.12(22):4265-4269
    [29]任锡娟,曹立波,欧阳志高.集成式汽车儿童安全座椅的设计与仿真.汽车工程,2009.31(12):1133-1136
    [30] Li Z P, Kindig M W, Subit D, et al. Influence of mesh density, cortical thicknessand material properties on human rib fracture prediction. Medical Engineering&Physics,2010.32(9):998-1008
    [31] Mohr M, Abrams E, Engel C, et al. Geometry of human ribs pertinent toorthopedic chest-wall reconstruction. Journal of Biomechanics,2007.40(6):1310-7
    [32] Ito O, Dokko Y, Ohashi K. Development of adult and elderly FE thorax skeletalmodels. In: SAE.2009, paper no.2009-01-0381
    [33] Lau A, Oyen M L, Kent R W, et al. Indentation stiffness of aging human costalcartilage. Acta Biomaterialia,2008.4(1):97-103
    [34] Netter F H. Atlas of Human Anatomy.2006
    [35] Solomon E P, Phillips G A. Understanding Human Anatomy and PhysiologyPhiladelphia: Saunders.1987
    [36] Feneis H, Pocket Atlas of Human Anatomy.1994, George Thieme Verlag
    [37] Shah C S, Hardy W N, Yang K H, et al. Investigation of the traumatic rupture ofthe aorta (TRA) by simulating realworld accidents. In: International ResearchCouncil on Biomechanics of Injury. Maastricht, The Netherlands,2007,349-359
    [38] Burdi A R, Huelke D F, Snyder R G, et al. Infants and children in the adult worldof automobile safety design: pendiatric and anatomical considerations for designof child restraints. Journal Biomechanics,1969.2:267-280
    [39] Kent R, Lee S-H, Darvish K. Stuctural and material changes in the aging thoraxand their role in crash protection for older occupants. Stapp Car CrashConference,2005.49:231-249
    [40] Openshaw P, Edwards S, Helms P. Changes in rib cage geometry duringchildhood. Thorax,1984.39:624-627
    [41] Kent R, sherwood C, Lessley D, et al. Age-related changes in the effectivestiffness of the human thorax using four loading conditions. In: IRCOBIconference. Lisbon (Portugal)2003
    [42]龚少兰,王琳琳.肋软骨骨化与年龄和性别的关系.青岛大学医学学院学报,2007.43(5)
    [43] Nakaoka T, Uemura S, Yoshida T, et al. Overgrowth of costal cartilage is not theetiology of pectus excavatum. Journal of pediatric surgery,2010.45:2015-2018
    [44] Maguire S, Mann M, John N, et al. Dose cardiopulmonary resuscitation cause ribfractures in children? a systematic review. Child Abuse and Neglect,2006.30:739-751
    [45] Sturtz G. Biomechanical data of children. Stapp car crash journal,1980:513-559
    [46] Sinclair D, Human Growth after Birth.1978, Oxford: London.
    [47] AAAM, AIS2005, in The injury scale.2005, American association forautomotive medicine.
    [48] Schmitt K-U, Niederer P F, Muser M H, et al. Trauma Biomechanics Accidentalinjury in traffic and sports. New York: Springer.2007
    [49] Melvin J W, Mohan D, Stalnaker R L. Occupant injury assessment criteria.1975
    [50] Viano D C, Lau I V. A Viscous Tolerance Criterion for Soft-Tissue InjuryAssessment. Journal of Biomechanics,1988.21(5):387-399
    [51] Fung Y C, Yen M R. Experimental investigation of lung injury mechanisms.Topical report U.S. Army,1984
    [52] Cavanaugh J M, The Biomechanics of thoracic trauma, in Accidental injury:biomechanics and prevention, A.M. Nahum and J.W. Melvin, Editors.2002,Springer Verlag: New York.
