利用汽车加热器降低汽油机冷启动排放的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欧洲Ⅲ/欧洲Ⅳ法规增加了对轻型汽油车的低温冷启动过程的HC和CO排放测试,该测试也称为Ⅵ型试验。已报道的试验结果表明:在-7℃环境温度下,按欧Ⅲ标准排放检测循环试验的汽油机在冷启动过程前195秒采样时间内的THC比常温下的测试结果高了15倍左右。为满足欧Ⅲ排放法规的要求,本文提出通过利用汽车加热器在冷启动前提升汽油机的体温的方案,重点解决-7℃环境温度下的冷启动排放问题。方法是:利用汽车加热器在发动机冷启动前预热汽油机水套内的冷却液以提高发动机体温,同时加热器的燃气借道三效催化器排出,这可方便而有效地提高三效催化器的入口温度。这样既提高了燃烧室壁温、减少了冷激效应的影响、改善了混合气形成,减少启动过程中HC和CO在缸内的产量,又保证了发动机在冷启动的开始阶段三效催化器可以很快达到起燃温度,有效转化有害排放。显然这种方法对于减轻汽油机冷启动过程的排放是非常有效的措施。
     该方法要求汽车加热器的排放水平应远优于汽油机的情况,为此本课题利用西迪阿特公司的通用流体力学模拟软件STAR—CD对D5LC空气加热器的燃烧室进行了数值模拟,分析了燃烧室内部流场的分布情况、燃烧室内部结构对流场形成的影响、燃烧过程的温度场和排放生成的情况,为实现燃烧室内高效低污染燃烧提供了理论基础。计算结果表明:在二次风进气弯管的切向进气道处流速达到最大值,符合二次风的设计思想;强化扰动使得流动区域内的已燃气体与新鲜空气充分混合;二次风流速很大,和一次风存在比较明显的流速差,导致在二级缩口处相遇的时候形成负压区而产生回流,一方面保证了火焰的稳定性,另一方面可以使得混合气在燃烧室尽可能的停留较长的时间,保证混合气的充分混合和燃料的充分燃烧。
     在欧Ⅲ低温冷启动模拟实验台架上进行了汽油机与加热器联合运行以后冷启动阶段排放水平的初步测试。实验结果表明该方案能够有效降低汽油机冷启动阶段的THC、CO、NOx等有害排放量。原机的THC主要产生于冷启动及暖机过程(约为前90秒),THC的排放峰值基本对应于发动机的减速段。本实验中,使用加热器对发动机预热之后,冷启动阶段THC的排放大幅降低,在催化器前可以降低THC排放58.7%,在催化器后可以降低THC排放53.8%。原机及使用加热器后CO的峰值均出现在减速段。CO主要产生于启动初期,催化转换器起燃以后CO基本被氧化。冷启动时混合气较浓,空燃比较小,催化转换器尚未起作用,因此形成大量CO。在冷启动及暖机阶段,使用了加热器之后在催化器前可以降低CO排放8.15%,在催化器之后减少20.02%。NOx排放的峰值对应于发动机中、大负荷工况。这主要是由于随着发动机负荷增大,喷油量增加,缸内空燃比不均匀,且燃烧温度提高所致。在冷启动及暖机阶段,使用了加热器之后,催化器前的NOx排放量降低了73.6%,催化器后的NOx降低了71.4%。
The Euro III and Eoro IV emission regulations require the emission test of the HC and CO of the light gasoline engines during the cold-start period,which are named IV experiment.The HC exhaust emission of the gasoline engine used in the Euro III emission regulations cycling test during the former 195 second of the cold-start period at the environment temperature of -7°C is 15 times more than that at the normal temperature,which is indicated on the coverd experimental report. In this paper, in order for gasoline vehicles to meet the Euro III emission regulation, an air heater was used to increase the cooling water's temperature before cold-start of the gasoline, which was hoped to solve the problems of quicken light-off of catalyst and reduce exhaust emissions at -7°C ambient temperature.The plan is using an air heater to increase the cooling water's temperature before cold-start of the gasoline,and the emission of the air heater is vented via the catalyst to improve the intake temperature of the catalyst.The plan which is a effectual measure to decrease the cold-start period emission can improve the cylinder wall temperature,cut down the quench effect, mend mixture and decrease the emission in the cylinder during the cold-start period.And also the way can improve the tempertature of the catalyst which has high transfer efficiency.
