钡铟双原子填充方钴矿热电材料的电子结构与电热输运性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
方钴矿热电材料在200-500℃中温区具有优异的热电性能和结构稳定性,被认为是太阳能热电-光电复合发电和汽车尾气余热发电的关键材料。本论文以(Ba,In)双原子填充方钴矿材料为研究对象,围绕该材料的热电性能优化、电热输运物理机制及其应用可行性问题,研究该材料的电热输运性能;测量该材料的X射线光电子能谱(XPS)和同步辐射X射线吸收近边结构(XANES)和扩展X射线吸收精细结构(EXAFS)并结合多重散射理论和第一性原理计算,系统研究In在方钴矿中的存在形式和(Ba,In)双原子填充方钻矿的化学成键与电子结构;在此基础上,研究该材料在循环热载荷作用下结构和热电性能的热稳定性。
     采用熔融-淬火-退火和放电等离子烧结工艺制备了名义组成为Ba0.3InxCo4Sb12(0≤0.3,Δx=0.05)的(Ba,In)双原子填充方钴矿块体材料,研究了In填充对(Ba,In)双原子填充方钻矿材料的物相组成、显微结构和热电性能的影响。结果表明,材料的实际组成可表示为BarInsCo4Sb12(0.14≤r≤0.25,0≤s≤0.23)。随x增大,r逐渐减小,s逐渐增大,总填充分数r+s逐渐增大。In填充对材料显微结构的影响很小。随r减小和s增大,材料的载流子浓度逐渐升高,迁移率逐渐降低。与Ba单原子填充方钴矿材料相比,(Ba,In)双原子填充方钻矿材料的晶格热导率明显降低,功率因子显著增大,材料ZT值大幅度提高。Ba0.15In0.16Co4Sb12和Ba0.14In0.23Co4Sb12材料的ZT值在850K分别达到1.33和1.34。
     采用XANES和EXAFS技术并结合多重散射理论计算,深入研究了In掺杂方钴矿InxCo4Sbi2(0≤x≤0.25)材料中In的存在形式。InxCo4Sbi2的In K边XANES实测谱的特征结构指示In存在于方钴矿晶格内。采用多重散射理论计算了In填充方钴矿中Sb12二十面体空隙位和取代方钴矿中Sb位和Co位三种情况下的In K边XANES理论谱,发现In填充时其理论谱与实测谱最吻合,两种取代情况下的In K边XANES理论谱均与实测谱相差较大,这为In能够填充方钴矿中Sb12二十面体空隙提供了直接证据。In0.2Co4Sb12的In K边EXAFS谱分析进一步证实In能够填充方钴矿中Sb12二十面体空隙。In填充方钴矿的第一性原理计算表明,In填充原子与邻近Sb原子以弱共价键结合,In在价带中央和费米能级附近形成超深缺陷态和深缺陷态,分别属于In-Sb弱共价键的成键态和反键态。
     建立了方钻矿CoSb3中Sb4矩形四元环的不等性sp电子轨道杂化模型,采用XPS和EXAFS技术研究了(Ba,In)双原子填充方钴矿BarInsCo4Sb12的化学成键和局域结构。提出CoSb3结构中两个Sb原子通过不等性sp电子轨道杂化方式形成能量不等、相互垂直的ββσ键和ppσ键,分别构成Sb4矩形四元环的Sb-Sb短键和长键。BarInsCo4Sb12的Sb3d5/2XPS芯级谱定量分析表明,In与Sb之间的电子轨道杂化导致Sb4矩形四元环增大和更方,Ba与Sb之间的电荷转移导致Sb4矩形四元环缩小和更方。BarInsCo4Sb12的Sb K边EXAFS实测谱拟合分析进一步证实(Ba,In)双原子填充可导致Sb4四元环由矩形向正方形转变。Sb4四元环形状变化引起的晶格畸变可合理解释(Ba,In)双原子填充方钻矿材料的晶格热导率大幅度降低现象。
     采用XPS和XANES技术结合第一性原理计算,研究了(Ba,In)双原子填充方钴矿BarInsCo4Sb12的价带和导带电子结构。理论计算表明,未填充和填充方钴矿的价带电子结构均可用8个精细电子态模型描述,Ba和In填充引起Sb5p成键态附近产生局域电子共振态。BarInsCo4Sb12的XPS价带电子谱定量分析表明,用8个精细电子态模型可合理描述其价带结构,观察到Sb4四元环的Sb5p成键态在价带中央产生简并现象,这与BarInsCo4Sb12中Sb4四元环变方引起的对称性升高有关。BarInsCo4Sb12的XANES谱分析表明,未填充方钴矿CoSb3导带底的电子态密度源于Co3d和Sb5p未占据态的贡献,In填充原子在费米能级附近形成局域电子共振态,(Ba,In)双原子填充导致Sb K边XANES谱的吸收边强度增加,指示位于导带底的Sb4四元环Sb5p反键态的能带结构发生了简并,这与Sb4四元环对称性升高有关。导带底部能带简并和In填充原子在费米能级附近引起的局域电子共振态是(Ba,In)双原子填充方钻矿材料具有优异电输运性能的物理基础。
     (Ba,In)双原子填充方钴矿块体材料在室温-450。C-室温的循环热载荷作用下其结构和热电性能的热稳定性研究表明,循环热载荷作用会导致材料晶界处产生次生沉积物、出现Ba富集和Sb缺失现象,材料内部析出Ba5Sb3;循环热载荷作用初期,材料电导率逐渐降低和Seebeck系数绝对值逐渐增大,这源于晶界处次生沉积物引起的电子能量过滤效应;晶格热导率随循环热载荷作用次数增多而逐渐增大,这与Ba填充原子从Sb12二十面体空隙中析出有关;循环热载荷作用后,材料的ZT值变化幅度较小,800K时ZT值为1.20的初始材料经2000次循环热载荷作用后仍为1.14,仅下降了5.0%。材料的热电性能在升温和降温过程中与温度的关系曲线表明可以不考虑循环热载荷作用引起的微结构弛豫对热电性能的影响。这些实验结果为(Ba,In)双原子填充方钴矿热电材料具有优异的热稳定性和可以应用于工作温度呈周期性变化的太阳能热电-光电复合发电系统提供了依据。
Skutterudite thermoelectric materials exhibit superior thermoelectric transport properties and robust structural stability in the moderate temperature range (200-500℃), have been considered as critical materials in solar thermoelectric-photovoltaic hybrid power generation and vehicle exhaust waste heat power generation. In this dissertation,(Ba,In) double-filled skutterudite materials were focused on as research object with the aim to explore the relevant issues about thermoelectric properties optimization, physical mechanism of thermoelectric transport properties, and feasibility of application. The thermoelectrical properties of (Ba,In) double-filled skutterudite materials were investigated. X-ray photoelectron spectroscopy (XPS) and synchrotron radiation X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques, along with multiple-scattering and first principle theoretical calculations, were used to investigate the existence form of In in skutteruidite and the chemical bond and electronic structure of (Ba,In) double-filled skutterudite compounds. On these bases, the thermal stability of structure and thermoelectric properties of these materials during the periodically thermal loading were studied.
