菱形车悬架系统优化设计与动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文设计与分析了一款基于菱形车的中悬架;由于菱形车具有碰撞安全性好,转弯半径小的优点,因此其具有较强的工程应用与科学研究价值;文中主要内容侧重于中悬架系统的设计与分析并通过整车试验来验证中悬架设计的可行性与合理性;由于菱形车驱动轮中置,为避免车厢中部凸起而影响车内的空间使用与布置,对减振元件与弹性元件分别采用了筒式减振器与扭力减振器、扭杆与板簧两种方案并对其进行比较,在性能得以提升的前提下降低悬架系统高度方向尺寸,满足菱形车的结构与布置需求。文中还对菱形车的侧倾和制动进行了研究和分析,得出了菱形车的制动策略。最后本文对菱形车进行了详细地现场试验,试验结果令人满意,达到了国家规定的试验标准。
     在导向元件的设计中,鉴于双横臂悬架具有高度尺寸小和操纵稳定性好的优点,本文采用了这一结构;采用传统的悬架导向元件设计方法获得基本参数,通过张量理论建立起动力学模型,借助ADAMS和Matlab软件,对其进行了结构的优化,从而精确地定出了各导向杆件的空间位置与相关尺寸,且以此建立起相应的三维数模。
     在弹性元件的设计与分析中,本文对扭杆的选用作了较详细的设计计算;对板簧的设计作了较充分的分析,特别是对板簧的刚度、长度、应力均分别采用了共同曲率法、集中载荷法和改良集中载荷法等不同的计算方案,并对其作了相应比较,尤其是对板簧横置时的刚度作了深入的分析与计算。通过对扭杆与板簧的比较,且基于菱形车结构与对悬架变刚度的需求,最后选用了板簧结构;因为弹性元件主要失效形式之一是疲劳,故本文对板簧进行了疲劳分析;由于汽车板簧所受载荷为非稳定变应力,文中引入疲劳损伤累积理论对菱形车的板簧进行了较为精细的疲劳计算。
     在减振元件的设计中,通过对车辆平顺性的分析,得出了菱形车中悬架所需要的阻尼特性曲线,为阻尼元件的计算提供了基础。通过对筒式减振器进行的设计与分析,确定了减振器的各种参数与数学模型。为减小高度尺寸采用了扭力减振器。利用扭力减振器提供的阻尼力矩与筒式减振器提供的阻尼力等价的思想,提出了筒式减振器与扭力减振器的换算关系,并以此确定扭力减振器的各个设计与选用参数及布置方案。
     制动和侧倾是车辆动力学研究的两个重点方向,本文对菱形车的侧倾工况和制动工况进行了较为详细地分析。借助Matlab/simulink软件对菱形车侧倾时发生的载荷转移和不同的制动形式进行仿真,并对其仿真结果进行了比较,得出了菱形车的制动策略,为菱形车制动系统的优化设计奠定了基础。
     本文对菱形车进行了较完整的整车试验,其试验内容为操纵稳定性六个和平顺性一个,共计七个试验,并对操纵稳定性试验进行了综合评价。通过试验与评价验证了菱形车具有与普通轿车相当的操纵稳定性与平顺性。这为菱形车未来的开发与研究奠定的充实的试验依据。
     论文中创造性地设计了一款采用双横臂做导向元件,板簧作弹性元件,扭力减振器作减振元件的悬架系统。根据设计计算与分析的结果,并通过试验,证实了菱形车的中悬架采用本论文的设计是完全可行的。本文还对菱形车的侧倾和制动问题进行了研究,得到了菱形车的制动策略。
This dessertation makes the design and analysis on the middle suspension based on the rhombus vehicle. Since the rhombus vehicle has the advantage of good collision safety and small turning radius, there is strong engineering and scientific research value for it. This paper is mainly focus on the design in suspension system, and also carrying out the whole vehicle experiments to identify the feasibility and reasonableness of the design. As to the driving wheel middle layout, we took a variety of methods to decrease the vertical dimension of suspension system to avoid to decrease of useful space which was caused by the protruding of the middle part of the cab so that the structure and disposition of the rhombus vehicle can be most actualized. Investigation to roll and brake conditions of the rhombus vehicle, the dissertation also presents the brake methods of the rhombus vehicle. Finally, the rhombus vehicle was detailedly experimented in the dissertation. Experimental results was satisfied to reach to experimental standard established by country
     In the design of guiding components, considering that the double wishbone suspension system has the advantage of small vertical dimension, we chose it. Meanwhile, we also opimizated the structure through the genetic algorithm and the softwares of ADAMS and MATLAB and determined the space position of hardpoint and length dimension of each guiding components. At the same time, we constructed three-dimensional model of the guiding components.
