检测水中微囊藻毒素-LR电化学免疫传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究成功开发了两种类型的基于丝网印刷碳电极的电化学免疫传感器。一是基于电催化还原与间接竞争免疫检测原理,通过自主制备锇氧化还原聚合物修饰丝网印刷碳电极,开发了电流型免疫传感器系统;二是研制了一种新型基于多壁碳纳米管修饰的阻抗型免疫传感器,上述两种传感器可对水中微量污染物实现快速定量检测。研究中在系统分析影响传感器性能的基础上,以微囊藻毒素-LR为目标物,建立了水中污染物电流型和阻抗型免疫传感器的修饰技术和检测方法,并用于实际水样检测。
     主要研究成果是:(1)提出了锇氧化还原聚合物修饰丝网印刷碳电极的方法,即先将小分子污染物微囊藻毒素-LR与经戊二醛活化后的惰性鸡卵白蛋白结合制备成微囊藻毒素-LR的抗原复合物,再将该复合物与锇氧化还原聚合物、牛血清白蛋白通过混合交联固定的方式固定在丝网印刷碳电极表面上的传感器修饰方法。(2)建立了多壁碳纳米管修饰丝网印刷碳电极的方法,即采用聚乙烯亚胺作为多壁碳纳米管分散剂,先制备出沉降性质稳定的多壁碳纳米管悬浊液,再将其修饰在丝网印刷碳电极表面,活化的抗原复合物通过醛基与聚乙烯亚胺上的胺基发生共价缩合反应修饰在电极表面。(3)采用扫描电子显微镜、循环伏安以及阻抗谱扫描,综合表征并分析了两种传感器的表面形态和电化学性能。研究结果表明,修饰后的传感器对微囊藻毒素-LR的抗体表现出良好的特异性响应,而非特异性吸附很弱。(4)实际水样检测基质效应研究结果表明:受试的甲醇等基质对样品检测没有明显影响,样品检测适宜pH范围为6~8,腐殖酸和铜离子对检测影响较大;研究中通过在预温育反应混合物中添加1%螯合剂乙二胺四乙酸和10mg/mL牛血清白蛋白,能有效抑制样品中基质对免疫传感器检测的影响。(5)电流型免疫传感器检测微囊藻毒素-LR的检测限为0.17μg/L,定量检测区间为0.43~10.72μg/L,检测周期约为80min;阻抗型免疫传感器检测微囊藻毒素-LR的检测限为0.58μg/L,定量检测区间为0.76~7.40μg/L,检测周期约为55min。检测不同类型实际水样中的微囊藻毒素-LR的结果表明:研制的传感器的检测变异系数均在10%之内,回收率在83%~121%之间,与高效液相色谱的分析结果相比具有良好的线性相关性,且具有较好的精确度和稳定性,可满足环境检测的需要。
Two different electrochemical immunosensors based on screen-printedcarbon electrode (SPCE) have been successfully developed. The first one is anamperometric immunosensor system based on the integrated principle ofelectrocatalytic reduction and indirect competitive immunoassay, which hasbeen developed by using a self-made osmium redox polymer (OsPVP) modifiedon SPCE. The second one is a new impedimetric immunosensor based on themodification of multi-wall carbon nanotube (MWCNT). Both biosensors canachieve the rapid and accurate detection of trace pollutants in water samples.Based on the detailed evaluation of the factors affecting sensor performance,taken microcystin-(leucine-arginine)(MC-LR) for example, the modifyingscheme of amperometric and impedimetric immunosensor and the measurementmethod of the pollutants in water were established.
     The results obtained from this study listed as follows:(1) OsPVP wascovalently co-immobilized on the surface of SPCE with bovine serum albumin(BSA) and hapten-carrier conjugates MC-LR-ovalbumin (MC-LR-OVA), whichwere synthesized by mixing MC-LR and OVA activated by glutaraldehyde.(2)MWCNT was modified on the surface of SPCE by preparing a stablepolyethyleneimine-MWCNT (MWCNT-PEI) suspension, in which the PEI wasapplied as the dispersant agent. After the mixture was immobilized, and then theMC-LR-OVA activated was covalently bound to electrode surface via thecondensation reaction between the aldehyde groups of conjugate and the aminegroups of MWCNT-PEI.(3) The morphology and electrochemical properties ofthe sensor modified was evaluated by scanning electron microscopy, cyclicvoltammetry, and electrochemical impedance spectroscopy. The results showthat good binding of monoclonal antibody against MC-LR (Anti-MC-LR) andlow non-specific adsorption was monitored.(4) The experimental results ofmatrix effect in real water sample indicated that the concentration of methanolunder the scope of the experimental conditions didn’t affect the monitoring ofsamples, the proposed pH was6~8, and the high concentration of Cu2+and humus on the immunoassay which could affect the performance ofimmunosensor could be effectively compromised when1%EDTA and10mg/mL BSA were added to the pre-incubated mixture.(5) The detection limit ofamperometric immunosensor for MC-LR was found to be0.17μg/L with thequantitative detection range of0.43~10.72μg/L, and the total analysis time wasapproximately80min. The detection limit of impedimetric immunosensor forMC-LR was found to be0.58μg/L with the quantitative detection range of0.76~7.40μg/L, and the total analysis time was approximately55min. Severalwater samples of different origins were measured with less than15%deviationof the detection and the recovery ratio of MC-LR was determined to be83%~121%. The determination results of the samples including MC-LR were ingood correlation by those obtained from high performance liquidchromatography. This indicates that the prepared immunosensor can beapplicable to meet requirements of environmental monitoring for the tracepollutants with good accuracy and stability.
引文
[1] Chorus I, Bartram J, Toxic cyanobacteria in water: A guide to their public health consequences,monitoring and management. Published by E&FN Spon, London,1999,416.
    [2]张维昊,徐小清,固相萃取高效液相色谱法测定水中痕量微囊藻毒素.分析化学,2001,29(5):522-525.
    [3] Sivonen K, Cyanobacterial toxins and toxin production. Phycologia,1996,35(Suppl6):12-24.
    [4] Vasconcelos V M, Sivonen K, Evans W R, Carmichael W W, Namikoshi M, Hepatotoxicmicrocystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. WaterResearch,1996,30:2377-2384.
    [5]韩志国,武宝玕,郑解生,谢隆初,淡水水体中的蓝藻毒素研究进展.暨南大学学报,2001,22(3):129-135.
    [6] World Health Organization, Cyanobacterial toxins: Microcystin-LR in drinking-water.Background document for preparation of WHO Guidelines for drinking-water quality. Geneva:WHO,2003.
    [7] World Health Organization, Guidelines for drinking-water quality,3rd edition, Geneva,Switzerland.2004,1:407-408.
    [8]中华人民共和国卫生部,生活饮用水卫生标准.北京:中华人民共和国卫生部卫生法制与监督司,2006.
    [9]顾岗,太湖蓝藻爆发原因及其控制措施.上海环境科学,1996,15(12):10-14.
    [10]吴为墚,林毅雄,刘丽萍,周跃光,张秀敏,滇池水体中主要藻种毒素研究.云南环境科学,1997,16(2):26-30.
    [11]林玉娣,俞顺章,徐明,杨坚波,胡磊,沈炜.无锡太湖水域藻类毒素污染与人群健康关系研究.上海预防医学杂志,2003,15(9):435-437.
    [12]赵影,杨志平,王志强,谢春萍,范琼,王维,黄晓沐,王勇,巢湖水藻类毒性及对饮用水水质影响.环境与健康杂志,2003,20(4):219-222.
    [13]隋海霞,严卫星,徐海滨,陈艳,武汉东湖微囊藻毒素污染及其在鱼体内的动态研究.卫生研究,2004,33(1):39-41.
    [14]连民,陈传炜,俞顺章,刘颖,淀山湖夏季微囊藻毒素分布状况及其影响因素.中国环境科学,2000,20(4):323-327.
    [15]董传辉,俞顺章,陈刚,江苏几个地区与某湖周围水厂不同类型水微囊藻毒素调查.环境与健康,1998,15(3):111-113.
    [16]王朝晖,林秋奇,胡韧,范春雷,韩博平,广东省水库的蓝藻污染状况与水质评价.热带亚热带植物学报,2004,12(2):117-123.
    [17]刘天福,贾幸改,赵建明,三门峡饮用水藻类污染及影响因素研究.环境与健康杂志,2001,18(5):278-280.
    [18]巢湖蓝藻可能爆发,局部水面重度污染,光明网,2010-08-09.http://www.gmw.cn/content/2010-08/09/content_1208473.htm
    [19] Erzog D P, Immunoassays for environmental contaminants (pesticides) in food and water.Newtown: Pennsylvania, Ohmicron Corporation,1997.
