基于量子点的核酸和蛋白质分析新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命组织、细菌、病毒和病菌均具有独特的核酸序列,这些特定序列的检测在卫生防疫、医学诊断、药物研究、环境科学及生物工程等领域起着重要作用。另外,生物样品中某些蛋白质浓度异常也是疾病发生的征兆,因此建立快速、准确的生物大分子的分析方法十分必要。迄今为止检测生物大分子的分析方法已有许多报道,其中,荧光分析法以其操作简单、无需底物和灵敏度高等优势,应用最为广泛。荧光分析法中常用到的荧光标记物包括有机荧光染料和新近发展的荧光纳米粒子,这其中量子点的应用发展非常迅速。相对于传统的有机染料,量子点具有一些优异的特性,使其在核酸和蛋白的分析检测中常被用作荧光探针。鉴于目前生物大分子检测的研究现状,偶合量子点优异的荧光特性,本论文发展了多种高灵敏度、高选择性的生物大分子检测新方法,主要研究内容分为三个部分:
     1本部分实验发展了一种新颖的链式杂交反应模式,即以捕获探针为循环杂交反应的触发器,报告探针和目标序列之间交替互补,随后结合量子点,实现了单组分DNA的高灵敏度检测。本实验中采用报告探针分别结合捕获探针和目标序列的模式,将捕获探针和报告探针进行了特殊设计,在报告探针和目标序列、捕获探针杂交后,目标序列一端会裸露部分与捕获探针相同的碱基,从而使其它的报告探针会继续与之杂交,而体系中另外的目标序列也会再与报告探针杂交,以此循环,形成高分子量的DNA双链聚合体,建立了信号放大模式。此方法在检测DNA分子方面具有优异的性能,灵敏度高(10fM),对碱基的错配、空缺和插入的识别能力强。
     在建立了链式杂交反应结合量子点检测特定序列DNA的方法后,第二节进一步将此技术拓展到蛋白质的检测。实验采用环状DNA分子作为循环杂交底物,结合适配体识别技术,建立了检测血小板衍生生长因子PDGF-BB的新方法。PDGF-BB是血清中由多种细胞所产生的能刺激平滑肌细胞、胶质等细胞增生的一种多肽,具有广泛的生理活性。PDGF-BB作为PDGF的重要亚型之一,近年来研究发现其含量对细胞转化和肿瘤生长有直接的影响,故对PDGF-BB的检测在生物学上有重要的意义。实验设计体系中两个存在互补碱基的生物素化发卡DNA分子由于其自身环的“锁”功能,不能进行杂交;而引入适配体后,与其中一条DNA分子杂交,并将其开环成为直链,引发两个DNA分子之间循环杂交。在此实验中,每个适配体分子会触发一个链式杂交反应,使大量的生物素化的DNA分子凝聚在一起,结合链霉亲和素量子点形成适配体-量子点复合物。随后将适配体-量子点复合物加入到已结合有抗原的微孔中,适配体与抗原结合,通过检测量子点的荧光强度即可确定蛋白质的含量。与非HCR模式相比,该方法信号放大效果明显,灵敏度显著提高,选择性好,并可对真实样品进行快速准确地测定。与传统的ELISA法相比,该方法更为简便可控,原材料更加稳定。
     2在以上单组分DNA和蛋白质检测的基础上,进一步将方法拓展至双组分的同时测定。实验采用量子点标记寡核苷酸解链温度增强的原理,实现了双组分小RNA分子的测定。实验中对捕获探针、报告探针和目标序列在不同的结合方式下温度的影响进行了考察,结果表明在报告探针先与量子点结合后,再与目标序列和捕获探针杂交时可达到与连接酶存在时同样的效果,即增强了双链DNA的稳定性,解链温度得到提高。选择两个不同粒径的量子点标记对应的报告探针,仅需一步杂交反应即可将体系中三个部分DNA、RNA和量子点结合,无需酶的使用即可对多个组分进行同时测定,并为短链核酸的分析提供了新的思路。
     为了进一步提高检测灵敏度,将层层组装的概念引入,以聚苯乙烯微球为核心,利用链霉亲和素和生物素的高度亲和性将量子点层层组装至微球表面,最后结合可与目标序列杂交的报告探针,建立了一个目标分子对应多个荧光标记物的信号放大模式。基于量子点激发光谱宽、发射光谱窄的特性,选用了两个不同发射波长的量子点,使用同一激发波长即可对双组分DNA(HIV-1,HIV-2)进行高灵敏度的检测。与未放大的方法比较,此方法灵敏度提高了100倍。
     3在荧光共振能量转移体系中,为了避免光谱重叠或信号干扰,量子点常被用作供体或受体。本部分实验将量子点作为荧光共振能量转移中的供体,在夹心反应和均相体系竞争模式中,量子点均能与受体荧光染料Cy5之间通过DNA的杂交作用实现能量转移,从而对目标序列进行测定。实验首先对量子点和Cy5在载体上和均相溶液中的能量转移现象进行了考察,并进一步引入酶切循环放大的概念,采用“Y”型DNA分子结合方式,即三条DNA序列同时存在时DNA双链才能形成,并激活限制性内切酶,将其中一条分支切断,使受体与供体分离,并释放出目标序列,与其它辅助序列继续杂交,导致FRET信号的明显变化,建立了高灵敏度、高选择性的FRET-DNA检测方式。
Living organisms, bacteria, viruses and bacteria has the sequence-specific DNA or RNA, which has been became increasingly important for the diagnosis and treatment of genetic diseases, the detection of infectious agents, and forensic analysis. In addition, the concentration of some protein in blood is the indication of certain diseases. Therefore, it is highly important to establish some sensitive, accurate methods for biomacromolecules detection. Various techniques have been developed for the detection of DNA and protein. Among all of the analysis techniques, fluorescence has been widely used due to the advantages of simple operation, no substrates and the high sensitivity advantages. Semiconductor quantum dots (QDs) has been intensely developed as a new class of fluorescent label. In compare with traditional fluorescent label, QDs have unique chemical and physical properties, which accompany with recently improving understanding on QDs surface chemistry for biocompatibility and bioconjugation, lead QDs labeling to be a promising method for the detection of various biological analytes, liking DNA, protein, cells, and small organic molecules.
