p型Mg_2Si_(1-x)Ge_x基热电化合物的制备和热电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中温领域(500-800K)热电材料可适用于汽车尾气废热、工厂废热等工业余废热的热电发电回收利用,有望大幅提高化石能源的利用率,其研究和开发对我国节能减排具有重要战略意义。 Mg2Si基热电材料,是一类重要的中温热电材料,具有原料蕴藏丰富、价格低廉、不含有稀缺Te元素、组成元素无毒和比重小等优点,近年来其研究受到国际上的广泛关注。n型Mg2Si1-xSnx基材料已经获得优异的热电优值ZT,而p型材料的热电性能还比较低,研究和优化p型Mg2Si基材料的热电性能对这类材料的商业发电应用具有重要的意义。其中Mg2Si1-xGex固溶体具有潜在的高热电性能最受关注。
     本论文围绕在Mg2Si基热电材料在实际应用过程中热电发电对高性能的n型和p型材料提出的重大需求,从应用的角度出发,针对p型Mg2Si基材料热电性能比较低的现状,首先探索了Mg2Si1-xGex固溶体的固相反应与SPS工艺制度,在此基础上,对可能具有优异热电性能的Mg2Si0.6Ge0.4组分进行掺杂,系统研究了Li、Ga分单独掺杂以及Li和Ga共同掺杂对p型Mg2Si0.6Ge0.4固溶体热电性能的影响规律。主要的研究内容和结果如下:
     采用两步固相反应法,在873-1073K反应24h得到单相的Mg2Si1-xGex固溶体化合物;采用SPS技术制备Mg2Si1-xGex固溶体块体,在1093K-1173K保温10min得到致密度高于99%的Mg2Si1-xGex固溶体块体;热电性能表明,不掺杂的Mg2Si1-xGex固溶体均表现为n型传导。随着Ge固溶量的增加,固溶体的电导率明显提高,而Seebeck系数则变化不大,热导率随着Ge含量的增加先增大后减小,Mg2Si0.6Ge0.4化合物在650K时获得最大ZT值0.32。
     Li的掺入成功将Mg2Si0.6Ge0.4固溶体的传导类型从n型传导转变为p型传导,Li的掺入作为电子受主有效地提高了材料的空穴浓度至-2.5×1019cm-3。样品的电导率和Seebeck系数随着Li含量的增加而增加,当x=0.035样品在700K获得最大功率因子0.97x10-3Wm-1K-2以及最大的热电优值0.36,这一结果为目前报道的p型Mg2Si材料体系获得的最好结果之一。Ga在Si/Ge位的掺杂成功将Fermi能级移动到价带顶的附近,使材料呈现p型传导。但是由于Ga在材料中低的掺杂极限,Ga掺杂样品表现出低的电导率,且x<0.6的样品中出现了复杂的p-n转变过程,这使得材料表现出较低的热电性能。其中x>0.6样品由于出现高电导的Mg2Ga杂相,材料具有较大的电导率和Seebeck系数,在650K取得最大ZT值为0.09。
     系统研究了Li和Ga含量变化对Mg2-xLix(Si0.6Ge0.4)1-yGay(0.035≤x≤0.05,0≤y≤0.04)固溶体热电性能的影响规律,结果表明Ga的引入并未能进一步提高Li掺杂样品的空穴浓度和电导率,相反大幅降低了其空穴浓度和电导率,使得材料的电性能和热电优值均有不同程度的降低。这表明Ga的掺入显著改变了Li在材料中的存在状态及掺杂效果,使得二者在材料中的实际掺杂量显著降低。x=0.05,y=0.02双掺样品在时具有最高的功率因子和最低的热导率,在800K时取得最大的ZT值为0.35,与Li单掺样品的最好性能相当,也为p型Mg2Si基材料的最好结果之一。
Medium-temperature (500-800K) thermoelectric materials could be used for reusing the exhaust heat of automobile and industrial waste heat and converting them into available electricity, and were prospective to increase the conversion efficiency of the fossil energy. Thus the investigation and development of these materials were strategically important for saving energy and reducing carbon emission in our country. Being one type of important medium-temperature thermoelectric materials, Mg2Si1-xSnx-based solid solutions have attracted considerable interest as prospective thermoelectric materials for waste heat recovery because of the features of their abundant and low cost chemical constituents, not containing scarce Te element, environmentally friendly, low density and so on. The n-type Mg2Si1-xSnx based solid solutions have received excellent thermoelectric figure of merit ZT, but the thermoelectric properties of p-type material is still relatively low. Therefore, the investigation and optimization of the thermoelectric performance of p-type Mg2Si based materials have significant effects on the application of thermoelectric power generation. Under this research situation, Mg2Si1-xGex solid solution, as the prospective p-type materials, become focus concern in thermoelectric research field.