    [20] Van-Emon J M, Lopez-Avila V, Immunochemical methods for environmental analysis.Analytical Chemistry,1992,64(2):79-88.
    [21] Van-Emon J M, Gerlach C L, A status report on field-portable immunoassay. EnvironmentalScience and Technology,1995,29(7):312-317.
    [22] Christophe A M, Loic J B, State of the art and recent advances in immunoanalytical systems.Biosensors and Bioelectronics,2006,21:1424-1433.
    [23] Leung A, Shankar P M, Mutharasan R, A review of fiber-optic biosensors. Sensors andActuators B.2007,125(2):688-703.
    [24] Matveeva E G, Aguilar-Caballos M P, Eremin S A, Gomez-Hens A, Perez-Bendito D, Use ofstopped-flow fluoroimmunoassay in pesticide determination. The Analyst,1997,122:863-866.
    [25] Matveeva E G, Popova V A, Eremin S A, Detection of2,4-Dichlorophenoxyacetic acid inreverse micelles AOT/n-octane by polarization and quenching fluoroimmunoassays. Journalof Fluorescence,1997,7:251-256.
    [26] Dzgoev A B, Gazaryan I G, Lagrimini L M, Ramanathan K, Danielsson B, High-sensitivityassay for pesticide using a peroxidase as chemiluminescent label. Analytical Chemistry,1999,71:5258-5261.
    [27] Surugiu I, Dey E S, Svitel J, Pirvutoiu S, Danielsson B, Dextran-modified surface for highlysensitive chemiluminescent ELISA. The Analyst,2001,126:1633-1635.
    [28] Dzantiev B B, Zherdev A V, Electrochemical immunosensors for determination of thepesticides2,4-Dichlorophenoxyacetic and2,4,5-Trichlorophenoxyacetic acids. Biosensorsand Bioelectronics.1996,11(12):179-185.
    [29] Rubtsova M Y, Kovba G V, Egorov A M, Chemiluminescent biosensors based on poroussupports with immobilized peroxidase. Biosensors and Bioelectronics.1998,13(1):75-85.
    [30] Kwakye S, Goral V N, Baeumner A J, Electrochemical microfluidic biosensor for nucleic aciddetection with integrated minipotentiostat. Biosensors and Bioelectronics,2006,21:2217-2223.
    [31] Rodriguez-Mozaz S, Marco M, Lopez-de-Alda M J, Barcelo D, Biosensors for environmentalapp lications: Future development trends. Pure and Applied Chemistry,2004,76(4):723-752.
    [32] European Union Concerted Action, BIOSET: Biosensors for Environmental Technology.Newsletter No.6, February2000, http://www.cranfield.ac.uk/biotech/bioset.htm.
    [33] Tschmelak J, Proll G, Riedt J, Kaiser J, Kraemmer P, Barzaga L, Wilkinson J S, Hua P, Hole JP, Nudd R, Jackson M, Abuknesha R, Barcelo D, Rodriguez-Mozaz S, Lopez-de-Alda M J,Sacher F, Stien J, Slobodn J, Oswald P, Kozmenko H, Korenková E, Tóthová L, KrascsenitsZ, Gauglitz G, Automated water analyser computer supported system (AWACSS) Part I:project objectives, basic technology, immunoassay development, software design andnetworking. Biosensensors and Bioelectronics.2005,20:1499-1508.
    [34] Tschmelak J, Proll G, Riedt J, Kaiser J, Kraemmer P, Barzaga L, Wilkinson J S, Hua P, Hole JP, Nudd R, Jackson M, Abuknesha R, Barcelo D, Rodriguez-Mozaz S, Lopez-de-Alda M J,Sacher F, Stien J, Slobodn J, Oswald P, Kozmenko H, Korenková E, Tóthová L, KrascsenitsZ, Gauglitz G, Automated Water Analyser Computer Supported System (AWACSS) Part II:Intelligent, remote-controlled, cost-effective, on-line, water-monitoring measurement system.Biosensensors and Bioelectronics,2005,20:1509-1519.
    [35]王重庆,分子免疫学基础.北京:北京大学出版社,2000.
    [36]于善谦,王洪海,朱乃硕,叶荣,免疫学导论.北京:高等教育出版社,施普林格出版社,1999.
    [37] Luppa P B, Sokoll L J, Chan D W, Immunosensors-principles and applications to clinicalchemistry. Clinical Chimica Acta,2001,314:1-26.
    [38] Mallat E, Barcelo D, Immunosensors for pesticide determination in natural water. Trends inanalytical chemistry,2001,20(3):124-132.
    [39] Gonzalez M A, Puchades R, Maquieira A, On-line immunoanalysis for environmentalpollutants: from batch assays to automated sensors. Trends in analytical chemistry,1999,18(3):204-218.
    [40] Dankwardt A, Immunochemical assays in pesticide analysis. Encyclopedia of AnalyticalChemistry. John Wiley and Sons Ltd,1997.
    [41]朱立平,陈学清,免疫学常用试验方法.北京:人民军医出版社,2000.
    [42] Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M,Brain natriuretic peptide as a novel cardiac hormone in humans: Evidence for an exquisitedual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. Journalof Clinical Investigation,1991,87(4):1402-1412.
    [43] Shimizu H, Masuta K, Aono K, Asada H, Sasakura K, Tamaki M, Sugita K, Yamada K,Molecular forms of human brain natriuretic peptide in plasma. Clinical Chimica Acta,2002,316:129-135.
    [44] Mukoyama M, Nakao K, Saito Y, Ogawa Y, Hosoda K, Suga S, Shirakami G, Jougasaki M,Imura H, Human brain natriuretic peptide, a novel cardiac hormone. Lancet,1990,335:801-802.
    [45] Frey A, Meckelein B, Externest D, Schmidt M A, A stable and highly sensitive3,3’,5,5’-tetramethylbenzidine-based substrate reagent for enzyme-linked immunosorbentassayJournal of Immunological Methods,2000,233(1,2):47-56.
    [46] Yalow R S, Berson S A, Assay of plasma insulin in human subjects by immunological methods.Nature,1959,184(21):1648-1649.
    [47] Escosura-Mu iz A D L, Costa M M, Merko i A, Controlling the electrochemical deposition ofsilver onto gold nanoparticles: Reducing interferences and increasing the sensitivity ofmagnetoimmuno assays. Biosensors and Bioelectronics,2009,24:2475-2482.
    [48] Liu R P, Liu J T, Li X, Wang M X, Luo J P, Cai X X, A fast and sensitive enzymeimmunoassay for brain natriuretic peptide based on micro-magnetic probes strategy. Talanta,2010:1016-1021.
    [49] Gizeli E, Liley M, Lowe C R, Vogel H, Antibody Binding to a Functionalized Supported LipidLayer: A Direct Acoustic Immunosensor. Analytical Chemistry,1997,69:4808-4813.
    [50] Sonezaki S, Yagi S, Ogawa E, Kondo A, Analysis of the interaction between monoclonalantibodies and human hemoglobin (native and cross-linked) using a surface Plasmonresonance (SPR) biosensor, Journal of Immunological Methods,2000,238:99-106.
    [51] Rishpon J, Ivnitski D, An amperometric enzyme-channeling immunosensor. Biosensors andBioelectronics,1997,12:195.
    [52] Mauriz E, Calle A, Montoya A, Lechuga L M, Determination of environmental organicpollutions with a portable optical immunosensor. Talanta,2006,69:359-364.
    [53] Brecht A, Gauglitz G, Optical probes and transducers. Biosensors and bioelectronics.1995,10:923-936.
    [54] Brecht A, Gauglitz G, Label free optical immunoprobes for pesticide detection. AnalyticaChemica Acta,1997,347:219-233.
    [55]江华,府伟灵,压电生物传感器.生物工程进展,2001,21(3):63-65.
    [56]陈昕,周康源,顾宇,柯文鸿,压电生物传感器研究进展.传感技术学报,2003,3:291-298.
    [57] Skladal P, Piezoelectric biosensors. Chemiche Listy,1995,89(3):170-179.
    [58] Ramsden J J, Optical Biosensors. Journal of Molecular Recognition,1997,10:109-120.
    [59] Homola J, Yee S S, Gauglitz G, Surface plasmon resonance sensors: review. Sensors andActuators B,1999,54:3-15.
    [60] Brecht A, Piehler J, Lang G, Gauglitz G, A direct optical immunosensor for atrazine detection.Analytica Chimica Acta,1995,311:289-299.
    [61] Brecht A, Piehler J, Gauglitz G, An integrated system for optical biomolecular interactionanalysis. Biosensors and Bioelectronics,1997,12(8):809-816.
