金属带式无级变速器燃油经济性及系统可靠性关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车无级变速技术能够减轻驾驶员的劳动强度,提高车辆的可驾驶性,使汽车在行驶过程中经常处于最优工作状态,并且改善汽车排放,是理想的汽车变速装置。在我国,金属带式无级变速器已在湖南江麓容大公司成功实现了产业化。然而,金属带式无级变速器在工程化的应用和产业化过程中,必须解决系统可靠性和如何进一步提高金属带式无级变速器燃油经济性的问题。特别在国外技术封锁的情况下,对金属带式无级变速器的可靠性及燃油经济性的研究,显得尤其重要。
     金属带式无级变速器的可靠性包括机械的可靠性及控制系统的可靠性,它影响无级变速器使用寿命及安全。围绕无级变速器可靠性,本文对带轮变形问题,机械系统可靠性测试及关键部件故障诊断和控制系统的可靠性分析及容错控制这几项关键技术展开了研究。对于带轮的变形,本文建立国产金属带式无级自动变速器从动带轮三维模型,利用有限元方法,分析了轴向力、速比对带轮变形的影响,并建立了带轮最大变形量和最大变形位置分布的数学模型,再通过对比现有的实验数据,验证了有限元分析结果的有效性。分析结果表明,速比是影响最大变形量位置的主要因素,轴向力和速比同时影响变形量的大小,所建数学模型和分析方法对带轮的设计,效率分析以及疲劳寿命研究具有重要意义。同时,本文针对无级变速器的机械系统可靠性,设计了无级变速器可靠性的室内试验系统,试验系统利用可靠性试验场测试数据,将速比,输入转速以及转速转矩作为无级变速器的负载,利用小波分析方法,滤除对疲劳损伤影响较小的高频信号,然后利用试验系统进行复现。对于轴承这一重要的承力部件,利用自适应AR方法,寻找轴承故障的频谱特征,并且利用神经网络对故障样本训练,判断轴承是否存在故障。在控制系统的可靠性方面,本文利用潜在失效分析和故障树分析方法分析了无级变速器的潜在失效模式及失效效果,根据无级变速器的潜在失效模式,设计了电控系统的容错控制规则,并且通过实车试验进行验证。围绕无级变速器燃油经济性,本文对系统损失如何影响燃油经济性,降低夹紧力对传动效率的影响和燃油经济性的测试这几项关键技术展开了研究。本文首先基于液压泵损失和金属带及带轮机构损失的试验数据,建立了无级变速器的损失模型及油耗评价模型。对比实际的测试数据,验证了模型的准确性,然后利用模型分析了不同的工况下液压泵损失和金属带及带轮的损失对油耗的影响。为分析降低夹紧力对于传动的影响,本文利用滑移率控制策略,降低无级变速器的夹紧力,以提高金属带式无级变速器的传动效率。通过MATLAB/SIMULINK建立仿真模型表明,基于滑移率控制能将金属带式无级变速器的传动效率提高10%左右。对于无级变速器的油耗测试,本文基于硬件在环仿真的原理,建立无级变速器的测试系统。试验系统利用整车道路滑行试验数据,建立道路负载模型,再通过控制变频交流电机,动态模拟道路负载驾驶员动作。建立的无级变速器传动系的虚拟试验系统,为无级变速器的电控单元标定和经济性测试提供了可再现的试验环境。
     对于金属带式无级变速器的燃油经济性以及可靠性研究中,本文有以下几点创新工作:(1)应用有限元的方法,分析了轴向力对金属带轮角度的影响,得到了变形规律,为减小金属带偏磨提供了理论分析的方法,有助于提高系统的可靠性;(2)首次利用小波分析方法并结合试验场测试数据,开发了金属带式无级变速器的室内可靠性试验系统,并且基于自适应AR谱的方法,分析了轴承的失效模式,为传动机构的轻量化设计和降低金属带传动噪声进行了很有价值的尝试;(3)开发了基于硬件在环仿真的燃油经济性测试系统,缩短了CVT的开发周期,具有工程应用价值;(4)采用潜在失效分析和故障树分析方法设计了控制系统的故障诊断和容错控制规则,提出了故障诊断控制策略,有利于提高系统的安全性。
The Continuously Variable Transmis sion(CVT)is suppo sed to be theideal transmis sion,because it can decrease the driver’s w-ork,improve thedriveability,offer the brilliant vehicle Performance and emis sion Now it ismore and more Popular with the Chine se customer and motor manufacturerHow-ever,in the engineering application,the transmis sion lo s s have to bedecreased and the reliab ility of CVT are nece s sary to be improved Thetransmis sion lo s s will affect the fuel economy and the system reliability,including the mechanical system reliability and electronic system,reliability,is a keY point to the transmis sion serVice life Therefore,the setwo factors are very important to the CVT engineering application
     With the reliabilitY of CVT,the finite element method is apPlied onthe deformation and stre s s analys is Based on a 3-D model of secondaryPulleY of Continuously Variable Transmis sion,the finite element method isused to analyze the pulleY deformation with certain axial force and ratioAfler that,the mathematic model about maximum PulieY deformation valueand Po sition are develoPed with the re sult of finite element methodComparing with the experimental data,the finite element method isvalidated The resuIt show that the ratio is the mo st important factor toaffect the po sition of maximum deformation and the axial force and ratioaffect the value of deformation together The mathematic model andanalyzing method is useful in the PulleY de sign and CVT efficiencY re searchAfler the stre s s and deformation analys is,the te st rig about mechanicalreliability is develoP ed Based on the CVT data of input torque,input sPeedand ratio,c01lected in the Proving ground,the~-avelet multi re solution isused to filter out the high