     Focusing on the demands of highly effective n-type and p-type Mg2Si based material for medium temperature thermoelectric power generation, Mg2Si1-xGex solid solutions are promising candidates and are chosen for this research. We adopted a solid state reaction with followed spark plasma sintering (SPS) process for the synthesis of Mg2Si1-xGex solid solutions, and gained optimized parameters for both the solid state reaction and SPS. Based on this, we investigated the influence of single element doping and double doping of elements like Li and Ga, and optimized their ZT values. The main research content and results were listed below.
     Mg2Si1-xGex solid solutions could be prepared by two step solid state reaction at873-1073K for24h, and then be compacted into dense bulk (relative density higher than99%) by spark plasma sintering through heating at1093-1173K for l0min. Results indicated that, non-doped Mg2Si1-xGex solid solutions exhibited n-type conducion. The electrical conductivity of Mg2Si1-xGex were significantly enhanced with increasing Ge content while Seebeck coefficient remained stable. Meantime, thermal conductivity first increased and then decreased with the increase of Ge content. The largest ZT value of0.32was obtained at650K for Mg2Sio.6Geo.4.
     The type of conduction of Mg2Sio.6Geo.4solid solution was changed from n-type to p-type through the doping of Li. The hole concentration was improved to-2.5x1019cm-3with the addition of Li which acted as the electro acceptor. The electrical conductivity and the Seebeck coefficient of the sample increased with increasing Li content, and the maximum power factor of0.97x10-3Wm-1K-2and the largest dimensionless figure of merit ZT were obtained at the sample with x=0.035, which wss0.36at700K. This data was one of the best results in the p-type Mg2Si based material system. The addition of Ga can shift the Fermi level to the edge of valence band, thus Ga doped Mg2Si0.6Ge0.4presented a p-type conduction. However, because the solubility limit of Ga in Mg2Si0.6Ge0.4was very low, Ga doped samples displayed a low electrical conductivity. A complex p-n transition was found at x≤0.06which resulted in a very low thermoelectric performance. Due to the presence of Mg2Ga impurity phase that possessed very high electrical conductivity, the sample with x>0.06gained high electrical conductivity and Seebeck coefficient in the same time, and the maximum ZT value of0.09was obtained at650K.
     The investigation of Li and Ga double doping revealed that, the hole concentration of Mg2-xLix(Sio.6Ge0.4)i-yGay(0.035≤x≤0.05,0
引文
[1]Birol, F., World Energy Outlook 2010. International Energy Agency:Paris, France,2010.
    [2]Brown, M.A., Market failures and barriers as a basis for clean energy policies. Energy policy,2001.29(14):p.1197-1207.
    [3]Disalvo, F.J., Thermoelectric Cooling and Power Generation. Science,1999.285(5428): p.4.
    [4]唐葆君和石小平,中国能源消费和经济增长关系实证研究.中国能源,2012.33(11):p.34-38.
    [5]连红奎,李艳和顾春伟,我国工业余热回收利用技术综述.节能技术,2011.29(2):p.123-128.
    [6]Wang, C., et al., Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant. Energy,2012. Doi:org/10.1016/j.energy. 2012.01.045.
    [7]Ma, G., et al., Analytical Research on Waste Heat Recovery and Utilization of China's Iron & Steel Industry. Energy Procedia,2012.14:p.1022-1028.