     In consider the significance of biomacrolecules, althrough the great advances of t echno-logy on detecting biomacromolecules,the development of new method is still e xtremely significant. Herein, this subject developed several highly sensitive, specific, and novel techn-ologies by the excellent properties of QDs, which provide a new versi on for nucleic acid and protein detection. The experimental content contains three sections:
     1A new quantum dot-based method to detect specific sequences of DNA has been developed. The capture and reporter probes did not hybridize to each other, but in the presence of a template they could anneal to each other via the formation of a stable ternary complex. Because of the specific design of the capture and reporter probes, the5'end of the template target DNA remained free to hybridize with another reporter. In this way, each capture DNA was an initiator strand that triggers a cascade of hybridization events between the target DNA and the reporter probe. This formed a superstructure, enhanced base stacking, and produces a strong fluorescent signal. The introduction of T4DNA ligase further stabilized the superstructure and greatly increased the fluorescence intensity, and the detection limit was as low as10fM. This fluorescence method is advantageous over conventional techniques because of its excellent ability to discriminate single base-pair mismatches and single nucleotide gap or flap.
     On the basis of detecting DNA by hybridization chain reaction (HCR), we expanded this technology for the detection of PDGF-BB based on aptameric system, where stable DNA monomers assembled only upon exposure to a target PDGF-BB aptamer. In this process, two complementary stable species of biotinylated DNA hairpins coexisted in solution until the introduction of initiator aptamer strands trigger a cascade of hybridization events that yielded nicked double helices analogous to alternating copolymers. In details, the aptamer firstly opened the hairpins in the solution, created long concatamers, and then reacted with the antibody captured PDGF-BB on the well surface. Our results showed that, the coupling HCR to aptamer triggers for the amplification detection of PDGF-BB achieved a better performance in the fluorescence detection of PDGF-BB as compared to the traditional antibody-antigen-aptamer assays. The proposed method was also implemented in the analysis of human serum specimens.
     2A novel multiplexed method for short RNA detection has been developed that employed a design strategy in which capture and reporter probes did not hybridize to each other and could anneal to each other in the presence of a short RNA target via the formation of a stable three-component complex. QDs functionalized with reporter DNA were used to capture a short single-stranded RNA (ssRNA) sequence from a target solution and then to specifically adsorb onto a common capture probe-modified96-well plate via a one-step template-dependent, surface hybridization for simultaneous fluorescence detection. This novel QD-based, template-dependent, surface hybridization showed several advantages compared with previous detection formats:(ⅰ) the use of reporter DNA-modified QD conjugates increased the melting temperature in comparison with conventional organic dye-modified reporter probes, leading to the detection of short RNA without the need for a ligation reaction; and (ii) QDs properties allowed multiple short RNA sequences to be simultaneously and homogeneously determined via a rapid and simple one-step hybridization, as exemplified herein.
     In order to improve the sensitivity, we developed an amplification assay for multiplex detection of HIV-1and HIV-2based on QDs layer-by-layer (LBL) assembled polystyrene microsphere (PS) composite in a homogeneous format. Based on the high affinity between streptavidin and biotin, QDs were adsorbed on the surface of PS layer by layer. Biotinylated reporter then bound to the PS-QDs conjugates and was hybridized with target DNA which had been immobilized on the96-well surface. Through this way, each target DNA referred to a large number of QDs and the fluorescence signal was greatly enhanced. This PS-QDs-based sensor possesses the advantages of a simple'mix and detection'assay with enzyme-free, extremely low sample consumption, high sensitivity, and short analysis time.
     3In the system of fluorescence resonance energy transfer (FRET), QDs has been always used as the donor or acceptor due to its excellent properties. In this part, we chose QDs as donor and Cy5as acceptor to form FRET for the detection of DNA. Firstly, the FRET between QDs and Cy5was investigated in a96well plate and homogeneous format respectively. Later, we used Y-shaped junction DNA which consisted of three complementary oligonucleotide branches to detect DNA. The probe was then cleaved by an endonuclease and the target was released, while the probe and the target were regenerated and attended another cleavage cycle to realize the signal amplification.
引文
[1]Palmer, A. G,3rd. NMR characterization of the dynamics of biomacromolecules [J]. Chem Rev,2004,104(8):3623-3640.
    [2]Schiemann, O., Prisner, T. F. Long-range distance determinations in biomacromolecules by EPR spectroscopy [J]. Q Rev Biophys,2007,40(1):1-53.