     In the design and analysis of elastic components, a detailed calculation about the choice of torsion bars was made in the paper; a relatively thorough analysis about the design of the leaf spring was carried out, and a variety of calculation methods, such as common curvature method, concentrated load method and improved concentrated load method, are applied to the calculation of the stiffness, length, and stress of leaf spring, and a comparison between them is made, especially on the stiffness of leaf spring when it is installed transversally. The leaf spring structure is finally chosen to be the elastic elements of middle suspension based on the comparison between torsion bar and leaf spring as well as the requirements for variable stiffness of the suspension and the structure of the rhombus vehicle. Because the main reason for failure of elastic components is fatigue, a discussion on fatigue of the leaf spring is made. Also, since unstable variable stress is endured by the leaf spring, a precise fatigue calculation on the leaf spring of rhombus is made using the Fatigue Accumulation Damage theory.
     Design to damp elements, according to analysis of the vehicle ride, the damp characteristic curve of the middle suspension rhombus vehicle in order to provide bassis for calculating damp elements. Through analysis and design for the tube shock absorber, the all kinds of parameters and mathematical model were determined. In order to descrease vertical size, the torsion shock absorber was applied to middle suspension. Using the idea of the damp moment of the torsion shock absorber to be equal to the damp force of the tube shock absorber, the equivalent relations of the tube shock absorber and torsion shock absorber was presented. The design parameters and layout methods of the torsion shock absorber were determined.
     The brake and roll conditions are mainly investigated in vehicle dynamics. The dissertation detailed analyzed the roll and brake conditions of the rhombus vehicle. The load transfer of the roll condition and brake methods of the rhombus vehicle were simulated with Matlab/simulink software. The simulation result were compared and analyzed to obtain the brake methods of the rhombus vehicle. The brake methods establish basis for optimizing design brake system of the rhombus vehicle.
     We took series of experiments on rhombus-vehicles. The 7 experiments focused on the handling and ride characteristics of rhombus vehicles. Through these experiments, we proved that rhombus vehicles have the similar performance in the handling stability and ride with the ordinary layout cars.
     This paper originally presented a kind of suspension system which consisted of the double wishbone suspension as guiding components, leaf spring as elastic component and torsion shock absorber as damp components. According to comparison the simulation analysis and the experiments results, we proved that the design of this paper to the middle-set suspension of rhombus vehicle is feasible. Finally, the dissertation firstly analyzed the roll and brake conditions of the rhombus vehicle and present brake methods of the rhombus vehicle
引文
[1]郑军.新概念车舒适性与操纵稳定性研究.长沙:湖南大学博士论文[D],2001
    [2]耶尔森.赖姆帕尔.汽车底盘基础[M].北京:科学普及出版社, 1992:pp.1-10
    [3]张洪欣.汽车系统动力学.上海:同济大学出版社,1996.
    [4]于翔.汽车悬挂参数的多级优化.汽车技术,1994(4), pp.10-12.
    [5]靳玉杰.汽车行驶方向稳定性的探讨.汽车杂志,1996(1), pp.10-11.
    [6]赵又群,郭孔辉.具有随机道路输入的人-车-路闭环操纵系统的响应分析与操纵安全性评价.汽车工程,vol.19,no.5, pp.273-278
    [7]黄兴惠等.基于频率域加权性能指标和输出反馈的主动悬架控制策略研究.汽车工程,1998,vol,20,no.6, pp.321-326
    [8] T.Yoshimura. A semi-active suspension of passenger cars using fuzzy reasoning and the field testing. Int. J.of Vehicle Design, 1998, vol.19,no.2, pp.150-166.
