吸收/压缩混合制冷循环特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,传统汽车制冷系统均采用消耗发动机动力的压缩制冷方式,造成能源的极大浪费,回收利用汽车尾气废热驱动吸收式制冷系统来代替传统压缩制冷方式,可以实现节能降耗的目的。由于单纯采用废热制冷不能满足汽车在任何行驶状态下对空调冷负荷的需求,根据废热驱动的吸收制冷循环特点以及对汽车制冷系统的技术要求,提出了一种以汽车发动机废热和动力联合驱动的新型吸收/压缩混合制冷循环。
     以金龙大客为实例,计算了客车空调冷负荷,为30kW。选用R124/DMAC为制冷工质对,在设计工况(空气温度35℃,冷凝温度55℃,制冷剂蒸发温度3℃,制冷负荷30kW)下,对混合制冷分别采用吸收制冷和压缩制冷两种极端情况进行了热力计算。得出了两子循环系统内各热质交换设备的设计负荷及进出口参数,作为系统设备设计或选型依据。
     本文对不同车速下汽车发动机的尾气排放参数进行了定量分析。给出了综合性能系数和发生器负荷率的定义,分析了两种溶液泵控制策略下,在不同的发生器负荷率和不同外界环境温度下,达到压缩机总耗功最小目标时,吸收/压缩混合制冷循环工作特性、循环内各设备的负荷特性及运行参数的变化规律。
     结果表明,设定工况下,当发生器负荷率为100%时,客车空调所需的冷负荷可以完全由吸收制冷子循环来提供,这时,混合制冷系统的综合性能系数达到最大,为14.85,由于这时的压缩机耗功为0,因此,混合制冷系统节省的发动机输出功率也是最大的,为7.89%的额定输出功率。当发生器负荷率降低时,吸收制冷子系统提供的制冷量不能够满足客车空调所需,不足的部分由压缩制冷子系统提供补充。
     另外,外界环境温度的变化会对吸收/压缩混合制冷循环产生较大的影响。计算结果表明,直接风冷条件下,高温环境采用废热制冷效果较差。在100%的发生器负荷率下,环境温度从35℃升高到40℃时,吸收制冷子循环的制冷量约降一半。当环境温度降低时,其情况与升高时相反,吸收制冷子循环制冷量会随环境温度降低而增加。
At present, the traditional automotive cooling system uses the compression refrigeration that consumes engine power, causing a great waste of energy. Recycling vehicle exhaust waste heat to drive absorption chiller to replace traditional compression refrigeration way can achieve the purpose of energy saving. Since using the refrigeration system driven by waste heat simply cannot meet the cooling load needs of the car in any driving conditions, a novel absorption-compression hybrid refrigeration cycle (ACHRC) driven by waste heat and power from vehicle engines was proposed. It was based on the behaviors of the operation characteristics of the absorption refrigeration driven by the waste heat from automobile and the technical requirements for the vehicle cooling system.
     This paper taken Golden Dragon passenger as an example and calculate the cooling load of the bus air-conditioning. It is30kW. According to the air conditioning load for a bus, the thermal calculation of the ACHRC in which R124-DMAC is used as working fluid had been done under the given conditions. The given conditions are that the temperatures of cooling air, condensation and evaporation are35℃,55℃and3℃respectively and the bus air conditioning load is30kW. The loading characteristics and operation parameters of the absorption and compression refrigeration sub-systems which vary with the generator load ratio had been analyzed under two control strategies for the solution pump. The obtained results of two sub-cycles are used as the system equipment design or selection basis.
     This paper defined the coefficient of performance and generator load ratio and made a quantitative analysis on the parameters of engine exhaust emissions at different speed. Under two solution pump control strategies, when reaching the goal of the compressor minimum power consumption, it was analyzed that variation of the operating characteristics of the hybrid refrigeration cycle, the load characteristics of various devices and operating parameters under different generator load ratio or ambient temperatures.
     The results show that when the generator load ratio is100%, the cooling load of the bus air-conditioning could be solely provided by the absorption refrigeration sub-cycle at design conditions. At this time, the coefficient of performance of the hybrid refrigeration system reaches the maximum,14.85. When the compressor power consumption is0, the saved engine output power is also the largest. It is7.89%of rated output power. With the reduction of the generator load ratio, the cooling capacity of absorption refrigeration subsystem is not able to meet the bus air-conditioning required, and the insufficient part is provided by the compression refrigeration subsystem.