    [62] Piehler J, Brecht A, Geckeler K E, Gauglitz G, Surface modification for immunoprobes.Biosensors and Bioelectronics,1996,11(6/7):579-590.
    [63] Piehler J, Brecht A, Valiokas R, Liedberg B, Gauglitz G, A high-density poly(ethylene glycol)polymer brush for immobilization on glass-type surfaces. Biosensors and Bioelectronics,2000(15):473-481.
    [64] Arakawa H, Maeda M, Tsuji A, Enzyme immunoassay of cortisol by cheniluminescencereaction of luminal pemxidase. Bunseki Kagaku,1977,26:322-326.
    [65] Marquette C A, Blum L J, Regenerable immunobiosensor for the chemiluminescent flowinjection analysis of the herbicide2,4-D. Talanta.2000,51:395-401.
    [66]刘冀珑,乔惠理,邓泽沛,化学发光免疫技术.化学通报,2000,63(7):49-53.
    [67] Xing W L, Ma L R, Jiang Z H, Cao F H, Jia M H, Portable fiber-optic immunosensor fordetection of methsulfuron methyl. Talanta,2000,52:879-883.
    [68] Klotz A, Brecht A, Barzen C, Gauglitz G, Harris R D, Quigley G R, Wilkinson J S, AbukneshaR A, Immunofluorescence sensor for water analysis. Sensors and Actuators B,1998,51:181-187.
    [69] Rabbany S Y, Donner B L, Ligler F S, Optical immunosensors. Critical Reviews in BiomedicalEngineering,1994,22(5/6):307-346.
    [70] Slovacek R E, Furlong S C, Love W F, Feasibility Study of a plastic evanescent-wave sensor.Sensor and Actuators B,1993,11(1-3):307-311.
    [71] Golden J P, Shriver-Lake L C, Anderson G P, Thompson R B, Ligler F S, Fluorometer andtapered fiber optic probes for sensing in the evanescent wave. Optical Engineering,1992,31:1458-1462.
    [72] Van Bergen S K, Bakaltcheva I B, Lundgren J S, Shriver-Lake L C, On-site detection ofexplosives in groundwater with a fiber optic biosensor. Environmental Science andTechnology,2000,34:704-708.
    [73] González-Martínez M A, Puchades R, Maquieira A, Optical immunosensors for environmentalmonitoring: How far have we come?. Analytical and Bioanalytical Chemistry,2007,387:205-218.
    [74] Tschmelak J, Proll G, Gauglitz G, Optical biosensor for pharmaceuticals, antibiotics, hormones,endocrine disrupting chemicals and pesticides in water: Assay optimization process forestrone as example. Talanta,2005,65:313-323.
    [75]温志立,汪世平,沈国励,曾宪芳,免疫传感器的发展与制作.免疫学杂志,2001.
    [76]龙峰,施汉昌,何苗,朱安娜,倏逝波荧光免疫传感器在环境检测中的研究进展.环境科学,2008.
    [77]宋保栋,施汉昌,何苗,张凡,郭彬彬,平面波导型荧光免疫传感器的开发与测试.分析化学,2007,35(3):461-465.
    [78] Brecht A, Klotz A, Barzen C, Gauglitz G, Harris R D, Quigley G R, Wilkinson J S, Sztajnbok P,Abuknesha R, Gascón J, Oubi ae A, Barceló D, Optical immunoprobe development formultiresidue monitoring in water. Analytica Chimica Acta,1998,362:69-79.
    [79] Tschmelak J, Kumpf M, K ppel N, Proll G, Gauglitz G, Total internal reflectance fluorescence(TIRF) biosensor for environmental monitoring of testosterone with commercially availableimmunochemistry: Antibody characterization, assay development and real samplemeasurements. Talanta,2006,69:343-350.
    [80] Schuderer J, Akkoyun A, Brandenburg A, Bilitewski U, Wagner E, Development of amultichannel fluorescence affinity sensor system. Analytical Chemistry,2000,72(16):3942-3948.
    [81] Kronick M, Little W, A new immunoassay based on fluorescence excitation by internalreflection spectroscopy. Journal of Immunological Methods,1975,8(3):235-242.
    [82]黄惠杰,翟俊辉,赵永凯,杨瑞馥,任冰强,程兆谷,杜龙龙,路敦武,多探头光纤倏逝波生物传感器及其性能研究.中国激光,2004,31(6):718-722.
    [83] Golden J P, Saaski E W, Shriver-Lake L C, Anderson G P, Ligler F S, Portable multichannelfiber optic biosensor for field detection. Optical Engineering,1997,36(4):1008-1013.
    [84]邓立新,冯莹,姜广文,柳珑,魏立安,基于相关检测的光纤倏逝波生物传感器研究.传感技术学报,2006,19(3):783-789.
    [85] Long F, He M, Shi H C, Zhu A Q, Development of evanescent wave all-fiber immunosensor forenvironmental water analysis,Biosensors and Bioelectronics,2008,23:952-958.
    [86] Daniel R T, Klara T, Richard A D, George S Wilson, Electrochemical biosensors:recommended definitions and classification. Biosensors and Bioelectronics,2001,16(1-2):121-131.
    [87]车宏莉,日本血吸虫病免疫传感技术检测方法的研究[博士学位论文].长沙:中南大学,2008.
    [88]蔡强,何苗,施汉昌,电化学免疫传感器在环境污染监测中的研究进展.传感技术学报,2004,17(3):526-530.
    [89]姚守拙,化学与生物传感器.北京:化学工业出版社,2006.
    [90] Yulaev M F, Sitdikov R A, Dmitrieva N M, Yazynina E V, Zherdev A V, Dzantiev B B,Development of a potentiometric immunosensor for herbicide simazine and its application forfood testing. Sensors and Actrators B,2001,75(1-2):129-135.
    [91] Yuan R, Tang D P, Chai Y Q, Zhang L Y, Liu Y, Zhong X, Dai J Y, Highly sensitivepotentiometric immunosensor for hepatitis B surface antigen diagnosis. Science in ChinaSeries B: Chemistry,2005,48(1):49-57.
    [92] Tang D P, Yuan R, Chai Y Q, Liu Y, Dai J Y, Zhong X, Novel potentiometric immunosensorfor determination of diphtheria antigen based on compound nanoparticles and bilayertwo-dimensional sol-gel as matrices. Analytical and Bioanalytical Chemistry,2005,381(3):674-680.
    [93] Tang D P, Yuan R, Chai Y Q, Zhong X, Liu Y, Dai J Y, Zhang L Y, Novel potentiometricimmunosensor for hepatitis B surface antigen using a gold nanoparticle-based biomolecularimmobilization method. Analytical Biochemistry,2004,333(2):345-350.
    [94] Schasfoort R B M, Bergveld P, Kooyman R P H, Greve J, Possibilities and limitations of directdetection of protein charges by means of an immunological field-effect transistor. AnalyticaChimica Acta,1990,238:323-329.
    [95] Sergeyeva T A, Soldatkin A P, Rachkov A E, Tereschenko M I, Piletsky S A, β-Lactamaselabel-based potentiometric biosensor for α-2interferon detection. Analytica Chimica Acta,1999,390:73-81.
    [96] Selvanayagam Z E, Neuzil P, Gopalakrishnakone P, Sridhar U, Singh M, Ho L C, AnISFET-based immunosensor for the detection of β-Bungarotoxin. Biosensors andBioelectronics,2002,17(9):821-826.
    [97] Starodub N F, Dzatiev B B, Starodub V M, Zherdev A V, Immunosensor for the determinationof the herbicide simazine based on an ion-selective field-effect transistor. Analytica ChimicaActa,2000,424(1):37-43.
    [98] Qu L, Xia S H, Bian C, Sun J Z, Han J H, A micro-potentiometric hemoglobin immunosensorbased on electropolymerized polypyrrole-gold nanoparticles composite. Biosensors andBioelectronics,2009,24(12):3419.
    [99] Patel P D, Biosensors for measurement of analytes implicated in food safety: a review, Trendsin Analytical Chemistry,2002,21:96-115.
    [100] Zacco E, Pividori M I, Llopis X, Valle M, Alegret s, Renewable protein A modifiedgraphite-epoxy composite for electro-chemical immunosensing. Journal of ImmunologicalMethods,2004,286(1-2):35-46.
    [101] Wilson M S, Rauh R D, Novel amperometric immunosensors based on iridium oxide matrices.Biosensors and Bioelectronics,2004,19(7):693-699.
    [102] Liang R, Qiu J, Cai P, A novel amperometric immunosensor based on three-dimensionalsol-gel network and nanoparticle self-assemble technique. Analytical Chimica Acta,2005,534(2):223-229.