    [8]Rowe, D.M., Thermoelectrics handbook:Macro to nano.2006:CRC press.
    [9]Snyder, GJ. and E.S. Toberer, Complex thermoelectric materials. Nature materials,2008. 7(2):p.105-114.
    [10]Bell, L.E., Cooling, Heating, Generating Power, and Recovering Waste Heat withThermoelectric Systems. Science,2008:p.5.
    [11]Tritt, T.M., Holey and unholey semiconductors. Science,1999.283(5403):p.804.
    [12]T. J. Seebeck,265,1822-1823, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin.1822.1822-1823,265.
    [13]J. C. Peltier, Ann. Phys. Chim,1834. LVI,371.
    [14]E. Altenkirsch, E. Phys. Z,1909.10,560.
    [15]D. M. C. M. B. Rowe, Morden Thermoelectricity.1983, Holt Rinchalt and Wiston London,28-37.
    [16]J. B. M. Cadoff. E. Thermoelectric Materials and Device.1961:New York, Reinhold Pub. Corp.84-92.
    [17]G. J. Snyder and T. S. Uresell, Thermoelectric efficiency and compatibility, Physical Review B,2003.91:148301.
    [18]G. S. Nolas, J. Sharp, and H. J. Goldsmid. Thermoelectrics Basic Principles and New Materials Developments. Springer,2001.
    [19]T. M. Tritt. Thermal Conductivity:Theory, Properties and Application, Kluwer Academic Plenum Publishers,2004.
    [20]G. A. Slack, D. M. Rowe. Handbook of Thermoelectrics. CRC Press, Boca Raton, FL,1995.
    [21]H. W. Mayer, I. Mikhail and K. Schubert. Uber einige phasen der Mischungen ZnSbN und CdSbN. Journal of the Less Common Metals,1978.59(1):43-52.
    [22]Sales, B., D. Mandrus, and R.K. Williams, Filled skutterudite antimonides:A new class of thermoelectric materials. Science,1996.272(5266):p.1325.
    [23]Kawaharada, Y., et al., Thermoelectric properties of CoSb3. Journal of Alloys and Compounds,2001.315(1-2):p.193-197.
    [24]Shi, X., et al., On the Design of High-Efficiency Thermoelectric Clathrates through a Systematic Cross-Substitution of Framework Elements. Advanced Functional Materials, 2010.20(5):p.755-763.
    [25]J. L. Cohn, G.S.N., V. Fessatidis, T. H. Metcalf, and G. A. Slack Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors, physical Review letters,1999.82:p.4.
    [26]Snyder, G.J., et al., Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nature materials,2004.3(7):p.458-463.
    [27]Caillat, T, J.P. Fleurial, and A. Borshchevsky, Preparation and thermoelectric properties of semiconducting Zn4Sb3. Journal of Physics and Chemistry of Solids,1997.58(7):p. 1119-1125.
    [28]Castanet, R., Y. Claire, and M. Laffite, Thermochemical Data Relative to the Tin-Tellurium and Lead Tellurium Systems. High Temp. High Press,1972.4:p.343-351.
    [29]Ravich, I.U.I., B.A. Efimova, and LA. Smirnov, Semiconducting lead chalcogenides. Vol.5. 1970:Plenum Publishing Corporation.
    [30]Wei, S.H. and A. Zunger, Electronic and structural anomalies in lead chalcogenides. Physical Review B,1997.55(20):p.13605.
    [31]Ravich, Y.I., B. Efimova, and V. Tamarchenko, Scattering of current carriers and transport phenomena in lead chalcogenides. physica status solidi (b),1971.43(1):p.11-33.
    [32]Pei, Y., et al., Convergence of electronic bands for high performance bulk thermoelectrics. Nature,2011.473(7345):p.66-69.
    [33]Bozin, E.S., et al., Entropically Stabilized Local Dipole Formation in Lead Chalcogenides. Science,2010.330(6011):p.1660-1663.