     (Ba,In) double-filled skutterudite bulk materials with nominal composition Ba0.3InxCo4Sb12(0≤x≤0.3, Δx=0.05) were fabricated by melting-annealing-quenching and spark plasma sintering approaches. The effect of In filling on the composition, microstructure, and thermoelectric properties of (Ba,In) double-filled skutterudite materials were investigated. The results indicated that the actual compositions of these materials can be expressed as BarInsCo4Sb12(0.14≤t≤0.25,0≤s≤0.23). With increasing x, r decreased and s increased, and the total filling fraction r+s increased. In filling has less impact on the microstructure of BarInsCo4Sb12materials. With decreasing r and increasing s, carrier concentration gradually increased while mobility decreased. Compared with Ba single-filled skutterudite, lattice thermal conductivity of (Ba,In) double-filled skutterudites dramatically depressed and power factor significantly improved, leading to the remarkable enhancement in ZT. ZT values of1.33and1.34at850K were achieved for Ba0.15In0.16Co4Sb12and Ba0.14In0.23Co4Sb12materials.
     The existence form of In in In doped skutterudites materials InxCo4Sb12(0≤x<≤0.25) was investigated in depth by using XANES and EXAFS techniques associating with multiple-scattering theoretical calculations. The characteristic absorption structures of In K-edge XANES experimental spectra of InxCo4Sb12indicated that In has been incorporated into the lattice of skutterudite. The XANES theoretical spectra of three different cases, corresponding to In filling Sb12icosahedron void, substituting Sb and Co sites of skutterudite, were calculated by multiple-scattering theory. The best agreement between experimental and theoretical XANES spectra were observed when In filling Sb12icosahedron void, while significant differences between experimental and theoretical XANES spectra were found for the rest two cases, which provided direct evidence that In can fill Sb12icosahedron void of skutterudite. The analysis of EXAFS spectrum of Ino.2Co4Sb12compound further confirmed that In has filled Sb12icosahedron void. First principle calculations demonstrated the weak bond between In and neighboring Sb and that In filler forms a hyper-deep defect state in the middle of valence-band and a deep defect state near Fermi level, which are derived from bonding state and antibonding state of In-Sb bond, respectively.
     An inhomogeneous sp electron orbital hybridization model of Sb4rectangle ring was proposed to understand the formation mechanism of Sb4rectangle ring of skutterudite CoSb3. The chemical bond and local structure of (Ba,In) double-filled skutterudites BarInsCo4Sb12were investigated by XPS and EXAFS techniques. It was found that the orthogonal ββσbond and ppσ bond with different energy, corresponding to the Sb-Sb short bond and Sb-Sb long bond, are formed by inhomogeneous sp orbital hybridization of two Sb atoms in Sb4ring. The quantitative analysis of Sb3d5/2core-level XPS spectra indicated that the orbital hybridization between In and Sb makes Sb4ring bigger and squarer, and the charge transfer from Ba to Sb makes Sb4ring smaller and squarer. The fitness of Sb K-edge EXAFS spectra of BarInsCo4Sb12further confrimed that Ba and In double-filling results in the shape transition of Sb4ring from rectangle to square. The lattice distortion caused by shape transition of Sb4ring can reasonably explain the dramatic depression of lattice thermal conductivity of (Ba,In) double-filled skutterudite materials.
     The valence-band and conduction-band electronic structure of (Ba,In) double-filled skutterudites BarInsCo4Sb12were studied by XPS and XANES techniques associating with the first principle calculation. Theoretical calculations indicated that the valence-band can be described by an eight electronic states model for unfilled and filled skutterudites. Ba and In filling resulted in localized resonant states near Sb5p bonding state. The quantitative analysis of valence-band XPS spectra of BarInCo4Sb12revealed that their valence-band structure can be reasonably described by the eight electronic states model. The degeneracy of Sb5p bonding state of Sb4ring in the middle of valence-band was observed, which was related to the enhanced symmetry of Sb4ring due to the shape transition of Sb4ring from rectangle to square in BarInsCo4Sb12. The XANES spectra analysis of Ba,InrCo4Sb12revealed that the electronic density of states at conduction-band bottom are mainly contributed from Co3d and Sb5p unoccupied states, In forms localized resonant states in the vicinity of Fermi level. The enhancement of absorption edge intensity of Sb K-edge XANES suggested the degeneracy of Sb5p antibonding states of Sb4ring at conduction-band bottom, which was due to the enhanced symmetry of Sb4ring caused by Ba and In double-filling. The band degeneracy behavior of conduction-band bottom and the localized resonant states near the Fermi level derived from In filler were found to be the physical mechanism of the excellent power factor of (Ba,In) double-filled skutterudites.