frequencY s ignals,which had little effect on thefatigue damage of CVT Then the CVT rat io and input speed were send tothe CVT cont rolier and motor controlier re spectively and then the obj ectdata is rePeated the te st rig The TIC(The il inequalitY coeffic ient)valueshow that the system is a effective te st Platform fo r the reliability Based onthe theorie s of adaptive AR spectrum and neural network,a fault diagno s ismethod for bearings in CVT is P re sented The method use s adaptivefiltering technique to filter the Vibration signals of bearings,sets up an AR model to extract the features 0f faUItY bearings.and utilizes neural networkto clas Sify the faults The te st re sults Show that the apP roach canefiectively identify the faUIt patterns of transmis Sion bearings About thereliability 0fCVT C0ntroller,the Failure Mode and Effect Arialysis(FEMA)and FauIt Tree Aanalysis(FTA)method are used to do the Potential failuremode and efiects analys is AcC0rding to the Porential failure mode.thediagnose code and tolerance control strategy are deVeloPed Theexperimental data show that the tolerance Control strategy is effective toProtect the transmission and the vehicle With the loss of CVT,a simulationmodel with MATLAB M-C0de is deVeloPed to evaluate the affection of Pumploss and beIt loss to the vehicle fue 1 consumption,based on the loss data ofPump and belt Comparing with the te st rig data.the Simulation re suIt isconfirmed to be accurate For improVing the the efficiencY of CVT.the slipcontrol strategy is applied on decreasing the Clamping force and increasethe friction coeffic ient The Simulation show that it is an efiectiVe methodto improVe the CVT’S efficiencY under the Pre sent teChnology and CVT lossAfter that.a test rig for the efficiency test is deVeloped hased on thePrinciple of hardware in the looP Simulation AcCOrding to the vehicleSliding data.a vehicle load model is USed in the te st rig and repeated bY theA/C motor And the driver model is simulated by the electronic throttleC0titr01
     With CVT fuel economy and reliabilitY.S0me innovation work can beseen in the reseach:(1)AcC0rding to the FEM re sults,a law-about pulleydeformation.in different axial force and ratio.is developed for reducing thealigement Setting and improving the mechartical system reliability(2)Aw-avelet is used in the ground test signals processing.for developing theCVT reliability test system.Meanw-hile,a fauIt diagnosis method,based 0nthe adaptive AR spectrum.with bearings in CVT.is presented in this paperThe test system is helpful in analyzing the CVT C0mponentsreliability(3)Based 0n the Principle 0f hardware in the loop Simulation,aninnoViation fuel eConomy te st System is develoPed for improVing the CVTdeVe loping effic iencY (4)the FEMA and FTA method are used to d0 thepotential failure mode and efiects analys is According to the potential failure mode,the diagnose code and tolerance control strategy are developed for guarantee the passanger safe
引文
[1] Sorge F. Influence of pulley bending on metal V-belt mechanics[C]. Yokohama: Proceedings of The International Conference on Continuously Variable Power Transmission, 1996: 9–15
    [2] Gerbert B G. Some notes on V-belt drives. ASME Journal of Mechanical Design, 1981, 103(1): 8–18
    [3] Gerbert B G. Skew V-belt pulleys. Yokohama: Proceedings of International Conference on Continuously Variable Power Transmission, 1996:1-8