    [103] Wu J, Tang J H, Dai Z, Yan F, Ju H X, Murr N E, A disposable electrochemicalimmunosensor for flow injection immunoassay of carcinoembryonic antigen. Biosensors andBioelectronics,2006,22:102-108.
    [104] Mani V, Chikkaveeraiah B V, Patel V, Gutkind J S, Rusling J F, Ultrasensitive Immunosensorfor Cancer Biomarker Proteins Using Gold Nanoparticle Film Electrodes andMultienzyme-Particle Amplification. ACS Nano,2009,3(3):585-594.
    [105] Yu X, Munge B, Patel Y, Jensen G, Bhirde A, Gong J D, Kim S N, Gillespie J, Gutkind J S,Papadimitrakopoulos F, Rusling, J F, Carbon Nanotubes amplification strategies for highlysensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc,2006,128:11199-11205.
    [106] Xu Y Y, Xia S H, Bian C, Chen S F, A micro amperometric immunosensor for detection ofhuman immunoglobulin. Science in China: Series F Information Sciences,2006,49(3):397-408.
    [107] Wu Y, Zheng J W, Li Z, Zhao Y R, Zhang Y, A novel reagentless amperometricimmunosensor based on gold nanoparticles/TMB/Nafion-modified electrode. Biosensors andBioelectronics,2009,24(5):1389-1393.
    [108] Chen J, Yan F, Dai Z, Ju H X, Reagentless amperometric immunosensor for human chorionicgonadotrophin based on direct electrochemistry of horseradish peroxidase. Biosensors andBioelectronics,2005,21:330-336.
    [109] Dai Z, Yan F, Chen J, Ju H X, Reagentless amperometric immunosensors based on directelectrochemistry of horseradish peroxidase for determination of carcinoma antigen-125.Analytical Chemistry,2003,75:5429-5434.
    [110] Sadik O A, Xu H, Gheorghiu E, Andreescu D, Balut C, Gheorghiu M, Bratu D, Differentialimpedance spectroscopy for monitoring protein immobilization and antibody-antigenreactions. Analytical Chemistry,2002,74(13):3142-3150.
    [111] Darain F, Park D S, Park J S, Shim Y B, Development of an immunosensor for the detectionof vitellogenin using impedance spectroscopy. Biosensors and Bioelectronics,2004,19:1245-1252.
    [112] Chen Z, Jiang J, Shen G, Yu R, Impedance immunosensor based on receptor protein adsorbeddirectly on porous gold film. Analytica Chimica Acta,2006,553:190-195.
    [113] Yang L, Li Y, AFM and impedance spectroscopy characterization of the immobilization ofantibodies on indium-tin oxide electrode through self-assembled monolayer of epoxysilaneand their capture of Escherichia coli O157: H7. Biosensors and Bioelectronics,2005,20:1407-1416.
    [114] Yang L, Wei W, Gao Xia J, Tao H, A new antibody immobilization strategy based onelectrodeposition of nanometer-sized hydroxyapatite for label-free capacitive immunosensor.Talanta,2005,68:40.
    [115] Fernandez-Sanchez C, McNeil C J, Rawson K, Electrochemical impedance spectroscopystudies of polymer degradation: application to biosensor development. Trends Anal. Chem.2005,24:37.
    [116] Panasyuk-Delaney T, Mirsky V M, Ulbricht M, Wolfbeis O S, Impedometric herbicidechemosensors based on molecularly imprinted polymers. Anal. Chim. Acta,2001,435:157.
    [117] Milner K R, Brown A P, Allsopp D W E, Betts W B, Dielectrophoretic classification ofbacteria using differential impedance measurements. Electronics Letters,1998,34:66-68.
    [118] Macdonald J R, Impedance Spectroscopy. Wiley Interscience Publication, NY,1987.
    [119] Varshney M, Li Y B, Interdigitated array microelectrodes based impedance biosensors fordetection of bacterial cells. Biosensors and Bioelectronics,2008,24(10):2951-2960.
    [120] Yang L, Li Y, Erf G F, Interdigitated array microelectrode-based electrochemical impedanceimmunosensor for detection of Escherichia coli O157: H7. Analytical Chemistry,2004,76:1107-1113.
    [121] Radke S M, Alocilja E C, Design and fabrication of a microimpedance biosensor for bacterialdetection. IEEE Sens. J,2004,4(4):434-440.
    [122] Radke S M, Alocilja E C, A high density microelectrode array biosensor for detection of E.coli O157:H7. Biosensors and Bioelectron,2005,20:1662-1667.
    [123] Radke S.M, Alocilja E C, A microfabricated biosensor for detecting foodborne bioterrorismagents. IEEE Sens. J.2005,5(4):744-750.
    [124] Varshney M, Li Y B, Interdigitated array microelectrode based impedance biosensor coupledwith magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157:H7infood samples. Biosensors and Bioelectronics,22(2007)2408-2414.
    [125] Yagiuda K, Hemmi A, Ito S, Asano Y, Fushinuki Y, Chien-Yuan C, Karube I, Developmentof a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulantdrug) in human urine. Biosensors and Bioelectronics,1996,11(8):703-707.
    [126] Park S J, Taton T A, Mirkin C A, Array-based electrical detection of DNA with nanoparticleprobes. Science,2002,295(22):1503-1506.
    [127] Newman A L, Hunter K W, Stanbro W D, Proc. Int. Meet. Chem. Sens.,2nd,1986,596.
    [128]朱强,基于纳米金银修饰的免疫球蛋白和甲胎蛋白免疫电极的研究[硕士学位论文].重庆:西南大学,2006.
    [129] Mirsky V M, Riepl M, Wolfbeis O S, Capacitive monitoring of protein immobilization andantigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensorsand Bioelectronics,1997,(9-10):977.
    [130] Wu Z S, Li J S, Deng T, Luo M H, Shen G L, Yu R Q, A sensitive immunoassay based onelectropolymerized films by capacitance measurements for direct detection of immunospecies.Anal. Biochem,2005,337:308.
    [131] Bataillard P, Gardies F, Renault N J, Martelet C, Colin B, Mandrand B, Direct detection ofimmunospecies by capacitance measurements. Analytical Chemistry,1988,60:2374.
    [132] K’Owino I O, Sadik O A, Impedance spectroscopy: A powerful tool for rapid biomolecularscreening and cell culture monitoring. Electroanalysis,2005,17:2101.
    [133] Katz E, Willner I, Probing biomolecular interactions at conductive and semiconductivesurfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-Sensors,and enzyme biosensors. Electroanalysis,2003,15:913.
    [134] Guan J G, Miao Y Q, Zhang Q J, Impedimetric biosensors. J. Biosens. Bioeng,2004,97:219.
    [135] Gebbert A, Alvarez-Icaza M, Stocklein W, Schmid R D, Real-time monitoring ofimmunochemical interactions with a tantalum capacitance flow-through cell. Anal. Chem,1992,64:997-1003.
    [136] Hu SQ, Wu Z Y, Zhou Y M, Cao Z X, Shen G L, Yu R Q, Capacitive immunosensor fortransferrin based on an o-aminobenzenthiol oligomer layer. Analytica Chimica Acta,2002458(2):297-304.
    [137] Berggren C, Bjarnason B, Johansson G, Capacitive biosensors. Electroanalysis,2001,13:173.
    [138]贾铮,戴长松,陈玲,电化学测量方法.北京:化学工业出版社教材出版中心,2006.
    [139] Prodromidis M I, Impedimetric immunosensors-A review. Electrochimica Acta,2010,55(14):4227-4233.
    [140] Pournaras A V, Koraki T, Prodromidis M I, Development of an impedimetric immunosensorbased on electropolymerized polytyramine films for the direct detection of Salmonellatyphimurium in pure cultures of type strains and inoculated real samples. Analytica ChimicaActa,2008,624:301.
    [141] Tang H, Chen J H, Nie L H, Kuang Y F, Yao S Z, A label-free electrochemical immunoassayfor carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and nonconductivepolymer film. Biosensors and Bioelectronics,2007,22:1061-1067.
    [142] Barton A C, Collyer S D, Davis F, Garifallou G.-Z, Tsekenis G, Tully E, O’Kennedy R,Gibson T, Millner P A, Higson S P J, Labeless AC impedimetric antibody-based sensors withpg ml1sensitivities for point-of-care biomedical applications. Biosensors and Bioelectronics,2009,24:1090-1095.
    [143] Rickert J, Gopel W, Beck W, Jung G, Heiduschka P, A ‘mixed’ self-assembled monolayer foran impedimetric immunosensor. Biosensors and Bioelectronics,1996,11:757.