     The thermal stability of structure and thermoelectric properties of (Ba,In) double-filled skutterudite bulk materials during periodically thermal loading at RT-450℃-RT were investigated. The results indicated that thermal loading led to the secondary precipitation, enrichment of Ba and loss of Sb and Co on the grain boundaries, separation of BasSb3from interior. In the early of periodically thermal loading, electrical conductivity decreased and the absolute Seebeck coefficient increased, which should be attributed to energy filtering effect caused by the secondary precipitates along the boundary. Lattice thermal conductivity increased with the cycles of thermal loading, which should be related to the separation of Ba filler from Sb12icosahedron voids. The variations of ZT values were unremarkable after thermal loading, ZT value of1.14at800K was remained after2000cycles for as-prepared material with initial ZT value of1.20, showing a degradation of only5.0%. The temperature dependence of thermoelectric properties measured during the process of increasing and decreasing temperature indicated that the micro structure relaxation caused by thermal loading has neglected effect on the thermoelectric properties. These experimental results confirmed that (Ba,In) double-filled skutterudite materials have excellent performance stability and are suitable for the application in the solar thermoelectric-photovoltaic hybrid power generation system with periodical temperature fluctuation working environment.
引文
[1]Tritt T., Semiconductors and semimetals, Volume 70:Recent trends in thermoelectric materials research [M], Part Two, Academic Press,2000.
    [2]Li Jing-Feng, Liu Wei-Shu, and Li-Dong Zhao, et al. High-performance nanostructured thermoelectric materials [J]. NPG Asia Mater.2010,2(4) 152-158.
    [3]Riffat S. B., Ma Xiaoli. Thermoelectrics:a review of present and potential applications [M]. Appl. Therm. Eng.2003,23,913-935.
    [4]Tritt T. M.and Subramanian M. A.. Thermoelectric materials, phenomena, and applications: A bird's eye view [J]. MRS Bull.2006,31,188-198.
    [5]Pei Yanzhong, Shi Xiaoya, and LaLonde Aaron, et al. Convergence of electronic bands for high performance bulk thermoelectrics [J]. Nature 2011,473,66-69.
    [6]Rowe D. M., CRC Handbook of Thermoelectrics (M), CRC Press,1995.
    [7]Snyder G. J. and Toberer E. S., Complex thermoelectric materials [J]. Nature Mater.2008,7, 105-114.
    [8]Cutler M., Leavy J. F., and Fitzpatrick R. L.. Electronic transport in semimetallic cerium sulfide [J]. Phys. Rev.1964,133, A1143-A1152.
    [9]Minnich A. J., Dresselhaus M. S., and Ren Z. F., et al. Bulk nanostructured thermoelectric materials:current research and future prospects [J]. Energy Environ. Sci.2009,2,466-479.
    [10]Koumoto K., Terasaki I., and Funahashi R.. Complex oxide materials for potential thermoelectric applications [J]. Mater. Res. Soc. Bull.2006,31,206-210.
    [11]Snyder G. J., Caillat T., and Fleurial J.-P. Thermoelectric transport and magnetic properties of the polaron semiconductor FexCr3-xSe4 [J]. Phys. Rev. B 2000,62,10185.
    [12]刘恩科,朱秉升,罗晋生等,半导体物理学[M],北京,国防工业出版社,2006.
    [13]Sales B. C., Mandrus D., and Chakoumakos B. C., et al. Filled skutterudite antimonides: Electron crystals and phonon glasses [J]. Phys. Rev. B 1997,56(23),15081-15089.
    [14]Goldsmid H. J., Electronic refrigeration [M]. Pion Limited, London,1986,29-63.
    [15]Glassbrenner G. A. and Slack G. A.,29 Thermal conductivity of silicon and germanium from 3°K to the melting point. Phys. Rev.1964,134, A1058.
    [16]黄昆原著,韩汝琦改编,固体物理学[M],高等教育出版社,北京,1988.
    [17]Slack, G. A., Solid State Physics [M]. Academic Press, New York,1979.
    [18]Dames C. and Chen G., Thermoelectrics Handbook Macro to Nano [M]. (ed. Rowe, D. M.) Ch.42, CRC Press, Boca Raton,2006.
    [19]Slack G. A., CRC Handbook of Thermoelectrics [M] (ed. Rowe, M.) CRC Press, Boca Raton,1995,407-440.
    [20]Cohn J. L., Nolas G. S., and Fessatidis V., et al. Glasslike heat conduction in high-mobility crystalline semiconductors [J]. Phys. Rev. Lett.1999,82(4),779-782.
    [21]Mahan G. D. and Sofo J. O., The best thermoelectric [J]. Proc. Natl. Acad. Sci. USA,1996, 93,7436-7439.
    [22]Dresselhaus M., S., Chen G., and Tang M. Y., New directions for low-dimensional thermoelectric materials [J]. Adv. Mater.2007,19,1043-1053.
    [23]Hicks L. D., and Dresselhaus M. S.. Effect of quantum-well structures on the thermoelectric figure of merit [J]. Phys. Rev. B 1993,47,12727-12731.
    [24]Hicks L. D., Harman T. C., and Dresselhaus M. S., Use of quantum well superlattices to obtain high figure of merit from nonconventional thermoelectric materials [J]. Appl. Phys. Lett.1993,63,3230.
    [25]Harman T. C., Taylor P. J., and Spears D. L., in Proc. for the 18th Int. Conf. on Thermoelectrics [C], AIP, New York 1999.
    [26]Hicks L. D., Harman T. C., and Dresselhaus M. S. et al. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit [J]. Phys. Rev. B 1996,53, R10493.