    [9] P.Pintado and F.G.Benitez. Optimization for vehicle suspension I:time domain. Vehicle System Dynamics, 1990, vol.19, pp.273-288.
    [10] Elsayed M.Elbeheiry, et.al. Suboptimal control design of active and passive suspensions based on a full car model. Vehicle System Dynamics. 1996, vol.26, pp.197-222.
    [11] C.N.Spentzas. Optimization of vehicle ride characteristics by means of Box’smethod. Int.J.of Vehicle Design, 1993, vol.14, no.5/6, pp.539-551
    [12] C.N.Spentzas. Optimization of vehicle ride characteristics by means of Box’smethod. Int.J.of Vehicle Design, 1993, vol.14, no.5/6, pp.539-551
    [13]郝秀清;胡福生等,基于牛顿—欧拉法的3PTT并联机构动力学分析及仿真.中国机械工程.2006,23, 9,pp.9-11
    [14]李永刚,宋轶民等,基于牛顿欧拉法的3-RPS并联机构逆动力学分析.航空学报;2007,28 ,5,pp.1210-1215
    [15]隋震宇.Santana轿车前悬架弹性运动学特性的ADAMS建模与仿真.硕士学位论文.长春:吉林大学,2002
    [16]刘又午.多体动力学的休斯敦方法及其发展.中国机械工程, 2000.11,6,pp.601-607
    [17]刘轩,孙杜杜.求解非结构四边形二次拉格朗日有限元方程的代数多重网格法.湘潭大学自然科学学报.2005,27,3.pp.8-15
    [18]孙杜杜,舒适.求解三维高次拉格朗日有限元方程的代数多重网格法.计算数学,2005,27,1,pp.101-112
    [19]刘岭,杨海天.基于拉格朗日乘子法和群论的具有任意位移边界条件的旋转周期对称结构有限元分析.计算力学学报.2004 ,21,04 .pp.425-429
    [20]樊涛.应用Lagrange乘子法推导弹性动力学的变分原理.博士论文[D],哈尔滨:哈尔滨工程大学,2006
    [21] Orlandea N. . M.A. Chace . Simulation of a Vehicle Suspension with the Adams Computer Program . SAE paper No. 770053 . 1977
    [22]陈耀钧.轿车液压减振器阻力特性模拟计算及分析.汽车技术.1995,(10):pp.7-17
    [23]李文君,蒋永林等.双横臂独立悬架空间运动学分析.汽车工程,2006,28(6):pp.558-560
    [24]黄兴惠等.基于频率域加权性能指标和输出反馈的主动悬架控制策略研究.汽车工程,1998,vol,20,no.6, pp.321-326
    [25] F.James. Measuring seat comfort. Automotive Engineering, 1993, vol,101, no.7, pp.25-29
    [26]莫旭辉.类菱形车操纵动力学分析与优化.长沙:湖南大学博士论文[D].2009
    [27]黄智,钟志华.菱形新概念车转向性能分析[J].湖南大学学报,2006,33,6,pp.46-50
    [28] Bram de Jager. Robust H2 optimal control of an active suspension [J]. in Proc.IEEE International Conference on Control Applications,1997,pp.761-766
    [29] Mitsuo Gen, Runwei Cheng. Genetic algorithms and engineering optimization [M]. Tisinghua university Press.Beijing 2004,pp.30-50
    [30]郭孔辉.汽车操纵动力学.长春:吉林科技出版社,1991.
    [31] G Gim, P Nikravesh. An analytical model of pneumatic tyres for vehicle dynamic Simulation Part2. Comprehensive slips Int J of Vehicle Desig 1991,112,2,pp.215-219
    [32] Orlandea, N; M.A.Chace. Simulation of a Vehicle Suspension with the Adams Computer Program, SAE770053
    [33]俞德孚等.车辆随机振动与悬架控制原理.北京:兵器工业出版社,1992.
    [34]刘小洪.客车五自出度振动系数模型的建立.客车技术与研究,1998,vol.20, no.3, pp.15-17.
