纯电动汽车驱动与制动能量回收控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯电动汽车具有高效、低噪声、零排放等显著优点,在环保和节能方面具有不可比拟的优势,其应用和普及已成为汽车工业可持续发展的必然趋势。迄今为止,续驶里程不足仍然是制约纯电动汽车商业化的瓶颈。为实现有限能量源的充分利用,提高驱动系统效率及再生制动能量回收是目前亟待解决的问题。在此背景下,本文以陕西省重点科技攻关计划项目为依托,在高效电驱动系统、再生制动能量回收、双能量源存储系统和优化控制策略等方面,通过理论推导、仿真与实验获得纯电动汽车的研制依据和实验数据,为高性能纯电动汽车的研究与开发提供理论基础和工程经验。论文的研究工作及主要创新点包括:
     1.在分析电动汽车动力学和电机模型的基础上,建立了永磁直流电机拖动汽车的动力学数学模型,该模型更好地反映了电动汽车运动受风阻影响这一特殊性。考虑到电机通用数学模型的普适性,决定采用其主要参数和环节,并辅之相应的非线性环节构建电机拖动汽车的动态结构图。同时,推导出转动惯量和机电时间常数的计算公式,使各参数的物理意义更加明确,实现了机(汽车)电(电机)系统的有机结合。
     2.系统分析了纯电动汽车驱动与再生制动能量回收的控制策略,针对蓄电池单能量源纯电动汽车,以车速为控制目标,研究了电动运行状态的各种控制方案,详细分析了系统的构成、稳态结构和动态响应,比较了各自的优缺点和适用范围。为了充分利用再生制动的功能,分析了纯电动汽车再生制动的工作原理,研究了能量回收的控制策略,利用Matlab仿真验证了理论研究的正确性。
     3.以城市公交中巴客车作为纯电动汽车的改装对象,简要介绍了纯电动试验样车的基本结构、完成了控制系统配套所需电气控制线路的设计。在此基础上,提出了控制器系统的总体设计方案,完成了器件选型、硬件电路设计、软件程序设计等工作,同时制作了控制器电路板、触发保护线路和二象限PWM功率变换装置。为了便于调试和重要参数显示,完成了智能仪表盘的软硬件设计。在实验室完成了系统功能测试。
     4.根据超级电容加双向DC/DC变换器与蓄电池并联的结构,设计了双能量源系统的主回路电路结构,并对其工作状态进行了详细分析,以满足纯电动汽车对比能量和比功率的双重要求。在此基础上,根据整车的性能要求和配置情况,分别从能量和功率角度对双能量源系统的蓄电池、超级电容单体串联数目及各节容量进行了理论计算和匹配设计。利用扩展的ADVISOR仿真软件对双能量源的匹配参数进行了仿真优化及结果校验,可以满足纯电动汽车对双能量源系统的要求。
     5.根据纯电动汽车的不同工作状态,设计了双向DC/DC变换器的模糊自调整控制策略。在电动运行状态下以“稳压”为目标,实现超级电容和蓄电池的输出电压相匹配;在制动运行状态下以“稳流”为目标,实现对超级电容和蓄电池的恒流充电。建立了电动状态电压控制和制动状态电流控制的Matlab仿真模型,验证了模糊自调整控制策略的正确性和有效性。
     6.针对双能量源纯电动汽车的制动力分配和能量管理控制问题,提出了双能量源制动力分配和能量管理的模糊控制策略,并从整车经济性、动力性、能量源效率和制动能量回收四个角度对所制定的双能量源模糊控制效果进行了仿真验证。仿真结果表明,模糊控制策略可以合理分配蓄电池和超级电容的输出功率,综合发挥双能量源特长,提高整车的动力性和经济性。
     7.对ADVISOR2002仿真软件进行了二次开发,获得了界面友好且适合双能量源纯电动汽车仿真的专用平台,克服了用ADVISOR软件不能对双能量源纯电动汽车进行性能仿真的缺点。结合典型循环工况,对双能量源纯电动汽车及其控制策略进行了性能仿真,仿真结果表明双能量源纯电动的经济性和动力性都得到了提高。
With the advantages of high efficiency, low noise and little pollution emission, pure electric vehicles (PEV) are leading a revolution in automobile industry under the pressure of the natural environment protection and the growing oil shortage nowadays. So far, inadequate driving range is still the major fencing to hinder the development of PEV, new efforts are necessary to improve the usage efficiency and regenerative braking recycling for limited energy available. Supported by a provincial scientific project, this dissertation mainly focuses on the PEV issues like electric drive system, regenerative braking, dual-energy storage system (DESS), and optimization & control strategies of PEV. Specifically, the main work and contributions of the dissertation are summarized as follows:
     1. On the basis of analyzing the dynamic model of PEV and DC motor, the dynamics-simulating model for vehicles driven by permanent DC motor is established, which can better reflect the influence of wind resistance. Because of the universality and applicability of general DC motor model, a new dynamic graph for motor-dragging vehicles is constructed mainly by the parameters & links in the general DC motor, assisted by some nonlinear links. Meanwhile, the formula for inertia and time constant is summed up, in which the physical meaning of parameters is clearer, and the combination of vehicle and motor is more reasonable.