    [27]Venkatasubramanian R., in Semiconductors and semimetals:Recent trends in thermoelectric materials research Ⅲ [M]. (Ed:T. M. Tritt), Academic Press, San Diego, CA,2001, Ch.4, 175-201.
    [28]Harman T. C., Walsh M. P., and LaForge B. E., et al. Nanostructured thermoelectric materials [J]. J. Electron. Mater.2005,34, L19-22.
    [29]Harman T. C., Taylor P. J., and Walsh M. P., et al. Quantum dot superlattice thermoelectric materials and devices [J]. Science 2002,297 (5590),2229-2232.
    [30]Harman T. C., Taylor P. J., and Walsh M. P., et al. Thermoelectric quantum-dot superlattices with high ZT [J]. J. Electron. Mater.2000,29, L1-4.
    [31]Lin Y.-M., Cronin S. B., and Ying J. Y, et al. Transport properties of Bi nanowire arrays [J]. Appl. Phys. Lett.2000,76,3944-3946.
    [32]Lin Y.-M., Dresselhaus M. S., and Ying J. Y., Advances in Chemical Engineering [M]. (Ed: K. Ricci), Academic, York, PA,2001, Ch.5,167-203.
    [33]Lin Y.-M. and Dresselhaus M. S., Thermoelectric properties of superlattice nanowires [J]. Phys. Rev. B 2003,68,075304.
    [34]Hochbaum Allon I., Chen Renkun, and Delgado Raul Diaz, et al. Enhanced thermoelectric performance of rough silicon nanowires [J]. Nature 2008,451,163-167.
    [35]Boukai Akram I., Bunimovich Yuri, and Tahir-Kheli Jamil, et al. Silicon nanowires as efficient thermoelectric materials [J]. Nature 2008,451,168-171.
    [36]Markussen Troels, Jauho Antti-Pekka, and Brandbyge Mads. Surface-decorated silicon nanowires:A route to high-ZT thermoelectrics [J]. Phys. Rev. Lett.2009,103,055502.
    [37]Sootsman Joseph R., Chung Duck Young, and Kanatzidis M. G. New and old concepts in thermoelectric materials [J]. Angew. Chem. Int. Ed.2009,48,8616-8639.
    [38]Hsu K. F., Loo S., and Guo F., et al. Cubic AgPbmSbTe2+m:Bulk thermoelectric materials with high figure of merit [J]. Science,2004,303,818-821.
    [39]Quarez E., Hsu K. F., and Pcionek R., et al. Nanostructuring, Compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2+m The myth of solid solutions [J]. J. Am. Chem. Soc.2005,127,9177-9190.
    [40]Poudeu Pierre F. P., D'Angelo Jonathan, and Downey Adam D., et al. High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type Na1-xPbmSbyTem+2 [J].Angew. Chem. Int. Ed.2006,45,3835-3839.
    [41]Cook Bruce A., Kramer Matthew J., and Harringa Joel L., et al. Analysis of nanostructuring in high figure-of-merit Ag1-xPbmSbTe2+m thermoelectric materials [J]. Adv. Funct. Mater. 2009,19,1-6.
    [42]He Jiaqing, Girard Steven N., and Kanatzidis M. G., et al. Microstructure -lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials [J]. Adv. Funct. Mater.2010,20,764-772.
    [43]He Jiaqing, Sootsman Joseph R., and Girard Steven N., et al. On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials [J]. J. Am. Chem. Soc.2010,132,8669-8675.
    [44]Ahn Kyunghan, Han Mi-Kyung, and He Jiaqing, et al. Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit [J]. J. Am. Chem. Soc.2010,132,5227-5235.
    [45]Kanatzidis M. G., Nanostructured thermoelectrics:the new paradigm [J]? Chem. Mater. 2010,22,648-659.
    [46]Pei Y., Lensch-Falk J., and Toberer E. S., et al. High thermoelectric performance in PbTe due to large nanoscale Ag2 Te precipitates and La doping [J]. Adv. Funct. Mater.2011,21, 241-249.
    [47]Xie Wenjie, He Jian, Kang Hye Jung, and Xinfeng Tang, et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites [J]. Nano Lett.2010,10,3283-3289.
    [48]Shi X., Yang J., and Salvador J. R., et al. Multiple-filled skutterudites:high thermoelectric figure of merit through separately optimizing electrical and thermal transports [J]. J. Am. Chem. Soc.2011,133,7837-7846.
    [49]Ahmad S., Mahanti S. D., and Hoang K., et al. Ab initio studies of the electronic structure of defects in PbTe [J]. Phys. Rev. B 2006,78 74,155205.
    [50]Ahmad S., Hoang K., and Mahanti S. D., Ab initio study of deep defect states in narrow band-gap semiconductors:Group III impurities in PbTe [J]. Phys. Rev. Lett.2006,96, 056403.
    [51]Hoang K. and Mahanti S. D.. Electronic structure of Ga-, In-, and T1-doped PbTe:A supercell study of the impurity bands [J]. Phys. Rev. B 2008,78,085111.
    [52]Heremans Joseph P., Jovovic Vladimir, and Toberer Eric S., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states [J]. Science 2008,321, 554-557.
    [53]DiSalvo F. J., Thermoelectric cooling and power generation [J]. Science 1999,285, 703-706.
    [54]Oftedal I., The crystal structure of skutterudite and smaltite-chloanthite [J]. Z. Kristallogr. 1928, A66,517.
    [55]Jeitschko W. and Brown D. J., LaFe4P12 with filled CoAs3-type structure and isotypic lanthanoid-transition metal polyphosphides [J]. Acta Crystallog.1977, B33,3401.
    [56]Caillat T., Borshchevsky A., and Fleurial J. P., Proc.11th International Conference on Thermoelectrics [C], Univ. of Arlington, TX, (K. R. Rao, ed.),1992,276.