    [35] G.Gim and P.E.Nikravesh. An analytical study of pneumatic tyres for vehicle dynamic simulations. Part 1: Pure slips, Int. J. of Vehicle Design, 1990, vol.l1,no.6, pp.589--618
    [36]潘筱,王玉民等.五连杆后悬架的后轴变形效应与转向随动性关系研究.汽车技术2007. 12,pp.21-22,44
    [37]杨树凯,宋传学等.多连杆悬架与双横臂悬架运动学和弹性运动学特性分析.汽车技术,2006.12
    [38]潘筱王玉民等,五连杆后悬架的后轴变形效应与转向随动性关系研究.汽车技术,2007.12,pp.5-8
    [39]陈黎卿,陈无畏,何钦章.双横臂扭杆独立悬架多目标遗传优化设计[J].中国机械工程学报,2007,18,17,pp.2022-2025.
    [40]左文义.双横臂扭杆式独立悬架系统运动分析方法[J].设计计算研究, 1994(4).pp.1-6,27
    [41]宋传学.基于ADAMS/Car的双横臂独立悬架建模与仿真[J].吉林大学学报,2004,34 (4)
    [42] P.Pintado and F.G.Benitez. Optimization for vehicle suspension II:frequency domain. Vehicle System Dynamics, 1990, vol.19, pp.331-352.
    [43]时培成.韦山,双横臂扭杆弹簧悬架线刚度计算及动态仿真.机械工程师. 2006.8:pp.43-45
    [44]杨阳,周谊等.双扭杆双横臂悬架有限元建模与分析.汽车工程. 2006(28) 11 .pp.1007-1010
    [45] TNO Road-Vehicles Research Institute. MADYMO Theory Manual Version5.3,1997.
    [46]陈黎卿,陈无畏等.双横臂扭杆独立悬架多目标遗传优化设计[J].中国机械工程学报,2007,18(17)
    [47]黄昶春,韦志林等.微型货车后悬架钢板弹簧断裂原因的分析与试验.机械设计2008,25,11,pp.69-71
    [48]杨华,徐旭等.汽车钢板弹簧的非线性分析与数值计算.吉林大学学报2004. 1.pp.54-57
    [49]时培成,龚建成.汽车悬架变刚度螺旋弹簧最优化设计.现代制造工程.2006,11,pp.112-114
    [50]钟文彬,李柏林.预应力圆柱螺旋弹簧弯曲弹性特性研究.机械设计2008,25,01,pp.25-27
    [51]冯春晟,陈辛波.双横臂-螺旋弹簧悬架受力及刚度阻尼特性非线性分析,汽车技术.2007,9,pp.7-11
    [52]李新耀,张印等.双横臂扭杆悬架的特性分析及设计计算.汽车工程,2003,25,1,pp.12-14
    [53]刘海兰,李小平等.汽车扭杆悬架弹簧遗传算法优化设计的研究.机械制造与研究.2002,6,pp. 2493-2497
    [54]佚名.汽车扭杆弹簧断裂原因分析.http://www.ceas.org.cn,2007-7-30
    [55] M.Demic. Optimization of characteristics of elasto-damping elements of cars from the aspect of comfort and handling. Int. J. of Vehicle Design, 1992, vol.13,no.1, pp.29-46.
    [56]王平,陈冲.虚拟样机技术在空气悬架系统设计中的应用,汽车技术.2006.8,pp.10-13
    [57]吕振华,伍卓安等.减振器节流阀非线性特性的有限元模拟分析.机械强度.2003,25,6,pp.614-620
    [58]张文,邓楚南.筒式液力减振器性能模拟仿真技术的发展.专用汽车.2006.12,pp.36-38
    [59]俞德孚.我国汽车工业的发展形势与悬架减振器的国产化课题.车辆与动力技术. 1997, 53,1,pp.1-7
    [60]吕振华,李世民.筒式减振器动态特性模拟分析技术的发展.清华大学学报(自然科学版).2002,42,11,pp.1532-1536
    [61]赵六奇,易庆红.车辆悬架与减振器阻尼的匹配研究.车辆与动力技术. 1994. 53,1,pp.30-37
    [62]任卫群,赵峰,张杰.汽车减振器阻尼特性的仿真分析.系统仿真学报:增刊.2006,18,2,pp.957-960
    [63] M.Demic. Optimization of characteristics of elasto-damping elements of cars from the aspect of comfort and handling. Int. J. of Vehicle Design, 1992, vol.13,no.1, pp.29-46.