    [34]Androulakis, J., et al., Thermoelectrics from Abundant Chemical Elements: High-Performance Nanostructured PbSe-PbS. Journal of the American Chemical Society, 2011.133(28):p.10920-10927.
    [35]J. Yang, G. P. Meisner and L. Chen. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters. 2004.85(7):1140-1142.
    [36]Pei, Y., et al., Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency. Advanced Materials,2011.23(47):p.5674-5678
    [37]Pei, Y, et al., Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy & Environmental Science,2011.4(9):p. 3640.
    [38]Q. Shen, et al. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Applied Physics Letters,2001.79(25): 4165-4167.
    [39]Y. Xia, et al. Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases. Journal of Applied Physics,2000.88(4):1952-1955.
    [40]Girard, S.N., et al., High Performance Na-doped PbTe-PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures. Journal of the American Chemical Society,2011.133(41):p.16588-16597.
    [41]Cook, B.A., et al., Analysis of Nanostructuring in High Figure-of-Merit Ag1_xPbmSbTe2+m Thermoelectric Materials. Advanced Functional Materials,2009.19(8):p.1254-1259.
    [42]Quarez, E., et al., Nanostructuring, Compositional Fluctuations, and Atomic Ordering in the Thermoelectric Materials AgPbmSbTe2+m. The Myth of Solid Solutions. Journal of the American Chemical Society,2005.127(25):p.9177-9190.
    [43]Jaworski, C., et al., Antimony as an amphoteric dopant in lead telluride. Physical Review B, 2009.80(12).
    [44]He, J., On the Origin of Increased Phonon Scattering in Nanostructured PbTe Based Thermoelectric Materials. Journal of the American Chemical Society,2010.132(25), pp 8669-8675.
    [45]Kanishka Biswas, J.H., Qichun Zhang, Guoyu Wang, Ctirad Uher, Vinayak P. Dravid and Mercouri G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit. Nature Chemistry,2011.3:p.7.
    [46]Pei, Y., et al., Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency. Advanced Materials,2011.23(47):p.5674-5678.
    [47]Heremans, J.P., et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science,2008.321(5888):p.554.
    [48]Sales, B., et al., Filled skutterudite antimonides:Electron crystals and phonon glasses. Physical Review B,1997.56(23):p.15081.
    [49]Shi, X., et al., Multiple-Filled Skutterudites:High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports. Journal of the American Chemical Society,2011.133(20):p.7837-7846.
    [50]Li, H., et al., High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Applied Physics Letters,2009.94(10):p.102114.
    [51]Tani, J.-i. and H. Kido, Thermoelectric properties of Sb-doped Mg2Si semiconductors. Intermetallics,2007.15(9):p.1202-1207.
    [52]Higgins, J.M., et al., Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder Phase. Journal of the American Chemical Society,2008.130(47):p.16086-16094.
    [53]Kim, S.W., et al., High temperature thermoelectric properties of p-and n-type β-FeSi2 with some dopants. Intermetallics,2003.11(5):p.399-405.
    [54]Yasutoshi Noda.,et al.,Temperature dependence of thermoelectric properties of Mg2Si0.6Ge0.4, Materials transactions, JIM, vol.33, No.9 (1992), pp.851 to 855.
    [55]Liu W., X. Tang, H. Li, J. Sharp, X.Y. Zhou, and C. Uher, Optimized Thermoelectric Properties of Sb-Doped Mg2(1+z)Sio.5-ySno.5Sby through Adjustment of the Mg Content Chemistry of Materials,2011.23:p.8.
    [56]Gao, H., et al., Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Sio.5Sn0.5 solid solutions for energy harvesting. Journal of Materials Chemistry,2011. 21(16):p.5933.
    [57]Bux, S.K., et al., Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. Journal of Materials Chemistry,2011.21(33):p.12259.
    [58]Li, S., et al., Synthesis and Thermoelectric Properties of the New Oxide Materials Ca3-xBixCo4O9+δ (0.0< x< 0.75). Chemistry of Materials,2000.12(8):p.2424-2427.