    [4] Fujii T. A study on a metal pushing V-belt type CVT (part 1: relation between transmitted torque and pulley thrust). SAE Transactions, 1993, No.930666
    [5] Fujii T, Kurokawa T, and Kanehara S. A study on a metal pushing V-belt type CVT (Part 2: compression force between metal blocks and ring tension). SAE Transactions, 1993, (6): 1000–1009
    [6] Carbone G, Mangialardi L, Mantriota G. EHL visco-plastic friction model in CVT shifting behavior. International Journal of Vehicle Design, 2003, 32(3/4): 333–357
    [7] Carbone G, Mangialardi L, Mantriota G. The influence of pulley deformations on the shifting mechanism of metal belt CVT. ASME Journal of Mechanical Design, 2005, 127(1): 103–113
    [8] Carbone G, Mangialardi L, Mantriota G. Theoretical model of metal V-belt drives during ratio changing speed[J]. ASME Journal of Mechanical Design, 2000, 123(1): 111–117
    [9] Tohru IDE,Hirokazu UCHIYAMA.Experimental Investigation on Shift Speed Characteristics of a Metal V-Belt CVT. Yokohama:In Proc of Int Conf on Continuously Variable Transmission,1996,59-64
    [10] Tohru I, Udagawa A, Kataoka R. Simulation approach to the effect of the ratio changing speed of a metal V-belt CVT on the vehicle response. Vehicle System Dynamics, 1995, 24(4&5): 377-388
    [11] Nilabh S, Imtiaz H. Transient dynamics of the metal V-belt CVT: Effects of pulley flexibility and friction characteristic. Journal of Computational and Nonlinear Dynamics, 2007, 2(1): 86-97
    [12] Kuwabara S, Fujii T, Kanehara S. Power transmitting mechanism of CVT using a metal V-belt and load distribution in the steel ring. SAE Transactions, 1998, No.980872
    [13] Fushimi Y, Kanehara S, and Fujii T. A numerical approach to analyze the power transmitting mechanisms of a metal pushing V-belt type CVT. SAE Transactions, 1996,No .960720
    [14] oshihiro SAITO,Takemasa OKANO.Drive Mechanism of Metal Pushing Type Belts.Automotive Technology,1992,26(2):78-81
    [15] Kobayashi D, Mabuchi Y, Katoh Y. A study on the torque capacity of a metal pushing V-belt for CVTs. SAE Transactions, 1998, No.980822
    [16] Minoru K, Masayuki K, Masakazu T. Development of a high torque capacity belt-drive CVT with a torque converter. JSAE Review, 1999, 20(2): 281-287
    [17] S.Akehurst,N.D.Vaughan,D.A.Parker,et al.Modelling of loss mechanisms in a pushing metal V-belt continuously variable transmission.part1:torque losses due to band friction. Proc. Instn Mech. Engrs Part D: J. Automobile Engineering, 2004,218: 1269-1281
    [18] S.Akehurst,N.D.Vaughan,D.A.Parker,et al.Modelling of loss mechanisms in a pushing metal V-belt continuously variable transmission.part2:pulley deflection losses and total torque loss validation. Proc. Instn Mech. Engrs Part D: J. Automobile Engineering,2004,218: 1283-1293
    [19] S.Akehurst,N.D.Vaughan,D.A.Parker,et al.Modelling of loss mechanisms in a pushing metal V-belt continuously variable transmission.part3: belt slip losses. Proc. Instn Mech. Engrs Part D: J. Automobile Engineering,2004,28:1295-1305
    [20] Sam Akehurst.An Investigtion into the Loss Mechanisms Associated with A Pushing Metal V-Belt Continuously Varible Transmission:[dissertation]. Univ. of Bath,2001
    [21] J.D.Micklem,D.K.Longmore,C.R.Burrows.The magnitude of the losses in the steel pushing V-belt continuously variable transmission.