    [57]Sales B. C., in Handbook on the physics and chemistry of rare earths [M]. Edited by K. A. Gschneidner, Jr., Bunzli J.-C. G, and Pecharsky V. K. (Elsevier, Amsterdam) Vol.33, Chap. 211,2003,1-34.
    [58]Uher C., in Semiconductors and Semimetals, Recent trends in thermoelectric materials research [M]. Edited by Tritt T. M. (Academic, San Diego), Vol.69,2000,139-253.
    [59]Ventriglia U., [J] Periodico Mineral (Rome) 1957,26,345.
    [60]Kjekshus A., Nicholson D. G., and Rakke T. Compounds with the skutterudite type crystal structure. I. On Oftedal's relation [J]. Acta Chem. Scand.1973,27,1307.
    [61]Dudkin L. D.. The chemical bond in semiconducting cobalt triantimonide [J]. Sov. Phys.--Tech. Phys.1958,3,216-219.
    [62]Jung D., Whangbo M. H., and Alvarez S.. Importance of the X4 ring orbitals for the semiconducting, metallic, or superconducting properties of skutterudites MX3 and RM4X12 [J]. Inorg. Chem.1990,29,2252-2255.
    [63]Singh D. J. and Pickett W. E.. Skutterudite antimonides:Quasilinear bands and unusual transport [J]. Phys. Rev. B 1994,50,11235.
    [64]Rakoto H., Respaud M., and Broto J. M., et al. The valence band parameters of CoSb3 determined by Shubnikov-de Haas effect [J]. Physica B 1999,269,13.
    [65]Anno H., Matsubara K., and Caillat T. et al. Valence-band structure of the skutterudite compounds CoAs3, CoSb3, and RhSb3 studied by X-ray photoelectron spectroscopy [J]. Phys. Rev. B 2000,62,10737.
    [66]Caillat T., Borshchevsky A., and Fleurial J. P., Properties of single crystalline semiconducting CoSb3 [J]. J. Appl. Phys.80,1996,4442-4449.
    [67]Nordstrom Lars and Singh David J.. Electronic structure of Ce-filled skutterudites [J]. Phys. Rev. B 1996,53(3),1103-1108.
    [68]Chen Baoxing, Xu Jun-Hao, and Uher Ctirad, et al. Low-temperature transport properties of the filled skutterudites CeFe4-xCoxSb12 [J]. Phys. Rev. B 1997,55(3) 1476-1480.
    [69]Nolas G. S., Slack G. A., and Morelli D. T., et al. The effect of rare-earth filling on the lattice thermal conductivity of skutterudites [J]. J. Appl. Phys.1996,79 (8) 4002.
    [70]Nolas G. S., Kaeser M., and Littleton R. T. IV, et al. High figure of merit in partially filled ytterbium skutterudite materials [J]. Appl. Phys. Lett.2000,77(12),1855-1857.
    [71]Grytsiv A., Rogl P., and Berger S., et al. Structure and physical properties of the thermoelectric skutterudites EuyFe4-xCoxSb12 [J]. Phys. Rev. B 2002,66,094411.
    [72]Lamberton G. A., Jr. Bhattacharya S., and Littleton R. T. IV, et al. High figure of merit in Eu-filled CoSb3-based skutterudites [J]. Appl. Phys. Lett.2002,80(4),598.
    [73]Chen L. D., Kawahara T., and Tang X. F., et al. Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12 [J]. J. Appl. Phys.2001,90(4) 1864-1868.
    [74]Dyck Jeffrey S., Chen Wei, and Uher Ctirad, et al. Thermoelectric properties of the n-type filled skutterudite Ba0.3C0.4Sb12 doped with Ni [J]. J. Appl. Phys.2002,91(6) 3698-3705.
    [75]Zhao X. Y., Shi X., and Chen L. D., et al. Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12 [J]. J. Appl. Phys.2006,99,053711.
    [76]Puyet M., Lenoir B., and Dauscher A., et al. Electronic, transport, and magnetic properties of CaxCo4Sb12 partially filled skutterudites [J]. Phys. Rev. B 2006,73,035126.
    [77]Tang Xinfeng, Zhang Qingjie, and Chen Lidong, et al. Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4-xSb12 (R: Ce, Ba, Y; M: Fe, Ni) [J]. J. Appl. Phys. 2005, 97(9), 093712.
    [78]Nolas G. S., Yang J., and Takizawa Hirotsugu. Transport properties of germanium-filled CoSb3 [J]. Appl. Phys. Lett. 2004, 84(25), 5210.
    [79]Nolas G. S., Takizawa H., and Endo T., et al. Thermoelectric properties of Sn-filled skutterudites [J]. Appl. Phys. Lett. 2000, 77, 52.
    [80]He Zeming, Stiewe Christian, and Platzek Dieter, et al. Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2 /CoSb3 composites [J]. J. Appl. Phys. 2007, 101(4), 043707.
    [81]Yang L., Hng H. H., and Zhao X. B., et al. Thermoelectric properties of p-type CoSb3 nanocomposites with dispersed CoSb3 nanoparticles [J]. J. Appl. Phys. 2009, 106(1), 013705.
    [82]Zhai P. C, Zhao W. Y, and Li Y, et al. Nanostructures and enhanced thermoelectric properties in Ce-filled skutterudite bulk materials [J]. Appl. Phys. Lett. 2006, 89(5), 052111.
    [83]Zhao X. Y, Shi X., and Chen L. D., et al. Synthesis of YbyCo4Sb12/Y/b2O3 composites and their thermoelectric properties [J]. Appl. Phys. Lett. 2006, 89, 092121.
    [84]罗派峰,唐新峰,熊聪,等.多壁碳纳米管对p型Bao.3FeCo3Sbl2化合物热电性能的影响[J].物理学报,2005,54(5),2403.