    [64]李金梅,张冰蔚.单筒充气式液压减振器外特性仿真,噪声与振动控制, 2008,2,pp.37-40
    [65] Duym S W R.Simulation tools,modelling and identification,for an automotive shock absorber in the context of vehicle dynamics[J].Vehicle System Dynamics,2000,33:261~285.
    [66] Kowalski D, Rao M D, Blough J. Dynamic testing of shock absorbers under non-sinusoidal conditions. Journal of automobile engineering. 2002, 216,5,pp.373-384
    [67]龚威寒.汽车现代设计方法.北京:人民交通出版社,1995
    [68]张洪欣.汽车设计.北京:机械工业出版社,1988.
    [69]小林明.汽车工程手册.北京:机械工业出版社,1984.
    [70]张立军,何辉.车辆随机振动.辽宁:东北大学出版社,2007
    [71]毛建中,唐友名,钟志华.类菱形概念车中悬架优化设计.汽车工程, 2007 ,2, pp.153-156
    [72] Bram de Jager. Robust H2 optimal control of an active suspension [J]. in Proc.IEEE International Conference on Control Applications,1997,pp.761-766
    [73] Mitsuo Gen, Runwei Cheng. Genetic algorithms and engineering optimization [M]. Tisinghua university Press.Beijing 2004,pp.30-50
    [74]郭孔辉.汽车操纵动力学.长春:吉林科技出版社,1991.
    [75] G Gim, P Nikravesh. An analytical model of pneumatic tyres for vehicle dynamic Simulation Part2. Comprehensive slips Int J of Vehicle Desig 1991,112,2,pp.215-219
    [76] Orlandea, N; M.A.Chace. Simulation of a Vehicle Suspension with the Adams Computer Program, SAE770053
    [77]郭丽萍.概述汽车主动控制悬架系统的工作原理及控制模式.城市公共交通, 2003,1 ,pp. 17-18
    [78]刘小洪.客车五自出度振动系数模型的建立.客车技术与研究,1998, vol.20, no.3, pp.15-17
    [79] G.Gim and P.E.Nikravesh. An analytical study of pneumatic tyres for vehicle dynamic simulations. Part 1: Pure slips, Int. J. of Vehicle Design, 1990, vol.l1, no.6, pp.589--618 [80何季雄.优化设计.北京:机械工业出版社,1991.
    [81]党潇正,张建华等.轮式车辆双横臂独立悬架运动学分析.轻型汽车技术, 2008,5,pp.8-12
    [82]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999.
    [83]左文义.双横臂扭杆式独立悬架系统运动分析方法[J].汽车技术, 1994,4,pp.1-6,27
    [84] P.Pintado and F.G.Benitez. Optimization for vehicle suspension II:frequency domain. Vehicle System Dynamics, 1990, vol.19, pp.331-352.
    [85]庄继德.汽车轮胎学.北京:北理工大学出版社,1996.
    [86] TNO Road-Vehicles Research Institute. MADYMO Theory Manual Version5.3,1997.
    [87]陈宝林.最优化理论与算法.北京:清华大学出版社,1989.
    [88]何季雄.优化设计.北京:机械工业出版社,1991.