    [3]Saha, K., Bajaj, A., Duncan, B., Rotello, V. M. Beauty is skin deep:a surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules [J]. Small,2011,7(14):1903-1918.
    [4]Granzhan, A., Ihmels, H., Viola, G.9-donor-substituted acridizinium salts: versatile environment-sensitive fluorophores for the detection of biomacromolecules [J]. J Am Chem Soc,2007,129(5):1254-1267.
    [5]Debouck, C., Goodfellow, P. N. DNA microarrays in drug discovery and development [J]. Nat Genet,1999,21:48-50.
    [6]Heller, M. J. DNA microarray technology:devices, systems, and applications [J]. Annu Rev Biomed Eng,2002,4(129-153.
    [7]Huang, Y., Duan, X., Cui, Y, Lauhon, L. J., Kim, K. H., Lieber, C. M. Logic gates and computation from assembled nanowire building blocks [J]. Science,2001, 294(5545):1313-1317.
    [8]Wilson, M. S., Nie, W. Multiplex measurement of seven tumor markers using an electrochemical protein chip [J]. Anal Chem,2006,78(18):6476-6483.
    [9]Fall, B. I., Eberlein-Konig, B., Behrendt, H., Niessner, R., Ring, J., Weller, M. G. Microarrays for the screening of allergen-specific IgE in human serum [J]. Anal Chem, 2003,75(3):556-562.
    [10]Rissin, D. M., Walt, D. R. Duplexed sandwich immunoassays on a fiber-optic microarray [J]. Anal Chim Acta,2006,564(1):34-39.
    [11]Kojima, K., Hiratsuka, A., Suzuki, H., Yano, K., Ikebukuro, K., Karube, I. Electrochemical protein chip with arrayed immunosensors with antibodies immobilized in a plasma-polymerized film [J]. Anal Chem,2003,75(5):1116-1122.
    [12]Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels [J]. Science,1998,281(5385): 2013-2016.
    [13]Chan, W. C., Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science,1998,281(5385):2016-2018.
    [14]Winzeler, E. A., Richards, D. R., Conway, A. R., Goldstein, A. L., Kalman, S., McCullough, M. J., McCusker, J. H., Stevens, D. A., Wodicka, L., Lockhart, D. J., Davis, R. W. Direct allelic variation scanning of the yeast genome [J]. Science,1998, 281(5380):1194-1197.
    [15]Drummond, T. G., Hill, M. G., Barton, J. K. Electrochemical DNA sensors [J]. Nat Biotechnol,2003,21(10):1192-1199.
    [16]Leconte, A. M., Romesberg, F. E. Chemical biology:a broader take on DNA [J]. Nature,2006,444(7119):553-555.
    [17]Bock, R. M. Nucleic acid structure function relations [J]. Science,1970, 170(3955):351-355.
    [18]Enver, T., Zhang, J. W., Papayannopoulou, T., Stamatoyannopoulos, G. DNA methylation:a secondary event in globin gene switching? [J]. Genes Dev,1988,2(6): 698-706.
    [19]Raschle, M., Knipscheer, P., Enoiu, M., Angelov, T., Sun, J., Griffith, J. D., Ellenberger, T. E., Scharer, O. D., Walter, J. C. Mechanism of replication-coupled DNA interstrand crosslink repair [J]. Cell,2008,134(6):969-980.
    [20]Scott, W. G., Martick, M., Chi, Y. I. Structure and function of regulatory RNA elements:ribozymes that regulate gene expression [J]. Biochim Biophys Acta,2009, 1789(9-10):634-641.
    [21]Birch, J. L., Zomerdijk, J. C. Structure and function of ribosomal RNA gene chromatin [J]. Biochem Soc Trans,2008,36(4):619-624.
    [22]Cropp, T. A., Chin, J. W. Expanding nucleic acid function in vitro and in vivo [J]. Curr Opin Chem Biol,2006,10(6):601-606.
    [23]Stoscheck, C. M. Protein assay sensitive at nanogram levels [J]. Anal Biochem, 1987,160(2):301-305.
    [24]Soedjak, H. S. Colorimetric micromethod for protein determination with erythrosin B [J]. Anal Biochem,1994,220(1):142-148.
    [25]Li, N., Li, K. A., Tong, S. Y. Fluorometric determination for micro amounts of albumin and globulin fractions without separation by using alpha, beta, gamma, delta-tetra(4'-carboxyphenyl)porphin [J]. Anal Biochem,1996,233(2):151-155.
    [26]Huang, C. Z., Li, Y. F., Feng, P., Li, M. Determination of proteins by their enhancement of resonance light scattering by fuchsine acid [J]. Fresenius J Anal Chem,2001,371(7):1034-1036.
    [27]Zhao, Y., Chang, W., Ci, Y. Rapid and sensitive determination of protein by light-scattering technique with Eriochrome Blue Black R [J]. Talanta,2003,59(3): 477-484.
    [28]Turner, E. H., Lauterbach, K., Pugsley, H. R., Palmer, V. R., Dovichi, N. J. Detection of green fluorescent protein in a single bacterium by capillary electrophoresis with laser-induced fluorescence [J]. Anal Chem,2007,79(2):778-781.