    [85]Li Han, Tang Xinfeng, and Zhang Qingjie, et al. High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase [J]. Appl. Phys. Lett. 2009, 94(10), 102114.
    [86]Mi J. L., Zhu T. J., and Zhao X. B., et al. Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3 [J]. J. Appl. Phys. 2007, 101(5) 054314.
    [87]Liu Wei-Shu, Zhang Bo-Ping, and Li Jing-Feng, et al. Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering [J]. J. Appl. Phys. 2007, 102(10)103717.
    [88]Li Han, Tang Xinfeng, and Su Xianli, et al. Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure [J]. Appl. Phys. Lett. 2008, 92(20), 202114.
    [89]Li Han, Tang Xinfeng, and Zhang Qingjie, et al. Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance [J]. Appl. Phys. Lett. 2008, 93(25), 252109.
    [90]Yang J., Chen G, and Ren Z. F., et al. Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties [J]. Phys. Rev. B 2009,80(11), 115329.
    [91]Liu Wei-Shu, Zhang Bo-Ping, and Jing-Feng Li, et al. Improvement of thermoelectric performance of CoSb3-xTex skutterudite compounds by additional substitution of IVB-group elements for Sb [J]. Chem. Mater.2008,20,7526-7531.
    [92]Brown D. J. and Jeitschko W., Ternary arsenides with LaFe4P12-type structure [J]. J. Solid State Chem.1980a,32,357.
    [93]Morelli D. T. and Meisner G. P., Low temperature properties of the filled skutterudite CeFe4Sb12 [J]. J. Appl. Phys.1995,77,3777.
    [94]Sales B. C., Mandrus D., and Williams R. K., Filled skutterudite antimonides:A new class of thermoelectric materials [J]. Science,1996,272,1325-1328.
    [95]Meisner G P., Morelli D. T., and Hu S., et al. Structure and lattice thermal conductivity of fractionally filled skutterudites:Solid solutions of fully filled and unfilled end members [J]. Phys. Rev. Lett.1998,80(16) 3551-3554.
    [96]Shi X., Zhang W. Q., and Chen L. D., et al. Filling fraction limit for intrinsic voids in crystals:doping in skutterudites [J]. Phys. Rev. Lett.2005,95,185503.
    [97]Shi X., Zhang W. Q., and Chen L. D., et al. Theoretical study of the filling fraction limits for impurities in CoSb3 [J]. Phys. Rev. B 2007,75(23),235208.
    [98]Yang J., Zhang W. Q., and Bai S. Q., et al. Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R= La, Ce, and Sr) [J]. Appl. Phys. Lett.2007,90(19),192111.
    [99]Shi X., Kong H., and Li C. P., et al. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites [J]. Appl. Phys. Lett. 2008,92(18),182101.
    [100]Chaput L., Pecheur P., and Tobola J., et al. Transport in doped skutterudites:Ab initio electronic structure calculations [J]. Phys. Rev. B 2005,72,085126.
    [101]Liu Wei-Shu, Zhao Li-Dong, and Zhang Bo-Ping, et al. Enhanced thermoelectric property originating from additional carrier pocket in skutterudite compounds [J]. Appl. Phys. Lett. 2008,93,042109.
    [102]席丽丽,杨炯,史迅,等.填充方钴矿热电材料:从单填到多填[J]. Sci. Sin. Phys. Mech. Astron.2011,41,706-728.
    [103]Mei Z. G, Yang Jiong, and Pei Y. Z., et al. Alkali-metal-filled CoSb3 skutterudites as thermoelectric materials:Theoretical study [J]. Phys. Rev. B 2008,77,045202.
    [104]Dordevic S. V., Basov D. N., and Dilley N. R., et al. Hybridization gap in heavy fermion compounds [J]. Phys. Rev. Lett.2001,86,684.
    [105]Matsunami M., Horiba K., and Taguchi M., et al. Electronic structure of semiconducting CeFe4P12:Strong hybridization and relevance of single-impurity Anderson model [J]. Phys. Rev. B 2008,77(16),165126.
    [106]Grandjean F., Long G. J., and Cortes R., et al. Cerium LⅢ-edge x-ray absorption study of the CexFe4-yCoySb12 skutterudites [J]. Phys. Rev. B 2000,62,12569.
    [107]Grandjean F., Long G. J., and Mahieu B., et al. Study of the electronic properties of some ytterbium filled skutterudites by magnetic susceptibility and x-ray absorption and tin-119 Mossbauer spectroscopy [J]. J. Appl. Phys.2003,94(10) 6683-6691.
    [108]Berardan D., Godart C., and Alleno E., et al. Chemical properties and thermopower of the new series of skutterudite Ce1-pYbpFe4Sb12 [J]. J. Alloys Comp.2003,351,18-23.
    [109]Schnelle W., Leithe-Jasper A., and Schmidt M., et al. Itinerant iron magnetism in filled skutterudites CaFe4Sb12 and YbFe4Sb12:Stable divalent state of ytterbium [J]. Phys. Rev. B 2005,72,020402.
    [110]Tang Xinfeng, Li Han, and Zhang Qingjie, et al. Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds CamCenFexCo4-xSb12 [J]. J. Appl. Phys.2006, 100(12),123702.
    [111]Takizawa H., Miura K., and Ito M., et al. Atom insertion into the CoSb3 skutterudite host lattice under high pressure [J]. J. Alloys Compd.1999,282,79-83.
    [112]Shirotani I., Uchiumi T., and Ohno K., et al. Superconductivity of filled skutterudites LaRu4As12 and PrRu4As12 [J]. Phys. Rev. B 1997,56,7866.
    [113]Sekine C., Uchiumi T., and Shirotani I., et al. Metal-insulator transition in PrRu4P12 with skutterudite structure [J]. Phys. Rev. Lett.1997,79,3218-3221.