     2. The control strategy for driving and regenerative braking is investigated systematically. For PEV with sole-energy storage system, the vehicle speed is taken as the control objectives, and various control schemes are studied in the driving state, including the system constitution, steady structure and dynamic response, as well as the features and application scope. Moreover, in order to make the regenerative braking more effective, the principle of regenerative braking for PEV is analyzed, the control strategy for energy recycling is studied and simulated in Matlab.
     3. Based on the design scheme to reassemble a city transit bus to a test PEV, the structure of PEV is briefly introduced, and the electric circuit of control system is implemented. The overall design scheme for the control system is proposed, the device selection, circuit design and software development are accomplished, a circuit board, a triggering protection circuit and two quadrant PWM power converter are manufactured. Furthermore, for the convenience of debugging and parameters illustration, the intelligent meter panel is designed and tested in laboratory.
     4. Regarding to the dual-requirements for high-energy density and high-power density, the DESS is designed to be a composition of battery and ultra-capacitor plus bi-direction DC/DC converter in parallel. The main-loop circuit of DESS is constructed, and the working states are analyzed. After analyzing the power and energy requirements, the structure and parameters of DESS are presented in term of mathematical computation. Finally, aforementioned results are verified by extending ADVISOR simulator with dual-energy storage auto-sizing.
     5. According to the different running states of PEV, the fuzzy self-tuning control strategy for bi-directional DC/DC converter is designed. In forward running state, the converter is employed to achieve voltage stability for balancing the voltage output between the battery and ultra-capacitor. In regenerative braking state, the converter is used to provide constant charging current for the battery and ultra-capacitor. The simulation model of DC/DC converter is estalished in MATLAB, and the simulation results prove that the controlling method is correct and effective.
     6. In order to improve the performance of braking force distribution and energy management, two fuzzy optimal control strategies are proposed for PEV with DESS. A simulation w.r.t. economical efficiency, power parameter, power efficiency and braking energy recycling is performed. The results show that the proposed fuzzy strategies can more effectively distribute the output power of DESS, improve the property in DESS, and attain a better acceleration and economic performance.
     7. A software platform with friendly interface specialized for the simulation of the pure electric vehicle (PEV) with DESS is established by the redevelopment of ADVISOR. The new platform overcomes the shortcoming that ADVISOR can not simulate DESS's performance. Combined with typical cycle conditions, the performance simulation is performed for PEV with DESS and control strategies. The simulation results show that both the dynamic property and the economical efficiency of the PEV with DESS are improved.
引文
[1]余志生.汽车理论(第四版)[M].北京:机械工业出版社,2006.
    [2]Rahman S, Castro A. D.. Environmental impacts of electricity generation-A global perspective[J]. IEEE Transactions on Energy Conversation.1995,10(2):307-313.
    [3]陈清泉.环境保护和电动车的开发[J].江苏机械制造与自动化.2000,(1):3-7.
    [4]陈清泉.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [5]边耀璋.汽车新能源技术[M].北京:人民交通出版社,2003.
    [6]陈全世,朱家琏,田光宇.先进电动汽车技术[M].北京:化学工业出版社,2007.
    [7]万钢.中国电动汽车的现状和发展[J].中国环保产业.2003,(2):30-33.
    [8]祝嘉光,陆宗逸.电动客车应用研究的现状[J].商用汽车.2004,(8):39-41.