    [29]Farjami, E., Clima, L., Gothelf, K., Ferapontova, E. E. "Off-On" Electrochemical Hairpin-DNA-Based Genosensor for Cancer Diagnostics [J]. Anal Chem,2011,
    [30]Chen, X., Lin, Y. H., Li, J., Lin, L. S., Chen, G. N., Yang, H. H. A simple and ultrasensitive electrochemical DNA biosensor based on DNA concatamers [J]. Chem Commun,2011,47(44):12116-12118.
    [31]Wen, Y, Pei, H., Wan, Y, Su, Y., Huang, Q., Song, S., Fan, C. DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors [J]. Anal Chem,2011,83(19):7418-7423.
    [32]Cao, W., Ferrance, J. P., Demas, J., Landers, J. P. Quenching of the electrochemiluminescence of tris(2,2'-bipyridine)ruthenium(Il) by ferrocene and its potential application to quantitative DNA detection [J]. J Am Chem Soc,2006, 128(23):7572-7578.
    [33]Wang, X., Yun, W., Dong, P., Zhou, J., He, P., Fang, Y. A controllable solid-state Ru(bpy)(3)(2+) electrochemiluminescence film based on conformation change of ferrocene-labeled DNA molecular beacon [J]. Langmuir,2008,24(5):2200-2205.
    [34]Agbaria, R. A., Oldham, P. B., McCarroll, M., McGown, L. B., Warner, I. M. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry [J]. Anal Chem,2002,74(16):3952-3962.
    [35]Roda, A., Guarigli, M., Michelini, E., Mirasoli, M., Pasini, P. Analytical bioluminescence and chemiluminescence [J]. Anal Chem,2003,75(21):463A-470A.
    [36]Powe, A. M., Fletcher, K. A., St Luce, N. N., Lowry, M., Neal, S., McCarroll, M. E., Oldham, P. B., McGown, L. B., Warner, I. M. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry [J]. Anal Chem,2004,76(16): 4614-4634.
    [37]Cai, S., Lau, C, Lu, J. Sequence-specific detection of short-length DNA via template-dependent surface-hybridization events [J]. Anal Chem,2010,82(17): 7178-7184.
    [38]Cheng, Y., Stakenborg, T., Van Dorpe, P., Lagae, L., Wang, M., Chen, H., Borghs, G. Fluorescence near gold nanoparticles for DNA sensing [J]. Anal Chem,2011,83(4): 1307-1314.
    [39]Huang, Z., Tao, Y., Pu, F., Ren, J., Qu, X. Lighting-up single-walled carbon nanotubes with silver nanoclusters [J]. Chemistry,2011,17(28):7745-7749.
    [40]Aied, A., Zheng, Y., Pandit, A., Wang, W. DNA immobilization and detection on cellulose paper using a surface grown cationic polymer via ATRP [J]. ACS Appl Mater Interfaces,2012,4(2):826-831.
    [41]Araujo, A. C., Song, Y., Lundeberg, J., Stahl, P. L., Brumer, H.,3rd. Activated Paper Surfaces for the Rapid Hybridization of DNA through Capillary Transport [J]. Anal Chem,2012,84(7):3311-3317.
    [42]Bardea, A., Burshtein, N., Rudich, Y., Salame, T., Ziv, C., Yarden, O., Naaman, R. Sensitive detection and identification of DNA and RNA using a patterned capillary tube [J]. Anal Chem,2011,83(24):9418-9423.
    [43]Lee, J. M., Cho, H., Jung, Y. Fabrication of a structure-specific RNA binder for array detection of label-free microRNA [J]. Angew Chem Int Ed,2010,49(46): 8662-8665.
    [44]Yang, S. W., Vosch, T. Rapid detection of microRNA by a silver nanocluster DNA probe [J]. Anal Chem,2011,83(18):6935-6939.
    [45]Zhang, Y., Zhang, C. Y. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor [J]. Anal Chem,2012, 84(1):224-231.
    [46]Khan, N., Cheng, J., Pezacki, J. P., Berezovski, M. V. Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis [J]. Anal Chem,2011,83(16):6196-6201.
    [47]朱静,黄勇,蒋小平,谭钟扬,蒋健晖,沈国励,俞汝勤.基于核酸适配体-质 粒DNA复合物信号放大的荧光免疫传感技术[J].分析化学,2009,37(11):1596-1600.
    [48]Chu, X., Fu, X., Chen, K., Shen, G. L., Yu, R. Q. An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label [J]. Biosens Bioelectron,2005,20(9):1805-1812.
    [49]Sano, T., Smith, C. L., Cantor, C. R. Immuno-PCR:very sensitive antigen detection by means of specific antibody-DNA conjugates [J]. Science,1992, 258(5079):120-122.
    [50]Ruzicka, V., Marz, W., Russ, A., Gross, W. Immuno-PCR with a commercially available avidin system [J]. Science,1993,260(5108):698-699.
    [51]Kreisig, T., Hoffmann, R., Zuchner, T. Homogeneous fluorescence-based immunoassay detects antigens within 90 seconds [J]. Anal Chem,2011,83(11): 4281-4287.
    [52]Qin, G., Zhao, S., Huang, Y., Jiang, J., Ye, F. Magnetic bead-sensing-platform-based chemiluminescence resonance energy transfer and its immunoassay application [J]. Anal Chem,2012,84(6):2708-2712.
