镁合金汽车轮毂的轻量化设计及有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车轮毂是汽车上的重要部件,不仅影响汽车行驶的安全性、舒适性,还直接影响汽车的外观效果。目前,汽车轻量化已经成为汽车工业发展的趋势。镁合金作为最轻的工程金属材料之一,具有比强度高,阻尼减震性好,散热性好以及可回收利用等性能特点,非常适合用作汽车轮毂的轻量化材料。有限元法是工程分析的重要手段,为汽车轮毂的静态强度分析和动态疲劳分析提供了强有力的工具。
     本文采用质量功能展开和TRIZ理论两种设计方法对汽车轮毂进行了轻量化设计。结合国家标准中对汽车轮辋的规定和相关行业规范,设计了一个八辐板式的13英寸小型镁合金汽车轮毂。利用三维设计软件UG NX 7.0建立了三维数字模型。在此基础上,运用有限元方法,对所设计的镁合金汽车轮毂进行了静态结构分析。结果表明,应力较大的部位主要分布在辐板与轮辋相交区域和螺栓孔区域,最大应力小于镁合金的屈服强度。
     汽车轮毂不仅受到静态载荷的作用,还受到交变载荷的作用。根据国家标准GB/T5334-2005中对汽车轻合金车轮的性能要求和试验方法的规定,以及汽车轮毂在工作状态受循环载荷的特点,运用有限元方法对所设计的镁合金汽车轮毂进行了动态弯曲疲劳分析和动态径向疲劳分析。分析结果表明,所设计的镁合金汽车轮毂的疲劳强度满足试验中的要求,同时还预测了镁合金汽车轮毂的疲劳寿命。
The automobile wheel is an important part of the automobile. It not only affects the safety and comfort of the moving automobile, but also affects the appearance of the automobile. Now automobile lightweight has become the development trend of the automotive industry. Magnesium alloys have the properties of high relative strength, good shock absorption capability, good heat dissipation and recycling use as one of the lightest engineering metal material. It is very suitable for the lightweight materials of automobile wheel. The finite element analysis is an important method for the engineering analysis. It is also a useful tool for the static strength analysis and dynamic fatigue analysis of the automobile wheel.
     Lightweight design of the automobile wheel has been carried out by using quality function deployment and TRIZ. A small-sized magnesium alloy automobile wheel with eight spokes is designed based on the national standard about automobile wheel rim and relevant industry standards. And the digital model is established by the three-dimensional design software UG NX. The static structural analysis of the magnesium alloy automobile wheel has been simulated with the advanced simulation module of UG NX. The result shows that the high stress distributes mainly in the region of bolt holes and the transitional region between the wheel rim and spokes. The maximum stress is less than the yield strength of magnesium alloy.
     The automobile wheels usually suffer the static and cyclic loading. Dynamic bending fatigue analysis and radial fatigue analysis of the designed magnesium alloy automobile wheel have been simulated based on the national standard GB/T 5334-2005 about the performance requires and test method of the automobile light alloy wheel. The result shows that the fatigue strength of the designed magnesium alloy automobile wheel satisfies the test require. The fatigue life of the magnesium alloy automobile wheel has been predicted.
引文
1. Wang Y, Teter J, Sperling D. China's soaring vehicle population:Even greater than forecasted?[J]. Energy Policy,2011,39(6):3296-3306.
    2. Eliezer D, Aghion E, Froes F H. Magnesium science, technology and applications[J]. Advanced Performance Materials,1998,5(3):201-212.
    3. Li Y, Lin Z, Jiang A, et al. Experimental study of glass-fiber mat thermoplastic material impact properties and lightweight automobile body analysis[J]. Materials & Design,2004, 25(7):579-585.
    4. Agnew S R, Nie J F. Preface to the viewpoint set on:The current state of magnesium alloy science and technology [J]. Scripta Materialia,2010,63(7):671-673.
    5. Kulekci M K. Magnesium and its alloys applications in automotive industry[J]. International Journal of Advanced Manufacturing Technology,2008,39(9-10):851-865.