    [9]Chau T., Wong Y. S.. Hybridization of energy sources in electric vehicles [J]. Energy Conversion and Management.2001,42(9):1059-1069.
    [10]马侨.超级电容电车、快速充电站系统研制[J].城市公共交通.2005,(1):481-490.
    [11]宋慧,胡骅.电动汽车的现状及发展[J].汽车电器.2001,23(4):102-105.
    [12]Chau K. T., Wong Y. S., Chan C. C. An overview of energy sources for electric vehicles[J]. Energy Conversion and Management.1999,40 (10):1021-1039.
    [13]中国电工技术学会电动车辆研究会,中国汽车工程学会电动汽车分会.信息交流[C].电动车辆研究与开发,2008,清华大学汽车安全与节能国家重点实验室.
    [14]曹秉刚,张传伟,白志峰,等.电动汽车技术进展和发展趋势[J].西安交通大学学报.2004,38(1):1-5.
    [15]Chan C. C, Wong Y. S.. The state of the art of electric vehicles technology[C]. The 4th International Conference on Power Electronics and Motion Control, 2004, pp.46-57.
    [16]胡林,谷正气,黄晶,等.电动汽车的关键技术分析[J].机械制造,2005,43(494):45-47.
    [17]陈伯时.电力拖动自动控制系统—运动控制系统(第3版)[M].北京:机械工业出版社,2006.
    [18]Cikanek S. R., Bailey K. E.. Regenerative braking system for a hybrid electric vehicle [C]. Proceedings of the American Control Conference,2002, pp. 3129-3134.
    [19]李竟成.电动汽车驱动控制与再生制动研究[D].西安:西安交通大学,2003.
    [20]卫国爱,全书海,朱忠尼.电动汽车驱动用无刷直流电动机的控制与仿真[J].电机与控制应用,2009,36(1):16-19,31.
    [21]黄斐梨,王耀明,姜新建,等.电动汽车永磁无刷直流电机驱动系统低速能量回馈制动的研究[J].电工技术学报,1995,8(3):28-32.
    [22]赵辉,李铁才,孙立志,等.电池供电的永磁电动机系统的再生制动[J].电机与控制学报,1999,3(4):207-211.
    [23]尹安东,赵韩,张炳力.微型电动轿车制动能量回收及控制策略的研究[J].合肥工业大学学报(自然科学版),2008,31(11):1760—1777.
    [24]张毅,杨林,朱建新,等.电动汽车能量回馈的整车控制[J].汽车工程,2005,27(1):24-27.
    [25]罗禹贡,李蓬,金达锋,等.基于最优控制理论的制动能量回收策略研究[J].汽车工程,2006,28(4):356-360.
    [26]陈家新,江建中,汪信尧.电动车能量再生控制及可靠性研究[J].电气传动自动化,2002,24(6):30-33.
    [27]刘博,杜继宏,齐国光.电动汽车制动能量回收控制策略的研究[J].电子技术应用,2004,(1):34-36.
    [28]倪光正.现代电动汽车、混合动力电动汽车和燃料电池车基本原理、理论和设计[M].北京:机械工业出版社,2008.
    [29]GB/T 18488.1-2001电动汽车用电机及其控制器技术条件[S].北京:中国标准出版社,2001.
    [30]刘晓升,王宜怀.嵌入式系统使用HCS12微控制器的设计与应用[M].北京:北京航空航天大学,2008.
    [31]孙同景.Freescale 9S12十六位单片机原理及嵌入式开发技术[M].北京:机械工业出版社,2008.
    [32]赵新龙.电动汽车蓄电池性能测试方法研究及实验台开发[D].西安:长安大学,2008.
    [33]GB/T 18385-2001电动汽车动力性能试验方法[S].北京:中国标准出版社,2001.
    [34]曹成昆,何彬,唐航波,等.混合动力汽车真彩液晶数字仪表软件设计[J].上海交通大学学报,2008,12(7):1081-1084.
    [35]梁广省.基于CAN总线和ARM的汽车液晶仪表的设计与研究[D].南京:南京航空航天大学,2007.
    [36]武翠琴杨金岩李艾华.CAN控制器MCP2510及其应用[J].国外电子元器件,2001,(10):48-50.
    [37]AT2440EVB-Ⅱ开发板使用手册v1.5[M].广州朗成电子科技有限公司.