    [22] Guebeli M, Micklem J D, Burrows C R. Maximum transmission efficiency of a steel belt continuously variable transmission. Transaction of the ASME, 1993, 115(4): 1044-1048
    [23] Micklem J D, Longmore D K, Burrows C R. Modelling of the steel pushing V-belt continuously variable transmissions. Proceedings of the Institution of Mechanical Engineers, 1994, 208(9):13-27
    [24] T.W.G.L.Klaassen,B.Bonsen,K.G.O.van de Meerakker et al.Nonlinear stabilization of slip in a continuously variable transmission.In:IEEE Conference on Control Applications.Taipei,2004:338-343
    [25] B.Bonsen, T.W.G.L. Klaassen, K.G.O.van de Meerakker et al.Measurement and control of slip in a continuously variable transmission.In IFAC Mechantronics.Sydney,2004: 43-48
    [26] R.J.Pulles, B.Bonsen, M.Steinbuch et al.Slip controller design and implementation in a Continuously Variable Transmission. In American Control Conf,Portland, 2005:1625-1630
    [27] B.Bonsen,T.W.G.L.Klaassen,K.G.O.van de Meerakker.Modelling Slip and Creepmode Shift Speed Characteristics of a Pushbelt Type Continuously Variable Transmission.In:CVT Congress.San Francisco,2004:1-5
    [28] B.Bonsen,T.W.G.L.Klaassen,K.G.O.van de Meerakker,et al. Analysis of slip in a continuously variable transmission. In IMECE Congress. Washington,
    [29] B.Bonsen, R.J.Pulles, S.W.H.Simons, M.Steinbuch et al. Implementation of a slip controlled CVT in a production vehicle. In:Proc of the IEEE Conference on Control Applications.Toronto,2005:1212-1217
    [30] B.Bonsen, T.W.G.L.Klaassen, R.J.Pulles, et al. Performance optimization of the push-belt CVT by variator slip control. Int.J.of Vehicle Design,2005,39(3):17-26
    [31] Vroemen B G, Veldpaus E E. Hydraulic circuit design for CVT control. International Congress on Continuously Variable Power Transmission. Eindhoven,1999: 111-116
    [32] Vaughan N D, Gubell M, Burrows C R. The effect of hydraulic circuit design and control on efficiency of continuously variable transmission. SAE Transactions, 1996, No.961797
    [33] Masahiro Y, Tatsuo W. A servo system of pulley ratio of the steel belt CVT for medium-size front-wheel drive vehicles. JATCO Transmission technology Review, 2001, (1): 39-43.
    [34] Ishikawa T, Murakami Y, Yauchibara R, et al. The effect of belt drive CVT fluid on the friction coefficient between metal components. SAE Transactions,1997, No.1997010447
    [35] Hyunsoo Kim, Heebock Cho, Talcheol Kim, Jaeshin Yi. Ratio Control of Metal Belt CVT. SAE Transactions ,2000, No.2000010842
    [36] H. Kim,J.Lee.Analysis of belt behavior and slip characteristics for a metal V-belt CVT.Mechanics and Machine Theory,1994,29(6):865-876
    [37] KENJI SHIRONOBUW et a1.Development of a new-generation CVT with medium torque capacity for front-drive cars.SAE Transactions ,2006, No.2006011306
    [38] KAZUMICHI T,TAKAO T,KAZUMASA T et a1.Toyota’S new belt-drive continuously variable transmission for 1.3-liter FWD cars. SAE Transactions,2006, No.2006011305
    [39] SHINICHI S,EISUKE K KAZUHISA Y.Development of all engine—CVTintegrated control system. SAE Transactions,1999,No.1999010754
    [40] PFIFFNER R,GUzzELLA L,ONDER C.Fuel optimal control of CVT powertrains. Control Engineering Practice,200,ll(2):329—336
    [41] HEERA L, CHULSOO K and TALCHO K et al.CVT ratio control algorithm by considering powertrain response lag.SAE Transactions,2004, No.2004011636
    [42]周云山,裘熙定,王红岩等.汽车无级变速传动(CVT)建模与仿真.汽车工程,1998, 20(5):285-289
    [43]周云山,裘熙定,王红岩等.无级变速传动控制系统的数学模型.中国机械工程,1998,9(3):71-73
    [44]秦大同,刘世明,王宏岩.金属带式无级变速器传动的动力学分析.机械工程学报,2000, 36(3):65-68
    [45]杨亚联,秦大同,王红岩. CVT无级变速传动钢带的轴向偏移分析.重庆大学学报,1999, 22(6):1-7
    [46]孙冬野,汪新国,胡建军等.金属带式无级变速传动液压系统的设计方法.重庆大学学报,2005, 28(12): 1-5.