    [53]Gold, L., Polisky, B., Uhlenbeck, O., Yarus, M. Diversity of oligonucleotide functions [J]. Annu Rev Biochem,1995,64(763-797.
    [54]Jayasena, S. D. Aptamers:an emerging class of molecules that rival antibodies in diagnostics [J]. Clin Chem,1999,45(9):1628-1650.
    [55]Tombelli, S., Mascini, M., Braccini, L., Anichini, M., Turner, A. P. Coupling of a DNA piezoelectric biosensor and polymerase chain reaction to detect apolipoprotein E polymorphisms [J]. Biosens Bioelectron,2000,15(7-8):363-370.
    [56]Liu, X., Freeman, R., Willner, I. Amplified fluorescence aptamer-based sensors using exonuclease Ⅲ for the regeneration of the analyte [J]. Chemistry,2012,18(8): 2207-2211.
    [57]Schietinger, S., Aichele, T., Wang, H. Q., Nann, T., Benson, O. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals [J]. Nano Lett,2010, 10(1):134-138.
    [58]Wang, Y., Bao, L., Liu, Z., Pang, D. W. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma [J]. Anal Chem,2011,83(21):8130-8137.
    [59]Bajpai, A. K., Kankane, S. Evaluation of water sorption property and in vitro blood compatibility of poly(2-hydroxyethyl methacrylate) (PHEMA) based semi interpenetrating polymer networks (IPNs) [J]. J Mater Sci Mater Med,2008,19(5): 1921-1933.
    [60]Soukka, T., Kuningas, K., Rantanen, T., Haaslahti, V., Lovgren, T. Photochemical characterization of up-converting inorganic lanthanide phosphors as potential labels [J]. J Fluoresc,2005,15(4):513-528.
    [61]Zhang, C., Yuan, Y., Zhang, S., Wang, Y, Liu, Z. Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide [J]. Angew Chem Int Ed,2011,50(30):6851-6854.
    [62]Jiang, Y, Zhao, H., Lin, Y., Zhu, N., Ma, Y, Mao, L. Colorimetric detection of glucose in rat brain using gold nanoparticles [J]. Angew Chem Int Ed,2010,49(28): 4800-4804.
    [63]Sun, J., Ge, J., Liu, W., Fan, Z., Zhang, H., Wang, P. Highly sensitive and selective colorimetric visualization of streptomycin in raw milk using Au nanoparticles supramolecular assembly [J]. Chem Commun,2011,47(35):9888-9890.
    [64]Kricka, L. J. MULTIANALYTE TESTING [J]. Clin Chem,1992,38(3):327-328.
    [65]Li, H., Lau, C., Lu, J. Carrier-resolved technology for homogeneous and multiplexed DNA assays in a 'one-pot reaction'[J]. Analyst,2008,133(9):1229-1236.
    [66]Miao, J., Cao, Z., Zhou, Y., Lau, C., Lu, J. Instantaneous derivatization technology for simultaneous and homogeneous determination of multiple DNA targets [J]. Anal Chem,2008,80(5):1606-1613.
    [67]Su, S., Wei, X., Zhong, Y., Guo, Y., Su, Y., Huang, Q., Lee, S. T., Fan, C., He, Y. Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis [J]. ACS Nano,2012,6(3):2582-2590.
    [68]Chapin, S. C., Doyle, P. S. Ultrasensitive multiplexed microRNA quantification on encoded gel microparticles using rolling circle amplification [J]. Anal Chem,2011, 83(18):7179-7185.
    [69]Prigodich, A. E., Randeria, P. S., Briley, W. E., Kim, N. J., Daniel, W. L. Giljohann, D. A., Mirkin, C. A. Multiplexed nanoflares:mRNA detection in live cells [J]. Anal Chem,2012,84(4):2062-2066.
    [70]Zhou, W. J., Chen, Y., Corn, R. M. Ultrasensitive microarray detection of short RNA sequences with enzymatically modified nanoparticles and surface plasmon resonance imaging measurements [J]. Anal Chem,2011,83(10):3897-3902.
    [71]Qi, H., Ling, C., Ma, Q., Gao, Q., Zhang, C. Sensitive electrochemical immunosensor array for the simultaneous detection of multiple tumor markers [J]. Analyst,2012,137(2):393-399.
    [72]Zong, C., Wu, J., Wang, C., Ju, H., Yan, F. Chemiluminescence imaging immunoassay of multiple tumor markers for cancer screening [J]. Anal Chem,2012, 84(5):2410-2415.
    [73]Park, J., Sunkara, V., Kim, T. H., Hwang, H., Cho, Y. K. Lab-on-a-Disc for Fully Integrated Multiplex Immunoassays [J]. Anal Chem,2012,84(5):2133-2140.
    [74]la Marca, G, Malvagia, S., Materazzi, S., Della Bona, M. L., Boenzi, S., Martinelli, D., Dionisi-Vici, C. LC-MS/MS method for simultaneous determination on a dried blood spot of multiple analytes relevant for treatment monitoring in patients with tyrosinemia type I [J]. Anal Chem,2012,84(2):1184-1188.
    [75]Li, H., Cao, Z., Zhang, Y., Lau, C., Lu, J. Combination of quantum dot fluorescence with enzyme chemiluminescence for multiplexed detection of lung cancer biomarkers [J]. Analytical Methods,2010,2(9):1236-1242.