    [53] Smith R S, Chang F C. Traumatic Rupture of the Aorta-Still a Lethal Injury.American Journal of Surgery,1986.152(6):660-663
    [54] Creasy J D, Chiles C, Routh W D, et al. Overview of traumatic injury of thethoracic aorta. Radiographics,1997.17(1):27-45
    [55] Viano D. Biomechanicsof non-penetrating aortic trauma: a review. In: Stapp CarCrash Conference,1983,109-114
    [56] Viano D. Chest: anatomy, types and mechanisms of injury, tolerance criteria andlimits and injury factors. In: seminar at AAAM conference. Orlando:1990
    [57] Lau I V, Viano D C. The Viscous Criterion-Bases and Applications of an InjurySeverity Index for Soft Tissues. Stapp car crash journal,1986:123-142
    [58] Lau V K, Viano D C. An Experimental-Study on Hepatic-Injury fromBelt-Restraint Loading. Aviation Space and Environmental Medicine,1981.52(10):611-617
    [59] Lau I V, Horsch J D, Viano D C, et al. Biomechanics of Liver-Injury by SteeringWheel Loading. Journal of Trauma-Injury Infection and Critical Care,1987.27(3):225-235
    [60] Patrick L M, Mertz H J, Kroell C K. Cadaver Knee Chest and Head ImpactLoads. In:11th Stapp car crash journal. New York,1969,168-182
    [61] Kroell C K, Schneider D, Nahum A. Impact Tolerance and Response of theHuman Thorax II. Stapp car crash journal,1971.18:384-457
    [62] Kroell C K, Schneider D, Nahum A. Impact Tolerance and Response of theHuman Thorax II. In: Stapp car crash conference. Warrendale, PA,1974
    [63] Kallieris D, Mattern R, Schmidt G, et al. Quantification of side impact responsesand injuries. In:25th Stapp Car Crash Conference,1981,329-366
    [64] Stapp J P, Voluntary Human Tolerance Levels, in In Impact injury and crashprotection, L.M. Patrick and K.M. Thomas, Editors.1970, Springfield: Illinois. p.308-349.
    [65] Stalnaker R, Mohan D. Human chest impact protection criteria. In:3rd Intern.Conf. on Occupant Protection,1974,384-393
    [66] Otte D. Review of airbag effectiveness in real life accidents demands-forpositioning and optimal deployment of airbag systems. In: Stapp Car CrashConference,1995,1-10
    [67] Kallieris D, Rizzetti A, Mattern R, et al. On the synergism of the driver airbagand the three-point belt in frontal collisions. In:39th Stapp Car CrashConference,1995,389-402
    [68] Kleinberger M, Sun E, Eppinger R, et al. Development of improved injurycriteria for the assessment of advanced automotive restraint systems: NHTSAreport,,1998.9
    [69] Stalnaker R, Tarriere C, Fayon A, et al. Modification of part572dummy forlateral impact according to biomechanical data. In: Stapp Car Crash Conference,1979,843-872
    [70] Tarriere C, Walfisch G, Fayon A. Synthesis of human tolerances obtained fromlateral impact simulations. In:7th Intern. Techn. Conf. on Experimental SafetyVehicles,1979,359-373
    [71] Cavanaugh J M, Zhu Y, Huang Y, et al. Injury and response of the thorax in sideimpact cadaveric tests. In: Stapp Car Crash Conference,1993,199-221
    [72] Viano D. Biomechanical Responses and Injuries in Blunt Lateral Impact. In:Stapp Car Crash Conference,1989,113-142
    [73] Johnston C, Rivara F P, Soderberg R. Children in Car Crashes-Analysis of Datafor Injury and Use of Restraints. Pediatrics,1994.93(6):960-965
    [74] Agran P, Winn D, Dunkle D. Injuries among4-Year-Old to9-Year-OldRestrained Motor-Vehicle Occupants by Seat Location and Crash Impact Site.American Journal of Diseases of Children,1989.143(11):1317-1321
    [75] Howarth C I, Routledge D A, Repetto-Wright R. An Analysis of Road AccidentsInvolving Child Pedestrians. Ergonomics1974.17(3):319-330
    [76] Jonah B A, Engel G R. Measuring the Relative Risk of Pedestrian Accidents.Accident Analysis and Prevention,1983.15(3):193-206
    [77] Wazana A, Krueger P, Raina P, et al. A review of risk factors for child pedestrianinjuries: are they modifiable. Review Article,1997.3:295-304
    [78] Snyder R G, Schneider L W, Owings C L. Infant, Child and TeenagerAnthropometry for Product Safety Design. Advances in Consumer Research1978.5:499-507
    [79] Mertz H J, Jarrett K, Moss S, et al. The Hybrid III10-Year-Old Dummy. Stappcar crash journal,2001.45:319-28
    [80]赵海鸥. LS-DYNA动力分析指南.北京:兵器工业出版社.2003
    [81]王勖成.有限单元法.北京:清华大学出版社.2003
    [82] LSTC, LS-DYNA theory manual.2006, Livermore software technologycorporation.