    [47]廖建,孙冬野,秦大同.金属带式无级变速器传动效率的理论分析.重庆大学学报,2010, 26(3): 12-15
    [48]罗勇,孙冬野,秦大同.考虑CVT效率的无级变速器车辆最佳经济性控制.机械工程学报,2010, 46(4) , 80-86
    [49]孙冬野,秦大同,廖建.金属带一行星齿轮无级变速传动效率特性析.农业机械学报,2004, 35(5):12-15
    [50]王红岩,方志强.金属带式无级变速汽车的性能仿真研究.装甲兵工程学院学报, 2003 , 17(1):28-30
    [51]王红岩,秦大同,周云山等.汽车无级变速传动系统综合控制的研究.机械工程学报,2000, 36(2):38-41
    [52]王红岩.金属带式无级变速传动系统分析、匹配与综合控制的研究:[吉林工业大学博士论文] ,吉林大学,1998
    [53]方泳龙,王红岩,秦大同.车辆无级变速传动系统匹配策略的仿真.农业机械学报,2000, 31(4):1-5
    [54]付铁军,周云山,张宝生.金属带式无级变速器电液控制系统的试验研究.汽车工程,2003,34(4): 71-75.
    [55]付铁军.金属带式无级变速器智能控制技术研究: [吉林大学博士学位论文].吉林大学,2004
    [56]冯显武.基于滑移的金属带式无级变速器最佳夹紧力的控制研究: [湖南大学硕士学位论文].湖南大学,2008
    [57]陈伟生.金属带式无级变速器速比控制的研究: [湖南大学硕士学位论文] :湖南大学,2008
    [58]何仁,马承广.基于驾驶意图的无级变等速器目标速比确定方法.农业机械学报. 2009 , 40(5):16-19
    [59]程乃士,张德臻,刘温.金属带式车用无级变速器.中国机械工程, 2000, 11(12): 1421-1423
    [60]程乃士.汽车金属带式无级变速器—CVT原理和设计.北京:机械工业出版社,2008, 83-191
    [61]张伯英,周云山,张友坤等.金属带式无级变速器电-液控制系统的研究.汽车工程,2001, 23(5): 315-318
    [62]张柏英.金属带式无级变速传动机理与控制的研究:[吉林工业大学博士学位论文].吉林大学,2002
    [63]宋锦春,姚利松,程乃士等.汽车金属带式无级变速器液压控制原理及数学模型.东北大学学报,1999, 20(3): 279-282
    [64]宋锦春.金属带式无级变速器电液比例系统建模与控制技术: [东北大学博士学位论文].东北大学,2004
    [65]卢延辉,张友坤,郑联珠等.金属带式无级变速器数字调压阀的设计与试验研究汽车技术,2006,30 (3): 34-36
    [66]薛殿伦,张友坤,周云山等. EQ6480客车CVT电控系统试验.汽车工程, 2004, 26(4): 446-449
    [67]薛殿伦,张友坤.金属带式无级变速器速比控制.农业机械学报,2003,34(3):8-11
    [68]张伟华,巩云鹏,程乃士,李树军.提高汽车金属带式无级变速器效率的途径.东北大学学报(自然科学版),2009, 30(8):22-28
    [69]张伟华,谢里阳,程乃士.金属带式无级变速器摩擦因数和传动效率的实验研究.机械设计,2006,23(12):41-43
    [70]刘金刚.金属带式无级变速器电液控制系统关键技术的研究:[湖南大学学位论文].湖南大学,2008
    [71]刘金刚,谭援强,徐惠余等.无级变速器速比控制阀动态性能仿真与优化.农业机械学报,2010, 41(3):7-11
    [72]刘金刚,周云山,高帅等.智能预测控制在无级变速器速比跟踪中的应用.中国机械工程,2008,19(14):1665-1668
    [73]贺林,吴光强,韩宗奇等.金属式无级变速器电液控制系统.汽车程,2008, 30(5):429-433
    [74]邹云飞,胡纪滨,苑士华等.金属带式无级变速器液压控制系统对速比特性的影响分析.机械传动,2009, 33(5):76-78
    [75]苑士华,魏超,张银彩.液压机械无级变速器动态特性的影响因素研究.农业工程学报,2008, 24(2):33-37
    [76]王有刚.金属带式无级变速器电液控制系统试验研究:[哈尔滨工程大学硕士学位论文].哈尔滨,2006
    [77]胡纪滨,魏超,杜玖玉等.液压机械无级变速器速比跟踪控制系统研究.北京理工大学学报,2008, 28(6):481-485
    [78]杨阳,汪小平,秦大同等.速比变化过程中CVT液压系统动态性能仿真.重庆大学学报,2010, 33(4):78-82