    [76]Chan, W. C., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M., Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging [J]. Curr Opin Biotechnol,2002,13(1):40-46.
    [77]Han, M., Gao, X., Su, J. Z., Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nat Biotechnol,2001,19(7):631-635.
    [78]Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots [J]. Science,1996,271(5251):933-937.
    [79]Morales, A. M., Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science,1998,279(5348):208-211.
    [80]Cui, Y., Wei, Q., Park, H., Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science,2001, 293(5533):1289-1292.
    [81]Ando, Y., Kurita, Y., Komiya, S., Ono, S., Segawa, K. Evolution of the Hall coefficient and the peculiar electronic structure of the cuprate superconductors [J]. Phys Rev Lett,2004,92(19):197001.
    [82]Algar, W. R., Susumu, K., Delehanty, J. B., Medintz, I. L. Semiconductor quantum dots in bioanalysis:crossing the valley of death [J]. Anal Chem,2011, 83(23):8826-8837.
    [83]孙宝全,徐咏蓝,衣光舜,陈德朴.半导体纳米品体的光致发光特性及在生物材料荧光标记中的应用[J].分析化学,2002,30(9):1130-1136.
    [84]Qu, L., Peng, X. Control of photoluminescence properties of CdSe nanocrystals in growth [J]. J Am Chem Soc,2002,124(9):2049-2055.
    [85]Zhong, X., Feng, Y., Knoll, W., Han, M. Alloyed Zn(x)Cd(1-x)S nanocrystals with highly narrow luminescence spectral width [J]. J Am Chem Soc,2003,125(44): 13559-13563.
    [86]Bailey, R. E., Nie, S. Alloyed semiconductor quantum dots:tuning the optical properties without changing the particle size [J]. J Am Chem Soc,2003,125(23): 7100-7106.
    [87]Leatherdale, C. A., Woo, W. K., Mikulec, F. V., Bawendi, M. G. On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots [J]. The J Phys Chem B,2002,106(31):7619-7622.
    [88]陈丽霞,张建成,宋振伟,尤陈霞,丁益民,沈悦,郭景康CdTe量子点荧光量子产率及生物标记[J].上海大学学报(自然科学版),2009,15(2):142-146.
    [89]Jakobs, S., Subramaniam, V., Schonle, A., Jovin, T. M., Hell, S. W. EFGP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy [J]. FEBS Lett,2000,479(3):131-135.
    [90]Pepperkok, R., Squire, A., Geley, S., Bastiaens, P. I. Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy [J]. Curr Biol,1999,9(5):269-272.
    [91]Sapra, S., Rogach, A. L., Feldmann, J. Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil [J]. J Mater Chem,2006,16(33):3391-3395.
    [92]Deng, Z., Cao, L., Tang, F., Zou, B. A new route to zinc-blende CdSe nanocrystals:mechanism and synthesis [J]. J Phys Chem B,2005,109(35): 16671-16675.
    [93]Yu, W. W., Peng, X. Formation of high-quality CdS and other Ⅱ-Ⅵ semiconductor nanocrystals in noncoordinating solvents:tunable reactivity of monomers [J]. Angew Chem Int Ed,2002,41(13):2368-2371.
    [94]Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., Bawendi, M. G. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites [J]. J Phys Chem B,1997,101(46):9463-9475.
    [95]Reiss, P., Bleuse, J., Pron, A. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion [J]. Nano Letters,2002,2(7):781-784.
    [96]Zheng, Y., Yang, Z., Ying, J. Y. Aqueous Synthesis of Glutathione-Capped ZnSe and Znl-xCdxSe Alloyed Quantum Dots [J]. Adv Mater,2007,19(11):1475-1479.
    [97]Deng, Z., Lie, F. L., Shen, S., Ghosh, I., Mansuripur, M., Muscat, A. J. Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence [J]. Langmuir,2009,25(1): 434-442.
    [98]Hammon, J. W. Aortic nightmares:can we sleep better? [J]. J Thorac Cardiovasc Surg,2003,125(6):1200-1201.
    [99]Bailey, R. E., Strausburg, J. B., Nie, S. A new class of far-red and near-infrared biological labels based on alloyed semiconductor quantum dots [J]. J Nanosci Nanotechnol,2004,4(6):569-574.
    [100]Jiang, W., Singhal, A., Zheng, J., Wang, C., Chan, W. C. W. Optimizing the Synthesis of Red-to Near-IR-Emitting CdS-Capped CdTexSel-x Alloyed Quantum Dots for Biomedical Imaging [J]. Chem Mater,2006,18(20):4845-4854.
    [101]Reiss, P., Protiere, M., Li, L. Core/Shell semiconductor nanocrystals [J]. Small, 2009,5(2):154-168.
    [102]Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T. Quantum dots versus organic dyes as fluorescent labels [J]. Nat Methods,2008,5(9): 763-775.
    [103]Gill, R., Zayats, M., Willner, I. Semiconductor quantum dots for bioanalysis [J]. Angew Chem Int Ed,2008,47(40):7602-7625.
    [104]Zrazhevskiy, P., Sena, M., Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery [J]. Chem Soc Rev,2010,39(11): 4326-4354.