    [38]梁伟栋,郭浩.MCGS组态软件设计及其应用[J].广东自动化与信息工程,2005,(1):33-35.
    [39]魏先民.CAN总线技术在汽车仪表中的应用[J].潍坊学院学报,2008,8(2):49-50.
    [40]郭应时,袁伟.汽车实验学[M].北京:人民交通出版社,2006.
    [41]GB/T 18386-2005电动汽车能量消耗率和续驶里程试验方法[S].北京:中国标准出版社,2005.
    [42]Pandolfo A. G., Hollenkap A. F. Carbon properties and their role in supercapacitors [J]. Journal of Power Sources,2006,157(1):11-27.
    [43]储军,陈杰,李忠学.电动车用超级电容器充放电性能的实验研究[J].机械,2004,31(3):20-22.
    [44]Ortuzar M. E., Moreno J., Dixon J. W.. Ultracapacitor-based auxiliary energy system for an electric vehicle:Implementation and evaluation.IEEE Transactions on Industrial Electronics,2007,54(4):2147-2156.
    [45]Moreno J., Ortuzar M. E., Dixon J. W., Energy-Management System for a Hybrid Electric Vehicle,Using Ultracapacitors and Neural Networks[J].,IEEE Transaction on Industry Applications,2006,53(2):614-623.
    [46]熊奇,唐冬汉.超级电容器在混合电动车上的研究进展[J].中山大学学报(自然科学版),2003,42(6):130-133.
    [47]Miller J M, Smith R.. Ultra-Capacitor assisted electric drives for transportation [C]. IEEE International Conference on Electric Machines and Rives,2003, 670-676.
    [48]Faggioli Eugenio, Rena Piergeorgio, Danel Veronique, Andrieu X., et al. Supercapacitors for the energy management of electric vehicles[J]. Journal of Power Source,1999,84(2):261-269.
    [49]王志福,陈伟,叶辉萍,等.加装超级电容纯电动汽车的性能分析[J].机械工程学报,2005,41(12):82-86.
    [50]Hicks Jared A., Gruich Robert, Oldja Alex, et al. Ultracapacitor energy management and controller developments for a series-parallel 2-by-2 hybrid electric vehicle[J].2007 IEEE Vehicle Power and Propulsion Conference,2007: (1):328-335.
    [51]王晓峰.主从能源电动汽车能源匹配研究[D].哈尔滨:哈尔滨工业大学,2006.
    [52]Dougal R. A., Liu S. Power and life extension of battery-ultracapacitor hybrids. IEEE Transactions on components and packaging technologies,2002,25(1): 120-131.
    [53]GAO L., DOUGAL R. A.. LIU S. Power enhancement of an actively controlled battery/ultra-capacitor hybrid[J]. IEEE Transactions on Power Electronics,2005, 20(1):236-243.
    [54]Dixon J. W., Ortuzar M. E.. Ultracapacitors+DC-DC converters in regenerative braking system [J]. IEEE AESS Systems Magazine,2002,17(8):16-21.
    [55]于远彬.车载复合电源设计理论与控制策略研究[D].长春:吉林大学,2008.
    [56]P. Barrade, A. Buffer. Supercapacitors as energy buffers:a solution for elevators and for electric buses supply[C]. Proceedings of the IEEE Power Conversion Conference,2002, pp.1160-1165.
    [57]南金瑞,王建群,孙逢春.电动汽车能量管理系统的研究[J].北京理工大学学报,2005,25(5):582-587.
    [58]曹秉刚,曹建波,李军伟,等.超级电容在电动车中的应用研究[J].西安交通大学学报,2008,42(11):1317-1332.
    [59]白志峰.电动汽车超级电容-蓄电池复合电源系统开发及其H鲁棒控制研究[D].西安:西安交通大学,2006.
    [60]李军求,孙逢春,张承宁,等.纯电动大客车超级电容器参数匹配与实验[J].电源技术,2004,28(8):483-487.
    [61]李贵远,陈勇.动力电池与超级电容混合驱动系统设计与仿真[J].系统仿真 学报,2007,19(1):101-105.
    [62]蔡宣三,龚绍文编著.高频功率电子学——直流一直流变换部分[M].北京:科学出版社,1993.