    6. Aghion E, Bronfin B, Von Buch F, et al. Newly Developed Magnesium Alloys for Powertrain Applications[J]. JOM,2003,55(11):30-33.
    7. Pekguleryuz M O, Kaya A A. Creep resistant magnesium alloys for powertrain applications[J]. Advanced Engineering Materials,2003,5(12):866-878.
    8. Tkachenko V G, Maksimchuk I N, Volosevich P Y, et al. Creep resistance and long-term strength of structural magnesium alloys[J]. High Temperature Materials and Processes. 2006,25(1):97-107.
    9. Froes F H, Eliezer D, Aghion E L. The science, technology, and applications of magnesium[J]. Jom-Journal of the Minerals Metals & Materials Society,1998,50(9): 30-34.
    10.刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2006.1-69.
    11. Tharumarajah A, Koltun P. Is there an environmental advantage of using magnesium components for light-weighting cars?[J]. Journal of Cleaner Production,2007.15(11-12): 1007-1013.
    12.潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学出版社,2007.2-218.
    13.陈振华.镁合金[M].北京:化学工业出版社,2004.446-458.
    14. Lu Y, Taheri F, Gharghouri M A, et al. Experimental and numerical study of the effects of porosity on fatigue crack initiation of HPDC magnesium AM60B alloy[J]. Journal of Alloys and Compounds,2009,470(1-2):202-213.
    15. Mao P L, Liu Z, Wang C Y, et al. Fatigue behavior of magnesium alloy and application in auto steering wheel frame[J]. Transactions of Nonferrous Metals Society of China,2008, 18(Supplement 1):s218-s222.
    16. Mordike B L, Ebert T. Magnesium:Properties--applications--potential[J]. Materials Science and Engineering A,2001,302(1):37-45.
    17. Jain C C, Koo C H. Creep and corrosion properties of the extruded magnesium alloy containing rare earth[J]. Materials Transactions,2007,48(2):265-272.
    18.罗大金,程贵生.镁合金锻压成形与模具[M].北京:中国轻工业出版社,2010.4-80.
    19. Blawert C, Hort N, Kainer K U. Automotive applications of magnesium and its alloys[J]. Transactions of the Indian Institute of Metals,2004,57(4):397-408.
    20. Nascimento L, Yi S, Bohlen J, et al. High cycle fatigue behaviour of magnesium alloys[J]. Procedia Engineering,2010,2(1):743-750.
    21. Yang Y, Liu Y B. High cycle fatigue characterization of two die-cast magnesium alloys[J]. Materials Characterization,2008,59(5):567-570.
    22.陈家瑞.汽车构造[M].北京:机械工业出版社,2005.179-185.
    23. Niu L Y, Lin J X, Li Y, et al. Improvement of anticorrosion and adhesion to magnesium alloy by phosphate coating formed at room temperature[J]. Transactions of Nonferrous Metals Society of China,2010,20(7):1356-1360.
    24. Liu F, Song Y W, Shan D Y, et al. Corrosion behavior of AZ31 magnesium alloy in simulated acid rain solution[J]. Transactions of Nonferrous Metals Society of China,2010, 20(Supplement 2):s638-s642.
    25.汤红强.镁合金汽车轮毂的研究与开发[D].杭州:浙江工业大学,2009.
    26.沈俊,陆斌.镁合金车轮的材料和生产工艺[J].有色金属加工.2002.31(05):20-23.
    27.周渝庆.镁合金车轮疲劳寿命预测与优化设计[D].重庆:重庆大学,2008.
    28. Kocabicak U, Firat M. Numerical analysis of wheel cornering fatigue tests[J]. Engineering Failure Analysis,2001,8(4):339-354.
    29. Firat M, Kocabicak U. Analytical durability modeling and evaluation--complementary techniques for physical testing of automotive components[J]. Engineering Failure Analysis, 2004,11(4):655-674.
    30. Firat M, Kozan R, Ozsoy M, et al. Numerical modeling and simulation of wheel radial fatigue tests[J]. Engineering Failure Analysis,2009,16(5):1533-1541.
    31. Li P, Maijer D M, Lindley T C, et al. A through process model of the impact of in-service loading, residual stress, and microstructure on the final fatigue life of an A356 automotive wheel[J]. Materials Science and Engineering:A,2007,460-461:20-30.