    [79]何仁,吴海啸,张涌等.比例减压阀的特性及在无级变速器速比控制中的应用.汽车工程,2008, 30(7 ) : 618-621
    [80]朱才朝,田佳佳,刘怀举等.带式无级变速器性能试验台的开发.重庆大学学报(自然科学版) ,2009, 32(3) : 295-298
    [81]孙龙林.无级变速器(CVT)系统效率的试验研究.拖拉机与农用运输车,2010, 37(3):77-78
    [82]杨亚联,秦大同,孙冬野等.金属带无级变速器传动性能的试验研究.机械工程学报,2002, 38(5) : 66-69
    [83]曹成龙,周云山,高帅等.金属带式无级变速器夹紧力试验研究.湖南大学学报(自然科学版) ,2010, 37(7):23-26
    [84]张武,周春国,刘凯.金属带式无级变速器带轮变形研究.中国机械工程,2010, 21(15) : 1771-1775
    [85]卢小虎,陈跃平,何维廉.金属带式CVT金属带的结构与强度分析.传动技术,2007, 21(2) : 20-23
    [86]孙德志,郑宏远,程乃士等.金属带式无级变速器壳体的强度和刚度分析.中国机械工程,2007,18(18):2191-2194
    [87]郑宏远.新型车用金属带式无级变速器壳体的刚度和强度的ANSYS有限元分析:[东北大学学位论文] .东北大学, 2007
    [88]杨为,冯培恩,秦大同.金属带式无级变速器关键部件的试验模态研究.农业机械学报, 2003 ,34(3) :5-7
    [89]薛殿伦.基于最优理论的离合器控制策略及CVT电液系统的试验研究:[吉林大学博士学位论文].吉林大学, 2003
    [90]张飞铁,周云山,薛殿伦等. CVT起步离合器模糊控制算法研究.湖南大学学报(自然科学版). 2006, 33( 5):57-60
    [91] Sattler H . Efficiency of Metal Chain and V-belt CVT [C] . Proceeding of CVT’99. congress. Eindhoven ,1999: 99-104
    [92]周云山,于秀敏.汽车电控系统理论与设计.北京:北京理工大学出版社,1999, 224-272
    [93]王霄锋.汽车可靠性工程基础.北京:清华大学出版社,2007
    [94]于慧君,陈章位.道路模拟试验自适应时域复现控制方法研究.振动工程学报,2007, 20 ( 5) , 498-501.
    [95]李忠国,张为公,刘庆华等.静态小波变换在汽车道路模拟试验中的应用.数据采集与处理,2007, 22( 2) , 238-242
    [96]许丹,刘强.基于小波多分辨率分析的高性能X Y工作台故障诊断.中国机械工程,2007, 18( 5) , 573-577.
    [97]刘兴刚,张国志,郝丽娜等.冷连轧轧制力仿真模型的可信度评估.东北大学学报(自然科学版) ,2008, 29( 4) , 537-540
    [98]肖云魁.汽车故障诊断学[M ].北京:北京理工大学出版社, 2001
    [99]杨宇,于德介. EMD和AR模型在汽车变速器轴承故障诊断中的应用.汽车工程,2004,26 (6) .
    [100]钟秉林,黄仁.机械故障诊断学.北京:机械工业出版社,1997
    [101] Akehurst, D. AParker and N. D. Vaughan. Potential for fuel economy improvements by reducing frictional losses in a pushing metal V-belt CVT . SAE, 2004-01-048;
    [102]邹峰,基于ADAMS的CVT力学分析[上海交通大学硕士论文].2007
    [103] B. Bonsen , T. W. G. L. Klaassen , R. J. Pulles et. Performance optimisation of the push-belt CVT by variator slip control ,2005, 39(3):232-256
    [104]鲁统利,陈德元.大型汽车底盘动态模拟测工机测控系统.汽车工程, 1999, 21(2): 118-123
    [105]王晓东,华清,焦宗夏等.负载模拟器中的摩擦力及其补偿控制.中国机械工程,2006, 14 ( 6 ):511-514

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700