    [144] Patolsky F, Filanovsky B, Katz E, Willner I, Photoswitchable antigen-antibody Interactionsstudied by impedance spectroscopy. Journal of Physical Chemistry B,1998,102:10359-10367.
    [145] Won B Y, Choi H C, Kim K H, Byun S Y, Kim H S, Yoon H C, Bioelectrocatalytic signalingfrom immunosensors with back-filling immobilization of glucose oxidase on biorecognitionsurfaces. Biotechnol. Bioeng.2005,89:815.
    [146] Mantzila A G, Strongylis C, Tsikaris V, Prodromidis M I, Assessment of the interactionbetween a synthetic epitope of troponin C and its specific antibody using a label-free faradaicimpedimetric immunosensor and α-Keggin silicotungstic heteropolyacid as a redox probe.Biosensors and Bioelectronics,2007,23(3):362.
    [147] Skladal P, Kalab T, A multichannel immunochemical sensor for determination of2,4-dichlorophenoxyacetic acid. Analytica Chimica Acta,1995,316(1):73-78.
    [148] Deng A, Yang H, A multichannel electrochemical detector coupled with an ELISA microtiterplate for the immunoassay of2,4-dichlorophenoxyacetic acid. Sensors and Actuators B,2007,124:202-208.
    [149] Baumner A J, Schmid R D, Development of a new immunosensor for pesticide detection: adisposable system with liposome-enhancement and amperometric detection. Biosensors andBioelectronics,1998,13(5):519-529.
    [150] Keay R W, McNeil C J, Separation-free electrochemical immunosensor for rapiddetermination of atrazine. Biosensors and Bioelectronics,1998,13:963-970.
    [151] Dzantiev B B, Yazynina E V, Zherdev A V, Plekhanova Yu V, Reshetilov A N, Chang S C,McNeil C J, Determination of the herbicide chlorsulfuron by amperometric sensor based onseparation-free bienzyme immunoassay. Sensors and Actuators B,2004,98:254-261.
    [152] Killard A J, Micheli L, Amperometric separation-free immunosensor for real-timeenvironmental monitoring. Analytica Chimica Acta,2001,427(2):173-180.
    [153] Grennan K, Strachan G, Porter A J, Killard A J, Smyth M R, Atrazine analysis using anamperometric immunosensor based on single-chain antibody fragments and regeneration-freemulti-calibrant measurement. Analytica Chimica Acta,2003,500(1-2):287-298.
    [154] Killard A J, Smyth M R, Grennan K, Micheli L, Palleschi G, Rapid antibody biosensor assaysfor environmental analysis. Biochemical Society Transactions,2000,28:81-84.
    [155] Chen S W, Huang K, Electrochemical and spectroscopic studies of nitrophenyl moietiesimmobilized on gold nanoparticles. Langmuir,2000,16:2014.
    [156] Hu S, Xie J, Xu Q, Rong K, Shen G, Yu R, A label-free electrochemical immunosensor basedon gold nanoparticles for detection of paraoxon. Talanta,2003,61:769-777.
    [157] F hnrich K A, Pravda M, Guilbault G G, Disposable amperometric immunosensor for thedetection of polycyclic aromatic hydrocarbons(PAHs) using screen-printed electrodes.Biosensor and Bioelectronics,2003,18(1):73-82.
    [158] Navratilova I, Skladal, P, The immunosensors for measurement of2,4-dichlorophenoxyaceticacid based on electrochemical impedance spectroscopy. Bioelectrochemistry,2004,62:11-18.
    [159] Hleli S, Martelet C, Abdelghani A, Burais N, Jaffrezic-Renault N, Atrazine analysis using animpedimetric immunosensor based on mixed biotinylated self-assembled monolayer. Sensorsand Actuators B,2006,113:711-717.
    [160] Valera E,Ramón-Azcón J, Rodríguez A, Casta er L M, Sánchez F J, Marco M P,Impedimetric immunosensor for atrazine detection using interdigitated μ-electrodes (IDμE's).Sensors and Actuators B: Chemical,2007,125(2):526-537.
    [161] Fredj H B, Helali S, Esseghaier C, Vonna L, Vidal L, Abdelghani A, Labeled magneticnanoparticles assembly on polypyrrole film for biosensor applications. Talanta,2008,75(3):740.
    [162] Brichta J, Vesela H, Franek M, Production of scFv recombinant fragments against2,4-dichlorophenoxyacetic acid hapten using naive phage library. Vet. Med,2003,48,237-247.
    [163] Mcglennen R C, Miniaturization technologies for molecular diagnostics. Clin. Chem,2001,47,393-402.
    [164] Liu G, Timchalk C, Lin Y, Bioelectrochemical magnetic immunosensing of trichloropyridinol:A potential insecticide biomarker. Electroanalysis,2006,16:1605-1613.
    [165] Kandimalla V B, Neeta N S, Karanth N G, Thakur M S, Roshini K R, Rani B E A, Pasha A,Karanth N G K, Regeneration of ethyl parathion antibodies for repeated use in immunosensor:a study on dissociation of antigens from antibodies. Biosensors and Bioelectronics,2004,20:903-906.
    [166] Sardinha J P M, Gil M H, Mercader J V, Montoya A, Enzyme-linked immunofiltration assayused in the screening of solid supports and immunoreagents for the development of anazinphos-methyl flow immunosensor. J. Immunol. Methods,2002,260:173-182.
    [167] Mauriz E, Calle A, Manclus J J, Montoya A, Hildebrandt A, Barcelo D, Lechuga L M,Optical immunosensor for fast and sensitive detection of DDT and related compounds in riverwater samples. Biosensors and Bioelectron,2007,22:1410-1418.
    [168] Zittel H E, Miller F J, A glassy-carbon electrode for Voltammetry. Analytical Chemistry,1965,37(2):200-203.
    [169] Dai Z, Yan F, Yu H, Hu X Y, Ju H X, Novel amperometric immunosensor for rapidseparation-free immunoassay of carcinoembryonic antigen. Journal of ImmunologicalMethods,2004,287:13-20.
    [170] Kelly S, Compagnone D, Guilbault G, Amperometric immunosensor for lactatedehydrogenase LD-1. Biosensors and Bioelectronics,1998,13(2):173-179.
    [171]熊祥玉,丝网印刷与微电子技术.丝网印刷,2000,1:12-15.
    [172] Kalab T, Skladal P, A disposable amperometric immunosensor for2,4-dichlorophenoxyaccticacid. Analytica Chimica Acta,1995,304(3):361-368.
    [173] Hart J P, Pemberton R M, Application Note121: A Review of Screen-PrintedElectrochemical Sensors. Perkin-Elmer Instruments, Princeton Applied Research,1999.
    [174] Crouch E, Cowell D C, Hoskins S, Pittson R W, Hart J P, A novel, disposable, screen-printedamperometric biosensor for glucose in serum fabricated using a water-based carbon ink.Biosensors and Bioelectronics,2005,21:712-718.
    [175] Honeychurch K C, Hawkins D M, Hart J P, Cowell D C, Voltammetric behaviour and tracedetermination of copper at a mercury-free screen-printed carbon electrode. Talanta,2002,57:565-574.
    [176] Carlo W D, Mascini M, Immunoassay for polychlorinated biphenyls (PCB) using screenprinted electrodes. Field Anal. Chem. Technol.3(1999)179.
    [177] Laschi S, Franek M, Mascini M, Screen-printed electrochemical immunosensors for PCBdetection. Electroanalysis12(2000)1293.
    [178] Laschi S, Mascini M, Disposable electrochemical immunosensor for environmentalapplications. Ann. Chim.92(2002)425.
    [179] Moore E, Pravda M, Guilbault G, Development of a biosensor for the quantitative detection of2,4,6-TCA using screen printed electrodes. Anal. Chim. Acta484(2003)15.
    [180] Solna R, Skladal P, Eremin S A, Int. Development of a disposable electrochemicalimmunosensor for detection of the herbicide acetochlor. J. Environ. Anal. Chem.83(2003)609.
    [181] Smith M, Vos J, Elsevier Publishers Amsterdam London New York Tokyo. AnalyticalVoltammetry, Elsevier: Amsterdam,1992:570.
    [182] HillmanAR,Linford R G, In electrochemical science and technology of polymers. Elsevier:London,1987,1:103-292.
    [183] Wang J, Tian B, Rogers K R, Thick-film electrochemical immunosensor based on strippingpotentiometric detection of a metal ion label. Anal. Chem.1998,70(9):1682-1685.
    [184] Pereira A C, Santos A D, Kubota L T, Trends in amperometric electrodes modification forelectroanalytical applications. Quim,2002,11(25):1012.