    [114]Deng Le, Ma Hongan, and Su Taichao, et al. Thermoelectric properties of Tio.2Co4Sbii.5Teo.5 prepared by HPHT [J]. J. Alloys Comp.2011,509,2392-2394.
    [115]Liu Hong, Wang Jiyang, and Shi Rujun, et al. Nano-dendrites in NaFe4P12 nano-wires synthesized by hydrothermal method [J]. Opt. Mater.2003,23,475-478.
    [116]Mi J. L., Zhu T. J., and Zhao X. B., et al. Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3 [J]. J. Appl. Phys.2007,101,054314.
    [117]Wang L., Cai K. F., and Wang Y. Y., et al. Thermoelectric properties of indium-filled skutterudites prepared by combining solvothermal synthesis and melting [J]. Appl. Phys. A 2009,97,841-845.
    [118]Lu P. X., Shen Z. G., and Hu X. Effects of solvents and Sb sources on the morphologies of LaFe3CoSb12 nanopowders made by the hydro/solvo thermal method [J]. J. Mater. Res. 2009,24,2873.
    [119]Lu Pengxian, Wang Chunhua, and Yan Guojin, et al. Thermoelectric properties of LaFe3CoSb12 skutterudite materials with different nanostructures [J]. J. Rare Earths,2011, 29,954-957.
    [120]Shi Xun, Bai Shengqiang, and Xi Lili, et al. Realization of high thermoelectric performance in n-type partially filled skutterudites [J]. J. Mater. Res.2011,26,1745-1754.
    [121]Wee Daehyun, Kozinsky Boris, and Marzari Nicola, et al. Effects of filling in CoSb3.-Local structure, band gap, and phonons from first principles [J]. Phys. Rev. B 2010,81,045204.
    [122]Chakoumakos B. C., and Sales B. C., Skutterudites:Their structural response to filling [J]. J. Alloys Comp.2006,407,87-93.
    [123]Kitagawa H., Hasaka M., and Morimura T., et al. Skutterudite structure and thermoelectric property in Ce/Fe8-xCoxSb24 (f=-2, x=0-8) [J]. Mater. Res. Bull.2000,35,185.
    [124]Keppens V., Mandrus D., and Sales B. C., et al. Localized vibrationalmodes inmetallic solids [J]. Nature (London) 1998,395,876.
    [125]Hermann Raphael P., Jin Rongying, and Schweika Werner, et al. Einstein oscillators in thallium filled antimony skutterudites [J]. Phys. Rev. Lett.2003,90 (13),135505.
    [126]Cao D., Bridges F., and Chesler P., et al. Evidence for rattling behavior of the filler atom (L) in the filled skutterudites LT4X12 (L=Ce,Eu,Yb; T=Fe,Ru;X=P, Sb) from EXAFS studies [J]. Phys. Rev. B 2004,70(9),094109.
    [127]Koza Michael Marek, Johnson Mark Robert, and Viennois Romain, et al. Breakdown of phonon glass paradigm in La-and Ce-filled Fe4Sb12 skutterudites [J]. Nature Mater.2008,7, 805-810.
    [128]Christensen Mogens, Abrahamsen Asger B., and Christensen Niels B., et al. Avoided crossing of rattler modes in thermoelectric materials [J]. Nature Mater.2008,7,811-815.
    [129]Pedersen B. L. and Iversen B. B., Thermally stable thermoelectric Zn4Sb3 by zone-melting synthesis [J]. Appl. Phys. Lett.2008,92(16),161907.
    [130]Cederkrantz D., Saramat A., and Snyder G. J., et al. Thermal stability and thermoelectric properties of p-type BagGa16Ge30 clathrates [J]. J. Appl. Phys.2009,106(7),074509.
    [131]Joshi Giri, Lee Hohyun, and Lan Yucheng, et al. Enhanced thermoelectric figureof-merit in nanostructured p-type silicon germanium bulk alloys [J]. Nano Lett.2008,8(12), 4670-4674.
    [132]Xie Wenjie, Tang Xinfeng, and Yan Yonggao, et al. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure [J]. J. Appl. Phys.2009,105(11), 113713.
    [133]Zhou M., Li J. F., and Kita T., Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance [J]. J. Am. Chem. Soc.2008,130(13),4527-4532.
    [134]Tanaka K., Kohri H., and Shiota I., et al. Thermal stability of thermoelectric properties for nondoped PbTe. Proceedings of the 20th International Conference Thermoelectrics [J]. Beijing, China,2001:154-156.
    [135]鲍思前,La填充Skutterudite热电材料的制备、结构及性能研究[D].武汉,华中科技大学,博士学位论文.2006.
    [136]Sales B. C., Chakoumakos B. C., and Mandrus D., Thermoelectric properties of thallium-filled skutterudites [J]. Phys. Rev. B 2000,61,2475.
    [137]Xiong Zhen, Chen Xihong, and Huang Xiangyang, et al. High thermoelectric performance of Ybo.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy [J]. Acta Mater.2010,58,3995-4002.
    [138]Xiong Zhen, Xi Lili, and Ding Juan, et al. Thermoelectric nanocomposite from the metastable void filling in caged skutterudite [J]. J. Mater. Res.2011,26,1848-1856.
    [139]He Tao, Chen Jiazhong, and Rosenfeld H. David, et al. Thermoelectric properties of indium-filled skutterudites [J]. Chem. Mater.2006,18(3),759-762.
    [140]Deng L., Jia X. P., and Su T. C., et al. The thermoelectric properties of InxCo4Sb12 alloys prepared by HPHT [J]. Mater. Lett.2011,65,2927-2929.
    [141]Zhao W. Y., Dong C. L., and Wei P., et al. Synthesis and high temperature transport properties of barium and indium double-filled skutterudites BaxInyCo4Sb12 [J]. J. Appl. Phys.2007,102(11),113708.