    [59]Aoyama, I., et al., Effects of Ge Doping on Micromorphology of MnSi in MnSi1.7 and on Their Thermoelectric Transport Properties. Japanese Journal of Applied Physics,2005. 44(12):p.8562-8570.
    [60]Zaitsev V.K., Fedorov M.I., et al. Highly effective Mg2Si1_xSnx thermoelectrics. Physcal Review B,2006.74(01):045207.
    [61]Isoda Y., Nagai T., Fujiu H., et al. Thermoelectric Properties of Sb-doped Mg2Sio.5Sn0.5. In:25th International Conference on Thermoelectrics.Austria:IEEE,2006:406-410.
    [62]Zhang Q., Zhao X.B. et al. High figure of merit and natural nanostructure in Mg2Sio.4Sno.6 based thermoelectric materials, Aplied Physics Letters,2008.93:102109.
    [63]H Ihou-Mouko, C Mercier, J Tobola, G. Pont, H Scherrer,2010 J.Alloys Comp. S0925-8388(11)00666-9.
    [64]V. K. Zaitsev, M. I. Fedorov, I. S. Eremin and E. A. Gurieva. Thermoelectric Handbook:Macro to Nano. D. M. Rowe, CRC Taylor & Francis,2006
    [65]V. K. Zaitsev, et al. Highly Effective Mg2Si1-xSnx Thermoelectrics. Physical Review B, 2006.74:045207
    [66]J. Tani, H. Kido. Thermoelectric Properties of Sb-doped Mg2Si Semiconductors.Intermetallics,2007.15:1202-1207.
    [67]J. Tani, H. Kido. Thermoelectric Properties of Bi-doped Mg2Si Semiconductors. Physica B,2005.364:218-224.
    [68]A. F Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling.1957. Infosearch, London.
    [69]V. K. Zaitsev, M. I. Fedorov, I. S. Eremin and E. A. Gurieva. Thermoelectric Handbook:Macro to Nano. D. M. Rowe, CRC Taylor & Francis,2006.
    [70]J. Tani, H. Kido. Thermoelectric Properties of Al-doped Mg2Si,-xSnx (x≤0.1). Journal of Alloys and Compounds,2008.466:335-340
    [71]J. Tani, H. Kido. Thermoelectric Properties of Sb-doped Mg2Si Semiconductors. Intermetallics,2007.15:1202-1207.
    [72]J. Tani, H. Kido. Thermoelectric Properties of Bi-doped Mg2Si Semiconductors. Physica B,2005.364:218-224.
    [73]Y. Isoda, et al. The Effect of Bi doping on Thermoelectric Properties of Mg2Sio.5Sno.5. Proceedings of the 26th International Conference on Thermoelectrics,2007: 251.
    [74]W. J. Luo, et al. Fabrication and Thermoelectric Properties of Mg2Si1_xSnx (0    [75]S. Bux, M. T. Yeung, E. S. Toberer, G.. J. Snyder, R. B. Kaner and J. P. Fleurial. Mechanochemical Synthesis and Thermoelectric Properties of High Quality Magnesium Silicide. Journal of Materials Chemistry,2011.21:12259-12266.
    [76]Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I. A. Nishida and K. Masumoto. Preparation and Thermoelectric Properties of Mg2Si1.xGex (x=0-0.4) Solid Solution Semiconductors. Materials Transactions, JIM 1992.33(9):845-850.
    [77]G. N. Isachenko, V. K. Zaitsev, M. I. Fedorov, et al. The Study of P-type Material Based on Sn-rich Mg2Si-Mg2Sn Solid Solution. In Proceedings of the 26th International Conference on Thermoelectrics,2007.248-50.
    [78]M. I. Fedorov, V. K. Zaitsev, I. S. Eremin, et al. Transport Properties of Mg2X0.4Sn0.6 Solid Solutions (X= Si, Ge)with p-type Conductivity. Phys Solid State,2006.48: 1486-1890.
    [79]Y. Isoda, S. Tada, T. Nagai, et al. Thermoelectric Properties of p-type Mg2.00Si0.25Sn0.75 with Li and Ag Double Doping. Journal of Electronic Materials,2010.