    [185] Watkins B F, Behling Esther Kariv J R, Miller L L, A chiral electrode. Journal of theAmerican Chemical Society,1975,97:3549-3550.
    [186] Moses P R, Wier L, Murray R W, Chemically modified tin oxide electrode. Analyticalchemistry,1975,47:1882-1886.
    [187]董绍俊,车广礼,谢远武,化学修饰电极.北京:科学出版社,2003:16,501,502.
    [188] Van De Mark M R, Miller L L. A poly-p-nitrostyrene electrode surface. Potential dependentconductivity and electrocatalytic properties. Journal of the American Chemical Society,1978,10:3223-3225.
    [189] Miller L L, Van De Mark M R. Electrode surface modification via polymer adsorption.Journal of the American Chemical Society,1978,18:639-640.
    [190]费俊杰, Os2+/Os3+氧化还原聚合物薄膜电极及其生物传感研究[博士学位论文].武汉:武汉大学,2004.
    [191] Zen J M, Kuman A S, Chang M R, Electrocatalytic oxidation and trace detection of amitroleusing a Nafion/lead-ruthenium oxide pyrochlore chemically modified electrode.Electrochimica Acta,1999,10:1691-1700.
    [192] Zakeeruddin S M, Fraser D M, Nazeeruddin M K, Towards mediator design: characterizationof tris-(4,4’-substituted-2,2’-bipyridine) complexes of iron(II), Ruthenium(II) and Osmium(II) as mediators for glucose oxidase of Aspergillus niger and other redox proteins.Electroanal Chem,1992,337:253-283.
    [193] Yasuo N, Atsushi O, Shiro Y, Evaluation of osmium(II) complexes as electron transfermediators accessible for amperometric glucose sensor. Analytical Science,2001,17:945-950.
    [194] Brian A G, Heller A, Cross-linked redox gels containing glucose oxidase for amperometricbiosensor applications. Analytical Chemistry,1990,3:258-263.
    [195] Dequaire M, Heller A, Screen printing of nucleic acid detecting carbon electrodes. AnalyticalChemistry,2002,74:4370-4377.
    [196] Ni J A, Ju H X, Chen H Y, Leech D, Amperometric determination of epinephrine with anosmium complex and Nafion double-layer membrane modified electrode. Analytica ChimicaActa,1999,378:151-157.
    [197] Heller A. In: Jon Cooper, Tony Cass. Biosensors.2nd version. London: Oxford UniversityPress,2004,1-18.
    [198] Cameron C, Enhanced rates of electron transport in conjugated-redox polymer hybrids, Ph D.Dissertation, Memorial University of Newfoundland,2000:10.
    [199] Chao S, Robbins J L, Wrighton M S, A new ferrocenophane surface derivatizing reagent forthe preparation of nearly reversible electrodes for horse heart ferri-/ferrocytochrome c:2,3,4,5-tetramethyl-1-[(dichlorosilyl)methyl][2] ferrocenophane, J. Am. Chem. Soc.1983,105:181-188.
    [200] Dong S, Che G, Electrocataysis at a microdisk electrode modified with a redox species, J.Electroanal. Chem,1991,309:103-104.
    [201] Chem S M, Electropolymerization of iron phenanthrolines and voltammetric response for pHand application on electrocatalytic sulfite oxidation, J. Electroanal. Chem,1996,401:147-154.
    [202] Chebotareva N, Nyokong T, Metallophthalocyanine catalysied electroreduction of nitrate andnitrite ions in alkaline media, J. Appl. Electrochem,1997,27:975-981.
    [203] Bedioui F, Devynck J, Biedcharreton C, Immobilization of metalloporphyrins inelectropolymerized films: design and applications, Acc. Chem. Res,1995,28:30-36.
    [204] Cheng L, Pacey G E, Cox J A, Carbon electrodes modified with ruthenium metallodendrimermultilayers for the mediated oxidation of methionine and insulin at physiological pH, Anal.Chem,2001,73:5607-5610.
    [205] Shagisultanova G A, Popova E O, Synthesis and electrochemical properties ofK[Ru(Salen)Cl-2](H(2)Salen-bis(salicylidene) ethylenediamine), Russ. J. Coord. Chem,2000,26:690-694.
    [206] Martre A, Laguitton-Pasquier H, Deronzier A, Harriman A, Preparation and properties of asoluble polypyrrole-polypyridyl-ruthenium(II)-viologen dyad, J. Phys. Chem. B,2003,107:2684-2692.
    [207] Ciszewski A, Milczarek G, Electrocatalysis of NADH oxidation with an electropolymerizedfilm of1,4-bis(3,4-dihydroxyphenyl)-2,3-dimethylbutane, Anal. Chem,2000,72:3203-3209.
    [208] Cheng L, Liu J Y, Dong S J, Layer-by-layer assembly of multilayer films consisting ofsilicotungstate and a cationic redox polymer on4-aminobenzoic acid modified glassy carbonelectrode and their electrocatalytic effects, Anal. Chim. Acta,2000,417:133-142.
    [209] Decker S, Delabouglise D, Anion effect on the electrochemistry of TTF in polymer solvent, J.Electroanal. Chem,2001,506:178-181.
    [210] Chambers J Q, Scaboo K, Evans C D, Cyclic voltammetry of TCNQ(0/-1) slid-state, J.Electrochem. Soc,1996,143:3039-3045.
    [211] Forster R J, Vos J G, Synthesis, characterization, and properties of a series of osmium-andruthenium-containing metallopolymers. Macromolecules.1990(23):4372-4377.
    [212] Taylor C, Kenausis G, Katakis I, Heller A,‘Wiring’ of glucose oxidase within a hydrogelmade with polyvinyl imidazole complexed with [(Os-4,4’-dimethoxy-2,2’-bipyridine)Cl]+/2+.Journal of Electroanalytical Chemistry,1995,396:511-515.
    [213] Ju H X, Leech D,[Os(bpy)2(PVI)10Cl]Cl polymer-modified carbon fiber electrodes for theelectrocatalytic oxidation of NADH. Analytica Chimica Acta,1997,345:51-58.
    [214] Danilowicz C, Corton E, Battaglini F, Calvo E J, An Os(bpy)2ClpyCH2NHPoly(allylamine)hydrogel mediator for enzyme wiring at electrodes, Electrochimica Acta,1998,23:3525-3531.
    [215] Gregg B A, Heller A, Cross-linked redox gels containing glucose oxidase for amperometricbiosensor applications. Anal. Chem,1990,62(3):258-263.
    [216] Schuhmann W, Ohara T J, Schmidt H L, Heller A, Electron transfer between glucose oxidaseand electrodes via redox mediators bound with flexible chains to the electrode surface. J. Am.Chem. Soc,1991,113(4):1394-1397.
    [217] Rosca V, Popescu I C, Kinetic analysis of horseradish peroxidase "wiring" in redoxpolyelectrolyte–peroxidase multilayer assemblies. Electrochem. Commun,2002,4(11):904-911.
    [218] Lever B P, Electrochemical paremetrization of metal complex redox potentials, using theruthenium(III)/ruthenium(II) couple to generate a ligand electrochemical series. Inorg. Gem,1990,29:1271-1285.
    [219] Barton S, Banyamin G, Kim H H, Heller A, The ‘wired’ laccase cathode: high current densityelectroreduction of O2to water at+0.7V (NHE) at pH5. J. Am. Chem. Soc,2001,123:5802-5803.
    [220] Kim H H, Mano N, Zhang Y, Heller A, A miniature membrane-less biofuel cell operatingunder physiological conditions at0.5V. J. Electrochem. Soc,2003,150:209-213.
    [221] Heller A, Electrical wiring of redox enzymes. Acc. Chem. Res,1990,23:128-134.
    [222] Kenausis G, Taylor C, Katakis I, Heller A, Wiring of glucose oxidase and lactate oxidasewithin a hydrogel made with poly(vinyl pyridine) complexed with[Os(4,4’-dimethoxy-2,2’-bipyridine)2Cl]+/2+. J. Chem. Soc, Faraday Trans,1996,92:4131-4136.
    [223]龚毅,叶蕾,鞠熀先,陈洪渊,锇-聚乙烯吲哚配合物修饰电极对肾上腺素的电催化氧化.高等学校化学学报,2000,21:202-205.
    [224] Park T M, Iwuoha E I, Smyth M R, Freaney R, Mcshane A J, Solgel based amperometricbiosensor incorporating an osmium redox polymer as mediator for detection on L-lactate.Talanta,1997,44:973-978.
    [225] Danilowicz C, Manrique J M, A new self-assembled modified electrode for competitiveimmunoassay. Electrochemistry Communications,1999,1:22-25.