    [83]龙述尧,蒯行成,刘腾喜.工程力学中的数值分析方法:中国科技文化出版社.2003.5
    [84] Cao L, Dian B, Lu C. Development and Validation of a Finite Element Model ofthe Human Neck Based on CT Images. Journal of Hunan University (NaturalSciences),2009.36(1)
    [85] Currey J D, Butler G. The mechanical properties of bone tissue in children. JBone Joint Surg Am,1975.57(6):810-4
    [86] Kim J E, Li Z P, Ito Y, et al. Finite element model development of a child pelviswith optimization-based material identification. Journal of Biomechanics,2009.42(13):2191-2195
    [87] Carter D R, Spengler D M. Mechanical-Properties and Composition of CorticalBone. Clinical Orthopaedics and Related Research,1978.135:192-217
    [88] Stein I D. Rib structure and bending strength: an autopsy study. Calcified tissueresearch,1976.20(1):61-73
    [89] Hangartner T N, Gilsanz V. Evaluation of cortical bone by computed tomography.Journal of bone and mineral research,1996.11(10):1518-1525
    [90] El-Jawahri R E, Laituri T R, Ruan J S, et al. Development and validation ofage-dependent FE human models of a mid-sized male thorax. Stapp car crashjournal,2010.54:407-30
    [91] Huang Y, King A. Finite element modeling of gross motion of human cadavers inside impact. Stapp car crash conference,1994.38: paper no.942207
    [92] Kemper A R, McNally C, Pullins C A, et al. The biomechanics of human ribs:material and structural properties from dynamic tension and bending tests. Stappcar crash journal,2007.51:235-73
    [93] Kimpara H, Lee J B, Yang K H, et al. Development of a Three-DimensionalFinite Element Chest Model for the5(th) Percentile Female. Stapp car crashjournal,2005.49:251-69
    [94] Plank G, Kleinberger M, Eppinger R. Finite element modeling and analysis ofthorax/restraint system interaction. In: International technical conference ofexperimental safety vehicle. Munich, Germany,1994
    [95] Ruan J, El-jawahri R, Chai L, et al. Prediction and analysis of human thoracicimpact responses and injuries in cadaver impacts using a full human body finiteelement model. Stapp car crash journal,2003.47:299-321
    [96] Yamada H. Strength of biological materials.: Baltimore: Williams&Wilkins.1970
    [97] Shah C, Yang K, Hardy W, et al. Development of a computer model to predictaortic rupture due to impact loading. Stapp car crash journal,2001.54:161-182
    [98] AHA, American heart association guidelines for cardiopulmonary resuscitationand emergency cardiovascular care circulation.2010, American HeartAssociation Circulation112(24): Supplement.
    [99] Tamura A, Watanabe I, Miki K. Elderly human thoracic FE model developmentand validation.19th international technical conference on the enhanced safetyvehicle,2005. Paper No.05-0229
    [100] Anderson A E, Peters C L, Tuttle B D, et al. Subject-specific finite elementmodel of the pelvis: Development, validation and sensitivity studies. Journal ofBiomechanical Engineering-Transactions of the Asme,2005.127(3):364-373
    [101] Bush C M, Jones J S, Cohle S D, et al. Pediatric injuries from cardiopulmonaryresuscitation. Annals of emergency medicine,1996.28(1):40-4
    [102] Kent R, Lessley D, Sherwood C. Thoracic response to dynamic, non-impactloading from a hub, distributed belt, diagonal belt, and double diagonal belts.Stapp car crash journal,2004.48:495-519
    [103] Melvin J W, Hess R l, Weber K. Review of biomechanical impact response andinjury in the automotive environment. UMTRI-85-3,1985. Task B FinalReport(UMTRI-85-3)
    [104] Gruben K G, Guerci A D, Halperin H R, et al. Sternal Force-DisplacementRelationship during Cardiopulmonary-Resuscitation. Journal of BiomechanicalEngineering-Transactions of the Asme,1993.115(2):195-201
    [105] Murakami D, Kobayashi s, Torigaki T, et al. Finite element analysis of hard andsoft tissue contributions to thorax response: sensitivity analysis of fluctuations inboundary conditions. Stapp car crash journal,2006.50:169-189
    [106] Boe J M, Babbs C F. Mechanics of cardiopulmonary resuscitation performedwith the patient on a soft bed vs a hard surface. Academic Emergency Medicine,1999.6(7):754-757
    [107] Nishisaki A, Maltese M, Niles D, et al. Backboards are important when chestcompressions are provided on a soft mattress. Resuscitation,2012. In press