    [142]Peng J. Y., Alboni P. N., and He J., et al. Thermoelectric properties of (In,Yb) double-filled CoSb3 skutterudite [J]. J. Appl. Phys.2008,104(5),053710.
    [143]Peng Jiangying, He Jian, and Su Zhe, et al. High temperature thermoelectric properties of double-filled InxYbyCo4Sb12 skutterudites [J]. J. Appl. Phys.2009,105(8),084907.
    [144]Dyck J. S., Chen W., and Uher C., et al. Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni [J]. J. Appl. Phys.2002,91,3698.
    [145]Shi X., Salvador J. R., and Yang J., et al. Thermoelectric properties of n-type multiple-filled skutterudites [J]. J. Electron. Mater.2009,38,930.
    [146]Rehr J. J. and Albers R. C., Theoretical approaches to X-ray absorption fine structure [J]. Rev. Mod. Phys.2000,72,621.
    [147]Onida Giovanni, Reining Lucia, and Rubio Angel. Electronic excitations:density-functional versus many-body Green's-function approaches [J]. Rev. Mod. Phys.2002,74,601.
    [148]Baumbach R., Bridges F., and Downward L., et al. Off-center phonon scattering sites in Eu8Ga16Ge3o and Sr8Ga16Ge3o [J]. Phys. Rev. B 2005,71,024202.
    [149]Cao D., Heffner R. H., and Bridges F., et al. Local distortion induced metal-to-insulator phase transition in PrRu4P12 [J]. Phys. Rev. Lett.2005,94,036403.
    [150]Bunker G., Introduction to XAFS. A practical guide to X-ray absorption fine structure spectroscopy [M]. Illinois Institute of Technology, Cambridge University Press,2010.
    [151]Lefebvre-Devos I., Lassalle M., and Wallart X., et al. Bonding in skutterudites:Combined experimental and theoretical characterization of CoSb3 [J]. Phys. Rev. B 2001,63(12), 125110.
    [152]马礼敦,杨福家同步辐射应用概论[M],复旦大学出版社,2005年.
    [153]Lengke M. F., Ravel B., and Fleet M. E., et al. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from Gold(Ⅲ)-chloride complex [J]. Environ. Sci. Technol. 2006,40(20),6304-6309.
    [154]Modrow H., Bucher S., and Rehr J. J., et al. Calculation and interpretation of K-shell x-ray absorption near-edge structure of transition metal oxides [J]. Phys. Rev. B 2003,67, 035123.
    [155]Ravel B. and Newville M., ATHENA, ARTEMIS, HEPHAESTUS:Data analysis for X-ray absorption spectroscopy using IFEFFIT [J]. J. Synchrotron Radiat.2005,12,537.
    [156]Chen Dongliang, Li Chaosheng, and Zhu Zhengang, et al. Interface effect of InSb quantum dots embedded in SiO2 matrix [J]. Phys. Rev. B 2005,72,075341.
    [157]Schmidt T., Kliche G., and Lutz H. D., Structure refinement of skutterudite-type cobalt triantimonide, CoSb3 [J]. Acta Crystallogr., Sect. C:Cryst. Struct. Commun.1987,43, 1678.
    [158]Payne M. C., Teter M. P., and Allan D. C., et al. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys.1992,64,1045.
    [159]Chelikowski J. R. and Cohen M. L., Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors [J]. Phys. Rev. B 1976,14,556.
    [160]Zhang C., Wei Y., and Zhu C., Structural and electronic properties of liquid InSb alloy:An ab initio molecular-dynamics simulation [J]. Chem. Phys. Lett.2005,408,348.
    [161]Nolas G. S., Slack G. A., and Caillat T., et al. Raman scattering study of antimony-based skutterudites [J]. J. Appl. Phys.1996,79,2622.
    [162]Llunell M., Alemany P., and Alvarez S., et al. Electronic structure and bonding in skutterudite-type phosphides [J]. Phys. Rev. B 1996,53,10605-10609.
    [163]Grosvenor A. P., Cavell R. G., and Mar A., X-ray photoelectron spectroscopy study of the skutterudites LaFe4Sb12, CeFe4Sb12, CoSb3, and CoP3 [J]. Phys. Rev. B 2006,74,125102.
    [164]Long Gary J., Mahieu Bernard, and Sales Brian C., et al. Electronic structure of thallium filled skutterudites studied by x-ray absorption and Mossbauer spectroscopy [J]. J. Appl. Phys.2002,92(12) 7236-7241.
    [165]Sichelschmidt J., Voevodin V., and Im H. J., et al. Optical pseudogap from iron states in filled skutteruditesAFe4Sb12 (A=Yb, Ca, Ba) [J]. Phys. Rev. Lett.2006,96,037406.
    [166]Dordevic S. V., Dilley N. R., and Bauer E. D., et al. Optical properties of MFe4P12 filled skutterudites [J]. Phys. Rev. B 1999,60,11321.
    [167]Zhou A., Liu L., and Zhai P., et al. Electronic structure and transport properties of single and double filled CoSb3 with atoms Ba,Yb and In [J]. J. Appl. Phys.2011,109,113723.
    [168]Singh D. J. and Mazin I. I., Calculated thermoelectric properties of La-filled skutterudites [J]. Phys. Rev. B 1997,56, R1650.
    [169]Scofield J. H.. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV [J]. J. Electron Spectrosc. Relat. Phenom.1976,8,129.
    [170]Zhang Q. J., Tang X. F., and Zhai P. C., et al. Recent development in nano and graded thermoelectric materials [J]. Mater.Sci. Forum 2005,492-493,135-140.
    [171]Tritt T. M., Bottner H., and Chen L. D., Thermoelectrics:Direct solar thermal energy conversion [J]. MRS Bull.2008,33,366.
    [172]董春垒,钡铟双原子填充方钴矿基热电材料的制备、热电性能和服役行为[D].武汉,武汉理工大学.硕士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700