    [63]何洪文,余晓江,孙逢春.电动车辆设计中的匹配理论研究[J].北京理工大学学报,2002,22(6):704-705.
    [64]张靖.超级电容蓄电池复合电源的研究与仿真[D].武汉:武汉理工大学,2005.
    [65]刘金琨.智能控制(第2版)[M].北京:电子工业出版社,2009.
    [66]石庆升,张承慧,崔纳新.新型双能源纯电动汽车能量管理问题的优化控制[J].电工技术学报,2008,23(8):137-142.
    [67]王成悦,张兴,杨淑英,等.电动汽车对称半桥DC/DC变换器的建模和控制[J].电力电子技术,2008,42(1 0):27-30.
    [68]卫爱国,全书海,朱忠尼.电动汽车驱动用无刷直流电机的控制与仿真[J].电机与控制应用,2009,36(1):16-19.
    [69]Flinders F, Mathew R., Oghanna W.. Energy savings through regenerative braking using retrofit converters[C], Proceedings of the 1995 IEEE/ASME Joint Railroad Conference,1995, pp.55-61.
    [70]于健,万健如,许镇琳.电动汽车能量控制系统的动态建模与仿真[J].计算机仿真,2008,25(4):472-476.
    [71]Caricchi F, Crescimbini F, Noia G, et al. Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles[C]. Proceedings of the Applied Power Electronics Conference and Exposition,1994, pp.381-386.
    [72]Marian K Kazimierczuk, Rober C Cravens. Application of Super Capacitor for Voltage Regulation in Aircraft Distributed Power Systems [C]. Proceedings of IEEE Power Electronics Specialists Conference,1996, pp.835-841.
    [73]Marie-Francoise J.N., Gualous H., Outbib R., et al.42V Power Net with supercapacitor and battery for automotive applications [J]. Journal of Power Sources,2005,143(2):275-283.
    [74]叶敏,安强,程博,等.电动汽车主辅电源能量回馈研究[J].系统仿真学报,2007,19(23):5434-5437.
    [75]Cetin Elma, Omer Deperlioglu, Hasan Huseyin Sayan. Adaptive fuzzy logic controller for DC-DC converters[J]. Expert Systems with Applications.2009, 36(2):1540-1548
    [76]Cao J., Cao B., Bai Z., et al. Energy-regenerative fuzzy sliding mode controller design for ultracapacitor-battery hybrid power of electric vehicle. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation(ICMA 2007),2007, pp.1570-1575.
    [77]张方华,朱成花,严仰光.双向DC-DC变换器的控制模型[J].中国机电工程学报,2005,25(11):46-49.
    [78]陈翔,张林燕,白月飞等.模糊PID控制的电动汽车再生制动系统变换器的研究[J].公路交通科技,2008,25(7):141-158.
    [79]王宝瑛,朱方明,曹秉刚等.电动汽车用DC/DC变换器模糊自整定PI控制[J].电力电子技术,2007,41(1):48-50.
    [80]李舒欣,曹秉刚,白志峰等.电动汽车再生制动的模糊PI控制实验研究[J].电气技术,2006(1):52-54.
    [81]朱鹏程,郭卫农,陈坚.升压斩波电路PI和PID调节器的优化设计[J].电力电子技术,2001,35(4):28-31.
    [82]Guesmi K,Essounbouli N., Hamzaoui A.. Source. Systematic design approach of fuzzy PID stabilizer for DC-DC converters [J]. Energy Conversion and Management,2008,49(10):2880-2889.
    [83]张林,杜子学,朱海峰,等.电动汽车的再生制动控制策略研究及仿真[J].北京汽车,2006,(5):10-12.
    [84]徐海东.电动汽车再生制动能量高效回收控制策略研究[D].济南:山东大学,2007.
    [85]陈庆樟,何仁.汽车再生制动系统机电制动力分配[J].江苏大学学报(自然科学版),2008,29(5):394-397
    [86]过学迅,张靖.混合动力电动汽车再生制动系统的建模与仿真[J].武汉理工大学学报(信息与管理工程版),2005,27(1):116-120.
    [87]叶敏,安强,程博,等.电动汽车主辅电源能量回馈研究[J].系统仿真学报,2007,19(23):5434-5437.
    [88]李珂,张承慧,崔纳新.电动汽车用高效回馈制动控制策略[J].电机与控制 学报,2008,12(3):324-330.