    [108] Noordergraaf G J, Paulussen I W F, Venema A, et al. The impact of compliantsurfaces on in-hospital chest compressions: Effects of common mattresses and abackboard. Resuscitation,2009.80(5):546-552
    [109] Perkins G D, Benny R, Giles S, et al. Do different mattresses affect the quality ofcardiopulmonary resuscitation? Intensive Care Medicine,2003.29(12):2330-2335
    [110] Perkins G D, Smith C M, Augre C, et al. Effects of a backboard, bed height, andoperator position on compression depth during simulated resuscitation. IntensiveCare Medicine,2006.32(10):1632-1635
    [111] Tweed M, Tweed C, Perkins G D. The effect of differing support surfaces on theefficacy of chest compressions using a resuscitation manikin model.Resuscitation,2001.51(2):179-183
    [112] Cloete G, Dellimore K H, Scheffer C, et al. The impact of backboard size andorientation on sternum-to-spine compression depth and compression stiffness ina manikin study of CPR using two mattress types. Resuscitation,2011.82(8):1064-1070
    [113] Jantti H, Silfvast T, Turpeinen A, et al. Quality of cardiopulmonary resuscitationon manikins: on the floor and in the bed. Acta Anaesthesiol Scand,2009.53(9):1131-7
    [114] Perkins G D, Kocierz L, Smith S C L, et al. Compression feedback devices overestimate chest compression depth when performed on a bed. Resuscitation,2009.80(1):79-82
    [115] Spevak M R, Kleinman P K, Belanger P L, et al. Cardiopulmonary resuscitationand rib fractures in infants. A postmortem radiologic-pathologic study. JAMA,1994.272(8):617-8
    [116] Betz P, Liebhardt E. Rib fractures in children--resuscitation or child abuse? Int JLegal Med,1994.106(4):215-8
    [117]阮世捷,胡习之,曲杰.汽车安全与人体损伤生物力学的有限元模拟研究.华南理工大学学报(自然科学版),2007.35(6):1-7
    [118]中国汽车技术研究中心, C-NCAP管理规则.2012.
    [119] Kimpara H, Lee J B, Yang K H, et al. Effects of body weight, height, and ribcage area moment of inertia on blunt chest impact response. Traffic InjuryPrevention,2010.11:207-214
    [120] Gayzik F S. Development of a finite element based injury metric for pulmonarycontusion:[Ph.D]. Winston-Salem, North Carolina: Wake Forest University,2008,
    [121] Shigeta K, Kitagawa Y, Yasuki T. Development of next generation human femodel capable of organ injury prediction. In:21st ESV Conference,2009
    [122] Crandall J, Kent R, Patrie J, et al. Rib fracture patterns and radiologicdetection--a restraint-based comparison. Annu Proc Assoc Adv Automot Med,2000.44:235-59
    [123] Shaw G, Parent D, Purtsezov S, et al. Impact response of restrained PMHS infrontal sled tests: skeletal deformation patterns under seat belt loading. Stapp carcrash journal,2009.53:1-48
    [124] Mertz H J, Irwin A L, Melvin J W, et al. Size, Weight and Biomechanical ImpactResponse Requirements for Adult Size Small Female and Large Male Dummies.In: SAE. Warrendale, PA.,1989,133-144
    [125] Thomson W T. Mechanical vibration. Englewood Cliffs, New Jersey:Prentice-Hall, Inc.1954.6
    [126] Boresi A P, Sidebottom O M. Advanced Mechanics of Materials. N.Y.: JohnWiley and Sons.1985
    [127] Eppinger R H, Marcus J H, Morgan R M. Development of dummy and injuryindex for NHTSA's thoracic side impact protection research program. In: SAEGovernment/Industry Meeting,1984,983-1011
    [128] Irwin A, Mertz H, Elhagediab A, et al. Guidelines for assessing the biofidelity ofside impact dummies of various sizes and ages. In: Stapp Car Crash Conference,2002
    [129] NHTSA, Anthropomorphic test devices: Hybrid Ⅲ-10year old child testdummy.2005. p.40281-40288.
    [130] Kallieris D, Barz J, Schmidt G, et al. Comparison between child cadavers andchild dummy by using child restraint systems in simulated collisions. In: SAE.no.760815:1976
    [131] Parent D P, Crandall J R, Bolton J R, et al. Comparison of hybrid III child testdummies to pediatric PMHS in blunt thoracic impact response. Traffic InjuryPrevention,2010.11:399-410
    [132] NHTSA, Anthropomorphic test devices;3-year-old child crash test dummy.2000.p.15254-15271.
    [133] NHTSA, Anthropomorphic test devices; Six-year-old child crash test dummy.2002. p.47321-47333.
    [134] Kent R, Murakami D, Kobayashi S. Frontal thoracic response to dynamicloading: the role of superficial tissues, viscera, and the rib cage. In: The2005IRCOBI conference. Prague, Czech Republic:2005,355-365

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700