    [226] Parellada J, Narvaez A, Lopez M A, Dominguez E, Fernandez J J, Pavlov V, Katakis. I,Amperometric immunosensors and enzyme electrodes for environmental applications.Analytica Chimica Acta,1998,362:47-57.
    [227] Vreeke M, Rocca P, Heller A, Direct electrical detection of dissolved biotinylated horseradishperoxidase, biotin, and avidin. Analytical Chemistry,1995,67:303-306.
    [228] Lu B, Iwuoha E I, Smyth M R, O’Kennedy R, Development of an “electrically wired”Amperometric immunosensor for the determination of biotin based on a non-diffusional redoxosmium polymer film containing an antibody to the enzyme label horseradish peroxidase.Analytica Chimica Acta,1997(345):59-66.
    [229] Iijima S, Helical microtubules of graphitic carbon. Nature,1991.354,6348:56-58.
    [230]欧阳玉,碳纳米管结构研究.材料科学与工程学院.2008,湖南大学:湖南:1.
    [231] Rivas G A, Carbon nanotubes for electrochemical biosensing. Talanta,2007.74(3):291-307.
    [232] Wang J, Li M, Shi Z, Li N, Gu Z, Direct Electrochemistry of Cytochrome c at a GlassyCarbon Electrode Modified with Single-wall Carbon Nanotubes. Analytical Chemistry,2002,74:1993.
    [233] Wang J, Musameh M, Lin Y, Solubilization of carbon nanotubes by Nafion toward thepreparation of amperometric biosensors. J. Am. Chem. Soc,2003,125:2408.
    [234] Liu Y, Qu X, Guo H, Chen H, Liu B, Dong S, Facile preparation of amperometric laccasebiosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite.Biosensors and Bioelectronics,2006,21:2195.
    [235] Rubianes M D, Rivas G A, Dispersion of multi-wall carbon nanotubes in polyethylenimine: Anew alternative for preparing electrochemical sensors. Electrochemistry Communication,2007,9:480.
    [236] Wang Z, Xiao S, Chen Y, J. Electroanalytical Chemistry,2006,589:237.
    [237] Rubianes M D, Rivas G A, Carbon nanotubes paste electrode. Electrochem. Commun.2003,5:689.
    [238] Sanchez S, Pumera M, Cabruja E, Fabregas E, Carbon nanotube/polysulfone compositescreen-printed electrochemical enzyme biosensors. Analyst,2007,132:142.
    [239] Wang J, Musameh M, Carbon nanotube screen-printed electrochemical sensors. Analyst,2004,129:1.
    [240] Wang Z H, Liang Q L, Wang Y M, Luo G A, Carbon nanotube-intercalated graphiteelectrodes for simultaneous determination of dopamine and serotonin in the presence ofascorbic acid. J. Electroanal. Chem.2003,540:129.
    [241] Nguyen C V, Delzeit L, Carsell A M, Li J, Han J, Meyyappan M, NanoLetters,2002,2:1079.
    [242] Liu L, Wang T, Li J, Guo Z X, Dai L, Zhang D, Zhu D, Chem. Phys. Lett.2003,367:747.
    [243] Foster R, Cassidy J, O’Donoghue E, Electrochemical diagnostic strip device for totalcholesterol and its subfractions, Electroanal,2000,12:716-721.
    [244] Shen M W, Wang S H, Shi X Y, Chen X S, Huang Q G, Petersen E J, Pinto R A, Baker J R,Weber W J, Polyethyleneimine-mediated functionalization of multiwalled carbon nanotubes:synthesis, characterization, and in vitro toxicity assay, J. Phys. Chem. C,2009,13:3150-3156.
    [245] Okuno J, Label-free immunosensor for prostate-specific antigen based on single-walledcarbon nanotube array-modified microelectrodes. Biosensors&Bioelectronics,2007.22(9-10):2377-2381.
    [246] Yun Y H, Bange A, Heineman W, Halsall H B, Shanov V N, Dong Z, Pixley S, Behbehani M,Jazieh A, Tu Y, Wong D K Y, Bhattacharya A, Schultz M J, A nanotube array immunosensorfor direct electrochemical detection of antigen-antibody binding. Sensors and ActuatorsB-Chemical,2007.123(1):177-182.
    [247] Liu Y, Wang M, Zhao F, Xu Z, Dong S, The direct electron transfer of glucose oxidase andglucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron.2005,21:984.
    [248] Cai C, Chen J, Direct electron transfer of glucose oxidase promoted by carbon nanotubes.Anal. Biochem.2004,332:75.
    [249] Gobi K V, Tanaka H, Shoyama Y, Miura N, Highly sensitive regenerable immunosensor forlabel-free detection of2,4-dichlorophenoxyacetic acid at ppb levels by using surface plasmonresonance imaging. Sens. Actuators B,2005,111-112:562-571.
    [250] Wittmann C, Bier F F, Eremin S A, Schmid R D, Quantitative analysis of2,4-dichiorophenoxyacetic acid in water samples by two immunosensing methods. J. Agric.Food Chem,1996,44:343-350.
    [251]李琴,崔岩,张万喜,分子自组装方法与应用研究.高分子材料科学与工程,2004,20(6):33-37.
    [252] Farre M, Martinez E, Ramon J, Navarro A, Radjenovic J, Mauriz E, Lechuga L, Marco M P,Barcelo D, Anal. Bioanal. Chem.2007,388:207-214.
    [253] Lazcka O, Del Campob F J, Munoz F X, Pathogen detection: A perspective of traditionalmethods and biosensors. Biosens. Bioelectron,2007,22:1205-1217.
    [254] Rinehart K L, Harada K, Namikoshi M, Nodularin, microcystin, and configuration of Adda. J.Am. Chem. Soc.,1988,110(25):8557-8558.
    [255] Wirsing B, Hoffmann L, First report on the identification of microcystin in a water bloomcollected in Belgium. System. Appl. Microbiol.1998,21(1):23-27.
    [256]盛建武,何苗,施汉昌,钱易,水环境中微囊藻毒素检测技术研究进展.环境污染与防治,2006,
    [257] Hart J, Fawell J K, Croll B. The fate of both intra-and extracellular toxin during drink watertreatmeat. Water Supply,1998,16(5):611-616.
    [258] Lawton L A, Maagd G, Hendriks J, Removal of cyanobacterial toxins (microcystins) andcyanobacterial cells from drinking water using domestic water filters. Wat. Res.,1998,32(4):633-638.
    [259] Rivasseau C, Martins S, Hennion M C, Determination of some physicochemical parameters ofmicrocystins (cyanobacterial toxins) and trace level analysis in environmental samples usingliquid chromatography. J. Chromatography A,1998,799(1-2):155-169.
    [260] Feitz A, Lawton L A, Maagd G, Photocatalytic degradation of the blue green algae toxinmicrocystin-LR in a natural organic-aqueous matrix. Environ. Sci. Technol,1999,33(2):243-248.
    [261] Cousins I T, Bealing D J, Sutton A, Biodegradation of microcystin-LR by indigenous mixedbacterial populations. Wat. Res.,1996,30(3):481-485.
    [262] Fischer W J, Hitzfeld B C, Tencalla F, Microcystin-LR toxicodynamics, induced pathology,and immunohistochemical localization in livers of blue-green algae exposed rainbow trout(oncorhynchus mykiss). Toxicol Sci.,2000,54(2):365-373.
    [263]李嗣新,微囊藻毒素的生态学和毒理学研究[博士学位论文].武汉:中国科学院研究生院(水生生物研究所,2007.
    [264] Taylor C, Quinn R J, Suganuma M, Inhibition of protein phosphatese2A by cyclic peptidesmodeled on the microcystin ring. Bioorg. Medici. Chem. Let.,1996,6(17):2113-2116.
    [265] Yea S S, Kin H M, Oh H M, Microcystin-induced down-regulation of lymphocyte functionsthrough reduced IL-2mRNA stability. Toxico. Let.,2001,122(1):21-31.
    [266] Frandis G, Poisonous Australian Lake. Nature,1878,18:11-12.
    [267] Falconerl R, Toxic cyanobacterial bloom problems in Australian waters: risks and impacts onhuman health. Phycologia,2001,40(3):228-233.
    [268] Pouria S, de Andrade A, Barbosa J, A fatal microcystin intoxication in haemodialysis unit inCaruaru, Brazil, Lancet,1998,352(9121):21-26.
    [269]陈刚,俞顺章,卫国荣,肝癌高发区不同饮用水类型中微囊藻毒素含量调查.中华预防医学杂志,2003,34(4):224-226.
    [270]杨振宇,水和水产品中微囊藻毒素的检测方法研究[硕士学位论文].上海:复旦大学,2010.