     In addition, the changes in ambient temperature will affect the absorption-compression hybrid refrigeration cycle. The results showed that under the direct air-cooled conditions, the effect of high ambient temperature is poor. At generator load ratio of100%, when the ambient temperature increased from35℃to40℃, the cooling capacity of absorption refrigeration sub-cycle is about to drop by half. When the ambient temperature is reduced, the cooling capacity of absorption refrigeration sub-cycle increases with the ambient temperature is reduced.
引文
[1]王新华.汽车氢化物空调器用Ti2Mn系多元贮氢合金及复合氢化物床空调器性能[J].稀有金属材料与工程,2001(5):353-356.
    [2]D.W. Wendland. Automobile exhaust-system steady state heat transfer [J]. SAE Technical paper, No.931085,1993.
    [3]曹磊.机动车尾气废热应用于汽车的可行性分析[J].环境科学,1995,16(4):86-89.
    [4]张万里.大客车采暖系统的研究[D].济南:山东大学,2007.
    [5]Joseph R Ackerman. Automotive Air-Conditioning Systems with Absorption Refrigeration [J]. SAE Publication NO.710037,1969.
    [6]杨培毅,程林.汽车余热空调的研究现状[J].流体工程,1993(6):54.
    [7]Chih Wu, William H. Schulden. Maximum obtainable specific power of high-temperature waste heat engines [J]. Heat Recovery Systems,1995,15(1)13-17.
    [8]廉乐明,谭羽非,吴家正等.工程热力学[M].北京:中国建筑工业出版社.2007.
    [9]M. Mostafavi, B. Agnew. Thermodynamic analysis of combined diesel engine and absorption refrigeration unit-naturally aspirated diesel engine [J]. Applied Thermal Engineering, 1997,17(5):471-478.
    [10]R.Atan. Heat recovery equipment(generator) in an automobile for an absorption air-conditioning system[J]. SAE,1998,01:62.
    [11]肖尤明,徐烈,李志伟等.汽车空调余热溴化锂吸收式制冷装置的研究[J].制冷学报,2004(1):22-26.
    [12]李晓科,纪威.汽车余热溴化锂吸收式制冷研究[J].现代机械.2007(6):35-37.
    [13]Hugues L.Talom, Asfaw Beyene. Heat recovery from automotive engine[J]. Applied Thermal Engineering,2009,29(2-3):439-444.
    [14]Andre Aleixo Manzela, Sergio Morais Hanriot. Luben Cabezas-Gamez, et al. Using engine exhaust gas as energy source for an absorption refrigeration system[J]. Applied Energy,2010.87:1141-1148
    [15]Ackerman,J.R:Automotive Air-Conditioning Systems with Absorption Refrigeration [J]. SAE-Paper No.710037,1969.
    [16]Mei,V.C., Lavan,Z., Chaturvedi,S.K.. Highway Vehicle Exhaust Gas Refrigeration System.United States Patent 4341088,July 27,1982.
    [17]Hoppler,R., Pkw-Klimatisierung und-Beheizung mit Wasser/Zeolith- Sorptionsaggregaten. Abschlu?bericht des Teilvorhaben8:"Untersuchung zu einer Sorptionska"ltemaschine"im Rahmendes Verbundvorhabens"Minderung von FCKW-Emissionen,Klima-/Ka"ltetechnik".Mu"nchen,November 1993.
    [18]刘合心,舒水明,胡中元.实用型载货汽车空调器[J].流体机械,2007,35(3):76-79.
    [19]J.Koehler, W.J.Tegethoff, D.Westphalen, et al. Absorption refrigeration system for mobile applications utilizing exhaust gases[J]. Heat and Mass Transfer,1997,32:333-340.
    [20]Izquierdo Millan, M. Arostegui, J.M. Martin Lazaro. Mobile Water-Lithium Bromide Absorption Machine Using the Engine Exhaust Gases as Energy Source [J].New Applications of Natural Working Fluids in Refrigeration and Air-Conditioning, May 10-13,1994:531-540.
    [21]周东一,石楚平,肖飚等.汽车发动机余热溴化锂吸收式制冷系统研究[J].制冷空调与电力机械,2008,155(4):25-28.
    [22]蒋皓波,陈光明,张肇剡.一个柴油机驱动的复合制冷循环[C].中国工程热物理学会学术会议,[会址不详],论文编号:981028.
    [23]路明,徐士鸣.汽车尾气余热制冷循环特性[J].制冷技术,2010(4):5-8.