    [105]Hildebrandt, N. Biofunctional quantum dots:controlled conjugation for multiplexed biosensors [J]. ACS Nano,2011,5(7):5286-5290.
    [106]Guyot-Sionnest, P. Quantum dots:a new quantum state? [J]. Nat Mater,2005, 4(9):653-654.
    [107]Zhang, J. J., Zheng, T. T., Cheng, F. F., Zhang, J. R., Zhu, J. J. Toward the early evaluation of therapeutic effects:an electrochemical platform for ultrasensitive detection of apoptotic cells [J]. Anal Chem,2011,83(20):7902-7909.
    [108]Sharma, A., Pandey, C. M., Matharu, Z., Soni, U., Sapra, S., Sumana, G., Pandey, M. K., Chatterjee, T., Malhotra, B. D. Nanopatterned cadmium selenide langmuir-blodgett platform for leukemia detection [J]. Anal Chem,2012,84(7): 3082-3089.
    [109]Zhang, J. J., Zheng, T. T., Cheng, F. F., Zhu, J. J. Electrochemical sensing for caspase 3 activity and inhibition using quantum dot functionalized carbon nanotube labels [J]. Chem Commun,2011,47(4):1178-1180.
    [110]Cheng, W., Yan, F., Ding, L., Ju, H., Yin, Y. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging [J]. Anal Chem,2010,82(8):3337-3342.
    [111]Bao, L., Sun, L., Zhang, Z.-L., Jiang, P., Wise, F. W., Abruna, H. c. D., Pang, D.-W. Energy-Level-Related Response of Cathodic Electrogenerated-Chemiluminescence of Self-Assembled CdSe/ZnS Quantum Dot Films [J]. J Phys Chem C,2011,115(38):18822-18828.
    [112]Sun, L., Bao, L, Hyun, B.-R., Bartnik, A. C., Zhong, Y.-W., Reed, J. C., Pang, D.-W., Abruna, H. c. D., Malliaras, G. G., Wise, F. W. Electrogenerated Chemiluminescence from PbS Quantum Dots [J]. Nano Letters,2008,9(2):789-793.
    [113]Lin, D., Wu, J., Yan, F., Deng, S., Ju, H. Ultrasensitive immunoassay of protein biomarker based on electrochemiluminescent quenching of quantum dots by hemin bio-bar-coded nanoparticle tags [J]. Anal Chem,2011,83(13):5214-5221.
    [114]Li, L., Li, M., Sun, Y., Li, J., Sun, L., Zou, G., Zhang, X., Jin, W. Electrochemiluminescence resonance energy transfer between an emitter electrochemically generated by luminol as the donor and luminescent quantum dots as the acceptor and its biological application [J]. Chem Commun,2011,47(29): 8292-8294.
    [115]Wu, M. S., Shi, H. W., Xu, J. J., Chen, H. Y. CdS quantum dots/Ru(bpy)3(2+) electrochemiluminescence resonance energy transfer system for sensitive cytosensing [J]. Chem Commun,2011,47(27):7752-7754.
    [116]Divsar, F., Ju, H. Electrochemiluminescence detection of near single DNA molecules by using quantum dots-dendrimer nanocomposites for signal amplification [J]. Chem Commun,2011,47(35):9879-9881.
    [117]Wang, J., Shan, Y, Zhao, W. W., Xu, J. J., Chen, H. Y. Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection [J]. Anal Chem,2011,83(11):4004-4011.
    [118]Jie, G., Wang, L., Yuan, J., Zhang, S. Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe-ZnS-quantum dot nanoclusters [J]. Anal Chem,2011,83(10):3873-3880.
    [119]Zhao, W., Zhang, W. P., Zhang, Z. L., He, R. L., Lin, Y., Xie, M., Wang, H. Z., Pang, D. W. Robust and Highly Sensitive Fluorescence Approach for Point-of-Care Virus Detection Based on Immunomagnetic Separation [J]. Anal Chem,2012,84(5): 2358-2365.
    [120]Chen, L., Zhang, X., Zhang, C., Zhou, G., Zhang, W., Xiang, D., He, Z., Wang, H. Dual-color fluorescence and homogeneous immunoassay for the determination of human enterovirus 71 [J]. Anal Chem,2011,83(19):7316-7322.
    [121]Lowe, S. B., Dick, J. A., Cohen, B. E., Stevens, M. M. Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot-peptide conjugates [J]. ACS Nano,2012,6(1):851-857.
    [122]Huang, Y., Zhao, S., Shi, M., Chen, J., Chen, Z. F., Liang, H. Intermolecular and intramolecular quencher based quantum dot nanoprobes for multiplexed detection of endonuclease activity and inhibition [J]. Anal Chem,2011,83(23):8913-8918.
    [123]Algar, W. R., Krull, U. J. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer [J]. Anal Chem,2009,81(10):4113-4120.
    [124]Algar, W. R., Krull, U. J. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer [J]. Anal Chem,2010,82(1): 400-405.
    [125]Tavares, A. J., Noor, M. O., Vannoy, C. H., Algar, W. R., Krull, U. J. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer [J]. Anal Chem,2012,84(1): 312-319.
    [126]Freeman, R., Liu, X., Willner, I. Amplified multiplexed analysis of DNA by the exonuclease Ⅲ-catalyzed regeneration of the target DNA in the presence of functionalized semiconductor quantum dots [J]. Nano Lett,2011,11(10):4456-4461.