    [80]H. Y. Chen and N. Savvides. Microstructure and Thermoelectric Properties of n-and p-type doped Mg2Sn Compounds Prepared by the Modified Bridgman Method. Journal of Electronic Materials,2009.38(7):1056-1060.
    [81]W. J. Luo, M. J. Yang, Q. Shen, H. Y. Jiang and L. M. Zhang. Effect of Bi Doping on the Thermoelectric Properties of Mg2Si0.5Sn0.5 Compounds. Advanced Materials Research,2009. (66):33-36.
    [82]K MARS, H IHOU-MOUKO, G. PONT, J TOBOLA, H SCHERRER.2009 J. Electron. Mater, s11664-009-0735-1.
    [83]Y ISODA, S TADA, T NAGAI, H FUJIU, and Y SHINOHARA 2010 J.Electron.Mater. 11664-010-1280-7.
    [84]姜洪义,龙海山,张联盟.用低温固相反应制备p型Mg2Si基热电材料.硅酸盐学报,2004,32(9):1094-1097.
    [85]冷永刚,姜洪义,张联盟Mg2Si1-xGex热电化合物的固相反应合成.硅酸盐学报,2002,32(9):1094-]097
    [86]Y. Isoda, et al. The Effect of Bi doping on Thermoelectric Properties of Mg2Sio.5Sno.5.Proceedings of the 26th International Conference on Thermoelectrics,2007: 251.
    [87]J. Tani, H. Kido. Thermoelectric Properties of Al-doped Mg2Si1-xSnx (x≤0.1). Journal of Alloys and Compounds,2008.466:335-340.
    [88]M. Akasaka, T. Iida, K. Nishio and Y. Takanashi. Composition Dependent Thermoelectric Properties of Sintered Mg2Si1-xGex (x=0 to 1) Initiated From a Melt-grown Polycrystalline Source.2007.515(22):8237-8241.
    [89]M. Riffel, J. Schilz. Mechanically Alloyed Mg2Si1_xSnx Solid Solution as Thermoelectric Materials. In 15th International Conference on Thermoelectric, Pasadena, California: IEEE,1996:133-136.
    [90]X. Niu and L. Lu. Advanced Performance Materials. Formation of magnesium silicide by mechanical alloying,1997.4,275-283.
    [91]Song R.B., Aizawa T., Sun J. Q. Synthesis of Mg2Si1_xSnx solid solution as thermoelectric materials by bulk mechanical alloying and hot pressing. Materials Science and Engineering B,2007.136(1):111-117.
    [92]Tatsuhiko Aizawa, Renbo Song. Mechanically induced reaction for solid-state synthesis of Mg2Si and Mg2Sn.Intermetallics,2006.14(4):382-391
    [93]H Ihou-Mouko, C Mercier, J Tobola, G. Pont, H Scherrer,2010 J.Alloys Comp. S0925-8388(11)00666-9 。
    [94]K MARS, H IHOU-MOUKO, G. PONT, J TOBOLA, H SCHERRER.2009 J. Electron. Mater, s11664-009-0735-1。
    [95]Liu W, Tang X F, Sharp J 2010 J. Phys.D:Appl. Phys.43,085406
    [96]G.S Nolas, G Slack, D T Morelli, T M Tritt, A C Ehrlich 1996 J. Appl. Phys. 79(8):4002-4008
    [97]K Mars, G Pont, L Chaput, D Fruchart, J obola, H Scherrer,2008 Proceedings of European Conference on Ther-moelectrics, Paris, France
    [98]Liu Q Z, Zhang L M, et al 2006 Key Engineering Materials 313:177-182
    [99]S Kaprzyk, A Bansil,1990 Phys. Rev. B;42,7358
    [100]M I Fedorov, V K Zaitsev, I S Eremin, E A Guricva, A T Burkov, P P Konstantinov, M V Vedemikov, A Yu Samunin, G N Isachenko, A A Shabaidin 2006 Phys. Solid State; 48(8):1486-1490

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700