    [89]田德文,谢大纲,崔淑梅.军用汽车混合电力驱动系统复合能源控制策略[J].机械工程学报,2009,45(2):42-47.
    [90]张丹红,周艳.混合动力汽车能量管理系统的模糊控制与仿真研究[J].世界电子元器件,2008,(5):69-73.
    [91]Kisacikoglu M. C, Uzunoglu M., Alam M. S.. Load sharing using fuzzy logic control in a fuel cell/ultracapacitor hybrid vehicle [J]. International Journal of Hydrogen Energy,2009,34(3):1497-1507.
    [92]Moreno J., Ortuzar M. E., Dixon J. W.. Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks [J]. IEEE Transactions on Industrial Electronics,2006,53(2):614-623.
    [93]Ozatay E., Zile B., Anstrom J., et al. Power distribution control coordinating ultracapacitors and batteries for electric vehicles. Proceedings of the American Control Conference,2004, pp.4716-4721.
    [94]邱望标,黄克.基于模糊控制的电动汽车蓄电池组管理系统[J].机械与电子,2008,(5):46-48.
    [95]赵国柱,魏民祥,杨正林.基于制动稳定性要求的ADVISOR再生制动模块的开发[J].机械与电子,2007(6):10-14.
    [96]张翔,张炳力,钱立军,等.电动汽车仿真软件进展[J].系统仿真学报,2004,16(8):1621-1623.
    [97]Wipke K. B., Cuddy M. R., Burch S. D.. ADVISOR 2.1:a user-friendly advanced powertrain simulation using a combined backward/forward approach [J]. IEEE Transactions on Vehicular Technology-Special Issue on Hybrid and Electric Vehicles,1999,1-10.
    [98]刘振军,赵海峰,秦大同.基于CRUISE的动力传动系统建模与仿真分析[J].重庆大学学报(自然科学版),2005,28(11):8—12.
    [99]Wang Liangmo, BaiWeijun. Development and simulation of electric vehicle based on ADVISOR[J]. Journal of Southeast University (English Edition),2006, 22(2):196-199.
    [100]于远彬,王庆年.基于ADVISOR的仿真软件的二次开发及其在负荷电源混合动力汽车上的应用[J].吉林大学学报(工学版),2005,35(4):353—357.
    [101]张翔,赵韩,钱立军,等ADVISOR软件的混合仿真方法[J].计算机仿真, 2005,22(2):203-206.
    [102]曾小华,王庆年,李骏,等.基于ADVISOR2002混合动力汽车控制策略模块开发[J].汽车工程,2004,26(4):394-396.
    [103]He X., Hodgson J. W.. Modeling and Simulation for Hybrid Electric Vehicles-Part I:Modeling [J]. IEEE Intelligent Transportation Systems,2002, 3(4):235-243.
    [104]He X., Hodgson J. W.. Modeling and Simulation for Hybrid Electric Vehicles-Part Ⅱ:Simulation [J]. IEEE Intelligent Transportation Systems,2002, 3(4):244-251.
    [105]张翔.电动汽车建模与仿真的研究[D].合肥:合肥工业大学,2004.
    [106]Baisden Andrew C, Emadi Ali. ADVISOR-based model of a battery and an ultra-capacitor energy source for hybrid electric vehicles. IEEE Transactions on Vehicular Technology,2004,53(1):199-205.
    [107]陈志雄,钟绍华.基于ADVISOR的纯电动汽车动力性能仿真[J].上海汽车,2008,(1):8-11.
    [108]Andrew C. B., Ali E.. ADVISOR-Based Model of a Battery and an Ultra-Capacitor Energy Source for Hybrid Electric Vehicles[J]. IEEE Transactions on Vehicular Technology,2004,53(1):119-205
    [109]程莹,冯能莲,李克强.ADVISOR混合动力电动汽车仿真系统的二次开发和应用[J].汽车工程,2004,26(3):249-253.
    [110]邹广才,罗禹贡,杨殿阁.基于ADVISOR二次开发的混合动力越野车仿真分析[J].汽车工程,2007,29(5):404-408.
    [111]陈垚光,毛涛涛,王正林,等.精通MATLAB GUI设计[M].北京:电子工业出版社,2008.
    [112]张志涌.精通Matlab6.5版教程[M].北京:北京航空航天大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700