    [89]毛建中,唐友名等.基于DOE技术的类菱形概念车中悬架研究.株洲工学院学报,2006,6,pp.61-63
    [90]王其东,李明红,洪洋.四连杆式独立悬架运动学分析与优化.合肥工业大学学报,2006,07 ,pp. 805-808
    [91]机械设计手册.北京:化学工业出版社.2003
    [92]王望予.汽车设计[M].北京:机械工业出版社,2000
    [93]中国机械工程学会、中国机械设计大典编委会.中国机械设计大典:第3机械零部件设计[M].南昌:江西科学技术出版社,2002
    [94]李中华,张洪欣等.双横横臂扭杆独立悬架设计[J].同济大学学报,1997, 4,pp.423-426
    [95]小林明.汽车工程手册.北京:机械工业出版社.2005
    [96]毛建中,张义.类菱形车前悬架扭杆弹簧的设计与选用.交通标准化2008,2,3,pp.26-29
    [97]张英会,刘辉航等.弹簧手册.北京:机械工业出版社,1996
    [98] G.R.L,X.Han.Computational Inverse Techniques in Nondestructive Evaluation, CRC Press,Boca Raton.London,New York,Washington,D.C
    [99] G.R.L,X.Han Computational Inverse Techniques for Material Characterization of Functionally Graded Materials.AIAA Journal,2003,41,
    [100] D.Xu,F,FYAP,X.Han,G.L.Wen.Identification of Spring-force Factors of Suspension Systen\ms Using Progressive Neural Network on a Validated Computer Model. Inverse Problems in Engng,2003,11
    [101]刘鸿文.材料力学[M].北京:高等教育出版社.2004
    [102]过学迅,邓来东.汽车设计[M].北京:人民交通出版社.2005
    [103]王其东等.其于多刚体动力学的双横臂独立悬架线性刚度的计算.农业机械学报. 2004, 35,pp.1066-1071
    [104]余卓平等.非线性悬架系统频率特征数值解.上海汽车,1998,2, pp.36-39.
    [105] J.H.Jang and C.S.Han. The sensitivity analysis of lateral acceleration for the front wheel steering vehicle in the frequency domain. Int. J. of Vehicle Design, 1998, vol.19, no.4, pp.415-435.
    [106]余志生.汽车理论.北京:机械工业出版社,1999
    [107] [德国]约森.赖姆佩尔.悬架元件及底盘力学.长春:吉林科学技术出版社,1991
    [108]吴宗泽.机械零件[M].北京:中央广播电视大学出版社,1986
    [109] H.Shimomura, et.al. Simulation analysis on the influence of vehiclespecifications upon steering characteristics. Int. J. of Vehicle Design, 1991, vol.12, no.2, pp.197-207
    [110]赵亮.扭转阻尼减振器设计及其在车辆悬架系统中的应用研究.长沙:湖南大学[D],2008
    [111] F.James. Measuring seat comfort. Automotive Engineering, 1993, vol,101, no.7, pp.25-29
    [112] John Dixon. The Shock Absorber Handbook. USA: SAE 1999,pp.180-200
    [113] Liu Y Q, Zhang J W, Cheng X M. Experimental and dynamic study of the piston rod lateral friction for the twin-tube hydraulic shock absorber. Shock and vibration. 2003 ,103,pp.169-177
    [114] Alexander L, Swenja L. A Thermomechanically Coupled Model for Automotive Shock Absorbers: Theory, Experiments and Vehicle Simulations on Test Tracks. Vehicle System Dynamics. 2002, 37,4,pp. 24-261
    [115] Ramos J C, Rivas A, Biera J. Development of a thermal model for automotive twin-tube shock absorbers. Applied Thermal Engineering, 2005, 25,11,pp.1836-1857
    [116]毛建中,张义.类菱形车中悬架减振器设计与强度分析.交通标准化.2008,1,pp.168-171
    [117] Nakano M, Yanekawa T. Active damper using electrorheological suspension and its application to vibration isolation control. Noise and Vibration Worldwide, 1997, 288,pp.30-51
    [118] J.Reimpell,H.Stoll,J.W.Betzler. The Automotive Chassis Engineering Principles Second Edition [M].UK:Butterworth-Heinemann,2001
    [119] Sammier D, Sename O, Dugard L. Skyhook and H∞control of semi-active suspensions: Some practical aspects. Vehicle System Dynamics. 2003. 39,4,pp.279-308
    [120] TUAN H D, ONO E, APKARIAN P. Nonlinear H∞Control for an Integrated Suspension System via Parameterized Linear Matrix Inequality Characterizations [J]. IEEE Transaction on Control System Technology, 2001, 9 ,1,pp.175-185
    [121]檀润华,陈鹰,路甬祥.基于复杂非线性数学模型的汽车减振器参数设计.机械设计.1999,2,pp.16-18
    [122]郭孔辉.操纵系统动力学[M].吉林:吉林科学技术出版社, 1992
    [123] M E Mohamed, S A Zuhair. Linear quadratic gaussian control of a quarter car suspension. Vehicle system dynamics. 1999,32,pp.479-497
    [124]邓楚南,袁有才等.机动车的侧倾稳定性和及侧翻试验台.专用汽车,1997,3:47-49
    [125]杨啟梁.汽车制动过程中方向稳定性分析[J].拖拉机与农用运输车,2007,34,1,pp.28-32
    [126] Y.H.Cho and J.Kim. Stability analysis of the human controlled vehicle moving along a curved path. vehicle System Dynamics, 1996, vo1.25, pp.51-69.