    [24]Yang Zhao, Zhang Shigang, Zhao Haibe. Optimization study of combined refrigeration cycle driven by an engine[J]. Applied Energy,2003(76):379-389.
    [25]Feng Qin, Jiangping Chen, Manqi Lu, et al. Development of a metal hydride refrigeration system as an exhaust gas-driven automobile air conditioner[J], Renewable Energy,2007,32(8):2034-2052.
    [26]Wang Xinhua, Chen Changpin, Yan Mi, et al. Hydrogen Storage Alloy Pair for a Bus Air Conditioner[J]. J R are Earths,1994,12 (3):193.
    [27]倪久建,陈江平,覃峰等.汽车尾气余热驱动的金属化物制冷循环.能源技术,2004,25(6):231-234.
    [28]王新华,李寿权,陈立新等.汽车氢化物空调器用Ti-Mn系多元贮氢合金及复合氢化物床空调器性能[J].稀有金属材料与工程,2001,30(5):353-356.
    [29]王如竹,吴静怡,代彦军.吸附式制冷[M].北京:机械工业出版社,2002.
    [30]V. Johnson. Heat-generated cooling opportunities in vehicles[J]. SAE technical Papers.2002, No.2002-01-1969.
    [31]Peng Hu, Juan-Juan Yao, Ze-Shao Chen. Analysis for composite zeolite/foam aluminum-water mass recovery adsorption refrigeration system driven by engine exhaust heat[J]. Energy Conversion and Management.2009,50(2):255-261.
    [32]Jiangzhou Shu, Wang Ruzhu, Lu Yunzhuang, et al. Operational aspects of adsorption air-conditioner used in diesel locomotive[J]. Int. J. Energy Res.2006.30(15):1377-1390.
    [33]I.Hilali,M.S.Soylemez. On the optimum sizing of exhaust gas-driven automotive absorption cooling systems[J]. Int. J. Energy Res,2008,32 (7):655-660.
    [34]肖尤明,徐烈,张洁等.汽车空调余热溴化锂吸收式制冷装置传热分析[J].汽车工程,2004,26(4):492-495.
    [35]I. Borde. Working fluids for an absorption system based on R124 (2-chloro-1,1,1,2,-tetrafluoroethane) and organic absorbents [J]. International Journal of Refrigeration,1997,20(4):256-266.
    [36]A. K. Songara, M. Fatouhs and S. Srinivasa Murthy. Thermodynamic studies on HFC134a-DMA Double effect and cascaded absorption refrigeration systems [J]. International Journal of Energy research,1998,22,603-614.
    [37]V. Muthu, R. Saravanan. S. Renganarayanan. Experimental studies on R134a-DMAC hot water based vapor absorption refrigeration systems [J]. International Journal of Thermal Sciences 2008,47 (2):175-181.
    [38]徐士鸣.一种汽车发动机排气余热驱动的制冷机[P].中国.申请号:2009100127162,2009.4.
    [39]路明.汽车发动机排气废热/动力联合驱动的混合制冷循环特性研究[D].大连:大连理工大学能源与动力工程学院,2011.
    [40]余志生.汽车理论[M].北京:机械工业出版社,2000.
    [41]卫修敬,龚标.道路与滚筒上汽车滚动阻力的试验研究[J].江苏理工大学学报,1994.15(4):27-32.
    [42]许洪国.汽车加速-滑行工况参数的模拟和优化[J].中国公路学报,1989,2(3):76-84.
    [43]张学利,何勇.汽车动力性检测中的滚动阻力[J].公路交通科技,2000,17(5):93-96.
    [44]Rakha H, Lucic I. Vehicle Dynamics Model for Predicting Maxi-mum Truck Acceleration Levels[J]. Journal of Transportation En-gineering,2001,127(5):418-425.
    [45]高有山,李兴虎,黄敏等.汽车滑行阻力分析[J].汽车科技,2008(4),27-29.
    [46]刘秋颖,石磊,李胜达等.柴油机涡轮增压器匹配程序中排气温度预测模型的研究[J].内燃机与动力装置,2001,144(2):29-34.
    [47]焦其伟.大客车发动机热平衡分析与冷却水热量的利用计算[D].济南:山东大学,2008.
    [48]方贵银,李辉.汽车空调技术[M].北京:机械工业出版社,2002.
    [49]梁荣光,何文韶,朱志强等.现代汽车空调技术[M].广州:华南理工大学出版社,2003.
    [50]李代林,张华.汽车空调冷负荷的计算方法[J].客车技术与研究,2009(2):18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700