     And also this plan demand that the emission of the air heater is better than that of the engine.So the Other task is doing the simulation of the flow and combustion of the chamber of the air heater produced by Hebei Hongye Machinery Co.Ltd using the CFD software-STAR-CD.By analyzing the fluent,combustion, temperature field and the emission concentration field of the chamber ,to obtain the theory to design the air heater with low pollution and high efficiency. The simulation displayed that the highest velocity appears at the tangential air inlet flue.of the secondary air which accords with the planning programming.This can make the mixture more homogeneous and supply enough oxidant for the afterburning.The secondary air's velocity is higher head and shoulders above than the first air, which forms the negative pressure field and results in back flow when they encounter.So the mixture can obtains combustion stability and complete combustion.
     The experiment on engine test bench which can simulate and test the cold start characteristics of gasoline vehicles was done. The result indicated that this method can effectively reduce the exhaust emission of CO, HC and NOx during the cold-start period. Most of the HC emission is produced during the cold-start and the warming-up period which may be the former 90s.and the peak is at the speed-down moment of the engine.This experiment reduced 58.7% of the total HC emission before the catalyst and reduced 53.8% of the total HC emission behind the catalyst after the engine warm-up using the air heater.The peak of the CO emission which was most produced during the cold-start period and was oxidated after the catalyst initiation was at the speed-down moment no matter using the air heater or not. The overrich mixture ,lower air-fuel ratio and the catalyst not-initiation may be the reasons of the mass CO emission produced during the cold-start period. This experiment reduced 8.15% of the total CO emission before the catalyst and reduced 20.2% of the total CO emission behind the catalyst after using the air heater.For more fuel injected, inhomogeneous cylinder air-fuel ratio and higer combustion temperature are along with the higer working conditions of the engine, the peak of the NOx emission corresponds to the medium and higher working conditions of the engine. This experiment reduced 73.6% of the total NOx emission before the catalyst and reduced 71.4% of the total NOx emission behind the catalyst after the engine warm-up using the air heater.
引文
[1] Carter Robert N, Pfefferle William C, Menacherry Paul. Laboratory Evaluation of Ultra-Shaft Metal Monolith Cralyst. SAE Paper 980672
    [2] 肖建华,马崴,王建昕等.在发动机台架上模拟欧Ⅲ低温冷启动排放特性的探索.汽车工程 2004,26(6),639-641
    [3] [美]B.H.德威金斯,汽车空调,北京:机械工业出版社,1996
    [4] 王军,王易军,汽车空调,西安交通大学出版社,1995
    [5] 韩宝崎,李树林,制冷空调及其原理应用,北京:机械工业出版社,1996
    [6] 《汽车百科全书》编纂委员会,汽车百科全书,北京:机械工业出版社,1992
    [7] Ulrich Piel Co,加热器安装与维修培训,2000
    [8] 李国祥,山东省优秀中青年科学家科研奖励基金申请书,2001
    [9] 马国强,赵书明。新型燃油加热器,客车技术与研究,Vol.20 No.1 1998.
    [10] 刘海涛.车用燃油加热器的优化设计与计算:[硕士学位论文].济南:山东大学,2005
    [11] Leo Shepard. Engine-Independent Heaters in Heavy Duty Applications: The European, SAE paper 89467
    [12] 张勇 赵重文等,国内外汽车燃油加热器技术比较及发展,客车技术与研究.,2001,23(6).-8-9
    [13] N. A. Henein and M. K. Tagomori et al · Cycle-by Cycle Analysis of HC Emissions During Cold Start of Gasoline Engine · SAE Trans. 952402.
    [14] A C Alkidas and R J Drews. Effects of Mixture Preparation on HC Emissions of an S. I. Engine Operating under Steady-state Cold Conditions, SAE paper 961958, 1996
    [15] Meyer R and John B Heywood. Liquid Fuel Transport Mechanisms into the Cylinder of a Firing Port-injected SI Engine during Start Up. SAE Paper 970865, 1997
    [16] Rudolf H Stanglmaier, Charles E Roberts, Ofodike A Ezekoye, et al. Condensation of Fuel on Combustion Chamber Surfaces as a Mechanism for Increased HC Emissions from SI Engines during Cold Start. SAE Paper 972884, 1997
    [17] Yunfei Laan and Naeim A Henein. Contribution of Cold- and Hot-start Transients in Engine-out HC Emissions, SAE Paper 982645, 1998
    [18] Kaplan JA and John B Heywood, Modeling the Spark Ignition Engine Warm-Up Process to Pridect Component Temperatures and Hydrocarbon Emissions. SAE Paper 910302, 1991
    [19] S Russ, E W Kaiser, W O Siegl. Effect of Cylinder Head and Engine Block Temperature on HC Emissions from a Single Cylinder Spark Ignition Engine. SAE Paper 952536, 1995
    [20] P K Puffel, W Thiel, R Frey, et al. A New Method for the Investigation of Unburned oil Emissions in the Raw Exhaust of SI Engine. SAE Paper 982438. 1998
    [21] Piotr Bielaczyc and Jerzy Merkisz. Cold Start Emissions Investigation at Different Ambient Temperature Conditions. SAE Paper 980401, 1998
    [22] European Environment Agency. Official Journal, 1997, 44 (3)
    [23] Noriyuki Kishi, Shinichi Kikuchi, Nodo Suzuki, et al. Technology for Reducing Exhaust Gas Emissions in Zero Level Emissions Vehicles(ZLEV). SAE Paper 1999-01-0722, 1999
    [24] J. Christian Swindal et al · In-Cylinder Charge Homogeneity During Cold-Start Studied with Fluorescent Traces Simulating Different Duel Distillation Temperatures · SAE Trans. 950106.