    [127]赵又群,郭孔辉.稳态轮胎侧偏力学的发展与展望.汽车技术,1997,3, pp.1-4.
    [128] Sung K G, Han Y M, Lim K H. Discrete-time fuzzy sliding mode control for a vehicle suspension system featuring an electrorheological fluid damper. Smart Marterial and Structures. 2007. 16,3, 7,pp.98-808.
    [129] J.P.M.Hendrikx, et.al. Application of optimal control theory to inverse simulation of car handling. Vehicle System Dynamics, 1996, vol.26, pp.449-461.
    [130] H.Shimomura, et.al. Simulation analysis on the influence of vehicle specifications upon steering characteristics. Int. J. of Vehicle Design, 1991, vol.12, no.2, pp.197-207.
    [131] K.H.Guo and H.Guan. Modeling of driver/vehicle directional control system. Vehicle System Dynamics, 1993, vol.22, pp.14l-184.
    [132]赵亦希,黄宏成等.悬架侧倾特性参数入动力学仿真.传动技术,2001,1,pp.40-42
    [133] Michael W. Highway Vehicle Objest Simulation Model. Programmers Manual,1976
    [134] Anton Van Zanten, Rainer Erhardt, Albert Lutz, et al. Simulation for the Development of the Bosch-VDC, SAE paper 960486
    [135]李颖,朱伯立,张威.Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社,2004,pp.53-203.
    [136] Tohru Yoshioka,Tomohiko Adachi, Tetsuro Butsuen, et al. Application of Sliding-Mode Theory to Direct Yaw-Moment Control, JSAE paper 9936724
    [137] G Villoc. Co-simulation an Automobile Control Systen using ADAMS and math. 1998 international ADAMS User Conference. 1998
    [138]汽车操纵稳定性指标限与评价方法. (QC/T480-1999)
    [139]宗长富,郭孔辉.汽车操纵稳定性的研究和评价.汽车技术. 2000,6,pp.6-11
    [140]郭孔辉.遗传算法在汽车操纵稳定性评价及结构参数优化中的应用.机械工程学报,2000,36,pp.34-36
    [141] GB/T6323.6-94中华人民共和国国家标准.汽车操纵稳定性试验方法:稳态回转试验
    [142]郑安文,宋健等.汽车的力学参数与稳态转向特性.1998,12,pp.21-24.
    [143]张利鹏.汽车稳态圆周行驶初始条件的判定.拖拉机与农用运输车,2005,5,pp.67-69.
    [144] GB/T6323.6-94中华人民共和国国家标准.汽车操纵稳定性试验方法:转向回正试验
    [145]王德平,候国政等.汽车操纵稳定性的中间位置转向试验.汽车科技,2003,11,pp.21-22
    [146] GB/T6323.6-94中华人民共和国国家标准.汽车操纵稳定性试验方法:转向轻便性试验
    [147]倪佑民.汽车方向稳定性基本原理.北京:清华大学出版社,1978
    [148] GB/T6323.6-94中华人民共和国国家标准.汽车操纵稳定性试验方法:转向转角阶跃试验
    [149] GB/T6323.6-94中华人民共和国国家标准.汽车操纵稳定性试验方法:转向盘转角脉冲输入试验
    [150] GB/T6323.6-94中华人民共和国国家标准.汽车操纵稳定性试验方法:蛇行试验
    [151]赵伟,周志立等.汽车操纵稳定性研究的数学模型评述.洛阳工学院学报,2002,23,3,pp.76-79
    [152] GB/T 13441中华人民共和国国家标准.人体全身振动环境的测量规范
    [153] GB/T 12543中华人民共和国国家标准.汽车道路试验方法通则
    [154] GB 7031中华人民共和国国家标准.车辆振动输入路面平度表示方法

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700