    32. Shang R, Altenhof W, Hu H, et al. Rotary fatigue analysis of forged magnesium road wheels[J]. SAE International Journal of Materials and Manufacturing,2009,1(1):9-15.
    33.王霄锋,王波,赵震伟.汽车车轮结构强度分析[J].机械强度,2002,24(1):66-69.
    34.王霄锋,梁昭,张小格.基于动态弯曲疲劳试验的汽车车轮有限元分析[J].拖拉机与农用运输车,2007,34(01):45-47.
    35. Wang X, Zhang X. Simulation of dynamic cornering fatigue test of a steel passenger car wheel [J]. International Journal of Fatigue,2010,32(2):434-442.
    36. Peng Y H, Li D Y, Wang Y C, et al. Numerical study on the low pressure die casting of AZ91D wheel hub[A]. International Conference on Magnesium-Science, Technology and Applications, September 20,2004-September 24,2004[C]. Beijing, China:Trans Tech Publications Ltd,2005,393-396.
    37. Xia Z H, Ju F. Finite element analysis of the forging process of magnesium wheels[A]. The Mechanical Behavior of Materials X Part 1:10th International Conference on the Mechanical Behaviour of Materials[C]. Laubisrutistr.24, Stafa-Zuerich, CH-8712, Switzerland:Trans Tech Publications Ltd,2007,1079-1084.
    38. Wang Q, Zhang Z M, Zhang X, et al. New extrusion process of Mg alloy automobile wheels[J]. Transactions of Nonferrous Metals Society of China,2010.20(Supplement 2): s599-s603.
    39. Wang Q, Zhang Z M, Zhang X. et al. Precision forging technologies for magnesium alloy bracket and wheel[J]. Transactions of Nonferrous Metals Society of China,2008. 18(Supplement 1):s205-s208.
    40.龙振宇.机械设计[M].北京:机械工业出版社,2002.7-32.
    41. Carnevalli J A, Miguel P C. Review, analysis and classification of the literature on QFD--Types of research, difficulties and benefits[J]. International Journal of Production Economics,2008,114(2):737-754.
    42. Chen L H, Ko W C. Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept[J]. European Journal of Operational Research,2010,201(2):619-632.
    43. Herrmann A, Huber F, Algesheime R, et al. An empirical study of quality function deployment on company performance [J]. International Journal of Quality and Reliability Management 2006,23(4):345-366.
    44.邵家骏.质量功能展开[M].北京:机械工业出版社,2004.3-122.
    45.赵新军.技术创新理论(TRIZ)及应用[M].北京:化学工业出版社,2004.7-215.
    46.谭润华.发明问题解决原理[M].北京:科学出版社,2004.5-17.
    47.檀润华,杨伯军,张建辉.基于TRIZ的产品创新模糊前端设想产生模式研究[J].中国机械工程,2008,19(16):1990-1995.
    48.高常青,黄克正,王国锋.由TRIZ理论的通用解求问题的特殊解[J].中国机械工程,2006,17(01):84-88.
    49. Cong H, Tong L H. Grouping of TRIZ Inventive Principles to facilitate automatic patent classification[J]. Expert Systems with Applications,2008,34(1):788-795.
    50.俞汉青,陈金德.金属塑性成形原理[M].北京:机械工业出版社,2007.260-295.
    51.付本国,管殿柱.UG NX6.0三维机械设计[M].北京:机械工业出版社,2010.1-373.
    52.麓山文化.UG NX 7.0中文版从入门到精通[M].北京:机械工业出版社,2010.1-323.
    53.GB/T 3487-2005,汽车轮辋规格系列[S].
    54.闫胜昝.铝合金车轮结构设计有限元分析与实验研究[D].杭州:浙江大学,2008.
    55.GB/T 5334-2005,乘用车车轮性能要求和试验方法[S].
    56.濮良贵,纪名刚.机械设计[M].北京:高等教育出版社.2006.22-45.
    57.李舜酩.机械疲劳与可靠性设计[M].北京:科学出版社.2006.1-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700