    [25] Kristine Drobot Isherwood et al ·Using On-board Fuel Reforming by Partial Oxidation to Improve SI Engine Cold Start Performance and Emissions · SAE Trans. 980939.
    [26] Charles E. Roberts and Rudolf H. Stanglmaier · Investigation of Intake Tuning Effects on the Cold Start Behavior of a Spark Ingition Engine · SAE Paper 1999-01-3622.
    [27] Ken Umehara, Tetsuya Tateishi, Hirofumi Nishimura, Masanori Misumi. HC Reduction System during Cold Start and Warm-up Phases-improvement on Catalyst Warm-up by Ignition Retard. JSAE9730137.
    [28] Oser P, Muellet E, Haertel G R, et al. Novel Emission Technologies with Emphasis on Catalyst Cold Start Improvements Status Report on VW-pierburg Burner/Catalyst System. SAE940474, 1994.
    [29] Michael E. Crane et al · Reduced Cold-Start Emissions Using Rapid Exhaust Port Oxidation (REPO) in a Spark-Ignition Engine · SAE Trans. 970264.
    [30] F. Zhao, M. - C. Lai, D. L. Hardngton. Automotive Spark-ignited Direct-injection Gasoline Engines. Progress in Engergy and Combustion Science, 1999, 25(5).
    [31] Shigeo Yamamoto, Dai Tanaka, Jun Takemura, Osamu Nakayama and Hiromitsu Ando. Mixing Control and Combustion in Gasoline Direct Injection Engines for Reducing Cold-start Emissions. SAE2001-01-0550.
    [32] 蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001.
    [33] Bernd Pfalzgraf, G Faltermeier, Achim Donnerstag, et al. Design and Optimization of a Close-Coupled Catalyst Concept for Audi 4-Cylinder Engines. SAE Paper 980417, 1998
    [34] J L Williams, M D Patil and W Hertl. By-Pass Hydrocarbon Adsorber System for ULEV. SAE Paper 960343, 1996
    [35] Noda N. In-line Hydrocarbon (HC) Adsorber System for Cold-start Emissons. SAE paper 970266.
    [36] Crane M et al. Reduced Cold-Start Emissions Using Rapid Exhaust Port Oxidation(REPD) in a Spark-lgnition Engine. SAE paper970264.
    [37] Kanada Y et al. Hydrogen-Added Afterburner System. SAE paper 960346.
    [38] Abe Fumio. An Extruded Electrically Heated Catalyst: From Design Concept Through Proven-durability. SAE Paper 960340.
    [39] Faltetmerier G. Design and Aptimisation of a Close-Coupled Concept For Audi 4-Cylinder Engine. SAE Paper 980417.
    [40] 泊头宏业汽车加热器有限责任公司,HJY-5型液体加热器技术与故障维修说明书
    [41] 马崴.汽油机低温冷启动排放特性及控制策略研究:[硕士学位论文].北京:清华大学,2005
    [42] 王锡云,徐海贵,张雨,宋心宇.电控燃油喷射汽油机冷启动过程的排放研究[J].车用发动机,2003,(6):40-42
    [43] 梁小强,刘圣华,周龙保.火花点火发动机冷启动和暖机过程未燃碳氢排放及控制[J].内燃机,2005,(3):36-39
    [44] 庞俊国,刘明安,潘克煜.顶岸狭缝间隙对汽油机未燃HC排放的影响研究[J].西安交通大学学报,1998,32(5):64-67
    [45] 张惠明,刘文胜,赵慧,赵奎翰.汽油机怠速工况下HC和CO排放机理的实验研究[J].燃烧科学与技术,1997,3(3):280-285
    [46] 俞明,孙国斌,吴思光,蔡锐彬.汽车排放法规中工况对废气成分影响的分析[J].华南理工大学学报(自然科学版),2002,30(7):91-94
    [47] 郑清平,许立兵.硬性汽油机怠速排放因素的探索[J].车用发动机,1998,(2):54-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700