    [271] Kim J D, Yoon B D, Oh H M, Rapid bioassay for microcystin toxicity based on feedingactivity of Daphnia. Bulletin of Environmental Contamination and Toxicology,2003,70(5):861-867.
    [272]王蕾,李小艳,薛文通,张惠,张泽俊,微囊藻毒素检测方法研究进展.食品科学,2005.
    [273]季颖,二氧化氯去除水中微囊藻毒素及氧化动力学的研究[博士学位论文].哈尔滨:哈尔滨工业大学,2007.
    [274]朱美洁,水库型水源地微囊藻毒素污染现状及环境影响因素研究[硕士学位论文].福建师范大学硕士论文,2008.
    [275] McElhiney J, Lawton L A, Detection of the cyanobacterial hepatotoxins microcystins.Toxicology and Applied Pharmacology,2005.203(3):219-230.
    [276] Ward C J, Colorimetric protein phosphatase inhibition assay of laboratory strains and naturalblooms of cyanobacteria: comparisons with high-performance liquid chromatographicanalysis for microcystins. Fems Microbiology Letters,1997.153(2):465-473.
    [277] Bouaicha N, A colorimetric and fluorometric microplate assay for the detection ofmicrocystin-LR in drinking water without preconcentration. Food and Chemical Toxicology,2002.40(11):1677-1683.
    [278] Lam A K Y, Fedorak P M, Prepas E E, Biotransformation of the cyanobacterial hapatotoxinmicrocystin-LR, as determined by HPLC and protein phosphatase bioassay. Environ. Sci.Technol.1995,29(1):242-246.
    [279] Aguete E C, Gago M A, Le o J M, HPLC and HPCE analysis of microcystins RR, LR andYR present in cyanobacterial and water by using immunoaffinity extraction. Talanta,2003,59(4):697-705.
    [280] Zeck A, Weller M G, Niessner R, Multidimensional biochemical detection of microcystins inliquid chromatography. Anal. Chem.,2001,73(22):5509-5517.
    [281] Meriluoto J, Chromatography of microcystins. Analytica Chimica Acta,1997.352(1-3):277-298.
    [282]季林丹,刘慧刚,徐进,徐立红,用高效液相色谱法检测天然水体中的微囊藻毒素.水生生物学报,2007,31(4):604-606.
    [283] Kaya K, Sano T, Total microcystin determination usingerythro-2-methyl-3-(methoxy-d(3))-4-phenylbutyric acid (MMPB-d(3)) as the internalstandard. Analytica Chimica Acta,1999.386(1-2):107-112.
    [284] Meriluoto J, Electrochemical detection of microcystins, cyanobacterial peptide hepatotoxins,following high-performance liquid chromatography. Journal of Chromatography A,1998.810(1-2):226-230.
    [285]张甬云,鱼体中谷胱甘肽对微囊藻毒素的解毒作用的初步研究.水生生物学报,1996.20(3):284-286.
    [286] Fischer W J, Garthwaite I, Miles C O, Congener-Independent Immunoassay for Microcystinsand Nodularins. Environ. Sci. Technol,2001,35(24):4849-4856.
    [287] Sheng J W, He M, Shi H C. A highly specific immunoassay for microcystin-LR detectionbased on a monoclonal antibody. Analytica Chimica Acta,2007,603:111-118.
    [288] Chu F S, Huang X, Wei R O, Enzyme-linked immunosorbent assay for microcystins inblue-green algal blooms. J. Assoc. Off. Analyt. Chem.,1990,73(3):451-456.
    [289] Campàs M, Marty J-L, Highly sensitive amperometric immunosensors for microcystindetection in algae. Biosensors and Bioelectronics.2007,22:1034-1040.
    [290] Loyprasert S, Thavarungkul P, Asawatreratanakul P, Wongkittisuksa B, Limsakul C,Kanatharana P, Biosens. Bioelectron,2008,24(1):78-86.
    [291] Long F, He M, Zhu A N, Shi H C, Portable optical immunosensor for highly sensitivedetection of microcystin-LR in water samples. Biosens. Bioelectron,2009,24(8):2346-2351.
    [292] Wang L B, Chen W, Xu D H, Shim B S, Zhu Y Y, Sun F X, Liu L Q, Peng C F, Jin Z Y, XuC L, Kotov N A, Rapid DNA detection by interface PCR on nanoparticles. Nano Lett,2009,9(12):4147-4152.
    [293] Kaufman F B, Engler E M, J Am. Chem. Soc,1979,101:547.
    [294] Kaufman F B, Chambers J Q, Nichols K H, J Eectroanal. Chem,1982,142:277.
    [295]左伯莉,刘国宏,化学传感器原理及应用.北京:清华大学出版社,2007.
    [296] Gardiner W C, Jr., Rate and mechanisms of Chemical Reactions. Benjamin, New York,1969.
    [297] Johnston H S, Gas phase reaction rate Theory. Ronald, New York,1966.
    [298] Bard A J, Faulkner,电化学方法原理和应用.邵元华,朱果逸,董献堆,张柏林,译.2版.北京:化学与应用化学出版中心,2008.
    [299]岳兰,基于丝网印刷电极和流动注射分析的电流型生物传感器系统的研究[硕士学位论文].杭州:浙江大学,2006.
    [300] Duine J A, The importance of natural diversity in redox proteins for achievingcofactor-electrode-directed electron transfer. Biosensors and Bioelectronics,1995,10(1-2):17-23.
    [301] Dunford H B, in: Everse J, Everse K E, Grisham M B (Eds.), Peroxidases in Chemistry andBiology, vol.2, CRC Press, Boca Raton, FL,1991.
    [302] Andrieux C P, Dumas-Bouchiat J M, Saveant J M, J Electroanal. Chem.1982,131:1.
    [303] Andrieux C P, Analytical Chemistry Symposia Series (Smyth M R, Vos J G. Eds.).Washington,1986,25:235.
    [304] Andrieux C P, Saveant J M, Catalysis of electrochemical reactions at redox polymerelectrodes. Kinetic model for stationary voltammetric techniques. J Electroanal. Chem.1982,134:163.
    [305] Andrieux C P, Saveant J M, J Electroanal. Chem.1982,142:1.
    [306] Anson F C, J Phys. Chem.1980,84:3336.
    [307] Gorton L, Lindgren A, Larsson T, Munteanu F D, Ruzgas T, Gazaryan I, Direct electrontransfer between heme-containing enzymes and electrodes as basis for third generationbiosensors. Anal. Chim. Acta400(1999)91.
    [308] Anni H, Yonetani T, in: H. Siegel, A. Siegel (Eds.), Metal Ions in Biological Systems,Mechanism of Action of Peroxidases, Marcel Dekker, New York,1992:220.
    [309] Garguilo M G, Huynh N, Proctor A, Michael A C, Amperometric sensors for peroxide,choline, and acetylcholine based on electron transfer between horseradish peroxidase and aredox polymer. Anal. Chem.65(1993)523.
    [310] Stevens F J, Modification of an ELISA-based procedure for affinity determination:corrections necessary for use with bivalent antibody. Molecular Immunology.1987,24:1055-1060.
    [311] Savitzky A, Golay M J E, Smoothing and differentiation of data by simplified least squaresProcedures. Analytical Chemistry.1964,36(8):1627-1639.
    [312] Buckingham D A, Dwyer F P, Goodwin H A, Mono-and bis(2,2’-bipyridine) and(1,10-phenanthroline) chelates of ruthenium and osmium: IV. Bis chelates of bivalent andtervalent osmium. Australian Journal of Chemistry,1964(17):325-336。
    [313] Forster R J, Vos J G, Ionic interactions and charge transport properties of metallopolymerfilms on electrodes. Langmuir,1994,10(11):4330-4338.
    [314]陈永刚,双金属吡咯烷骨架手性salen配合物的合成、表征和性能研究[博士学位论文].辽宁:大连理工大学化工学院,2005.
    [315]盛建武,水中微囊藻毒素-LR免疫检测技术研究[博士学位论文].北京:清华大学环境科学与工程系,2006.
    [316] Beckman Coulter, Inc. Delsa Nano Series Brochure.http://www.labwrench.com/?equipment.view/equipmentNo/8072/Beckman-Coulter/Delsa-trade-Nano-Series/.
    [317]宋保栋,多指标平面波导型荧光免疫传感器(MPWFI)的开发与应用研究[博士后出站报告].北京:清华大学环境科学与工程系,2009.
    [318]龙峰,倏逝波全光纤免疫传感器及其检测微囊藻毒素-LR的研究[博士学位论文].北京:清华大学环境科学与工程系,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700