    [127]Huang, X., Li, L., Qian, H., Dong, C., Ren, J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET) [J]. Angew Chem Int Ed,2006,45(31):5140-5143.
    [128]Zhao, S., Huang, Y., Shi, M., Liu, R., Liu, Y. M. Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis [J]. Anal Chem,2010, 82(5):2036-2041.
    [129]Freeman, R., Liu, X., Willner, Ⅰ. Chemiluminescent and Chemiluminescence Resonance Energy Transfer (CRET) Detection of DNA, Metal Ions, and Aptamer-Substrate Complexes Using Hemin/G-Quadruplexes and CdSe/ZnS Quantum Dots [J]. J Am Chem Soc,2011,133(30):11597-11604.
    [130]Liu, C. W., Chien, M. W., Chen, G. F., Chen, S. Y., Yu, C. S., Liao, M. Y., Lai, C. C. Quantum dot enhancement of peptide detection by matrix-assisted laser desorption/ionization mass spectrometry [J]. Anal Chem,2011,83(17):6593-6600.
    [131]Carrillo-Carrion, C., Armenta, S., Simonet, B. M., Valcarcel, M., Lendl, B. Determination of pyrimidine and purine bases by reversed-phase capillary liquid chromatography with at-line surface-enhanced Raman spectroscopic detection employing a novel SERS substrate based on ZnS/CdSe silver-quantum dots [J]. Anal Chem,2011,83(24):9391-9398.
    [132]Malic, L., Sandros, M. G., Tabrizian, M. Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors [J]. Anal Chem,2011,83(13):5222-5229.
    [1]Wolf, S. F., Haines, L., Fisch, J., Kremsky, J. N., Dougherty, J. P., Jacobs, K. Rapid hybridization kinetics of DNA attached to submicron latex particles [J]. Nucleic Acids Res,1987,15(7):2911-2926.
    [2]Medintz, I. L., Berti, L., Pons, T., Grimes, A. F., English, D. S., Alessandrini, A., Facci, P., Mattoussi, H. A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates [J]. Nano Lett,2007,7(6):1741-1748.
    [3]Song, S., Liang, Z., Zhang, J., Wang, L., Li, G., Fan, C. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis [J]. Angew Chem Int Ed, 2009,48(46):8670-8674.
    [4]Li, K., Liu, B. Conjugated polyelectrolyte amplified thiazole orange emission for label free sequence specific DNA detection with single nucleotide polymorphism selectivity [J]. Anal Chem,2009,81(10):4099-4105.
    [5]Niu, S., Li, Q., Qu, L., Wang, W. Nicking endonuclease and target recycles signal amplification assisted quantum dots for fluorescence detection of DNA [J]. Anal Chim Acta,2010,680(1-2):54-58.
    [6]Cui, D., Pan, B., Zhang, H., Gao, F., Wu, R., Wang, J., He, R., Asahi, T. Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection [J]. Anal Chem,2008,80(21):7996-8001.
    [7]Han, M., Gao, X., Su, J. Z., Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nat Biotechnol,2001,19(7):631-635.
    [8]Howarth, M., Liu, W., Puthenveetil, S., Zheng, Y., Marshall, L. F., Schmidt, M. M., Wittrup, K. D., Bawendi, M. G., Ting, A. Y. Monovalent, reduced-size quantum dots for imaging receptors on living cells [J]. Nat Methods,2008,5(5):397-399.
    [9]Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science,2005,307(5709):538-544.
    [10]Minunni, M., Tombelli, S., Fonti, J., Spiriti, M. M., Mascini, M., Bogani, P., Buiatti, M. Detection of fragmented genomic DNA by PCR-free piezoelectric sensing using a denaturation approach [J]. J Am Chem Soc,2005,127(22):7966-7967.
    [11]Dirks, R. M., Pierce, N. A. Triggered amplification by hybridization chain reaction [J]. Proc Natl Acad Sci U S A,2004,101(43):15275-15278.
    [12]Venkataraman, S., Dirks, R. M., Rothemund, P. W., Winfree, E., Pierce, N. A. An autonomous polymerization motor powered by DNA hybridization [J]. Nat Nanotechnol,2007,2(8):490-494.
    [13]Xia, F., White, R. J., Zuo, X., Patterson, A., Xiao, Y., Kang, D., Gong, X., Plaxco, K. W., Heeger, A. J. An electrochemical super sandwich assay for sensitive and selective DNA detection in complex matrices [J]. J Am Chem Soc,2010,132(41): 14346-14348.
    [14]Huang, J., Wu, Y., Chen, Y., Zhu, Z., Yang, X., Yang, C. J., Wang, K., Tan, W. Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids [J]. Angew Chem Int Ed,2011,50(2): 401-404.
    [15]Zheng, Y., Li, Y., Lu, N., Deng, Z. Surface-initiated DNA self-assembly as an enzyme-free and nanoparticle-free strategy towards signal amplification of an electrochemical DNA sensor [J]. Analyst,2011,136(3):459-462.
    [16]Niu, S., Jiang, Y., Zhang, S. Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification [J]. Chem Commun,2010,46(18): 3089-3091.
    [17]Cai, S., Lau, C., Lu, J. Sequence-specific detection of short-length DNA via template-dependent surface-hybridization events [J]. Anal Chem,2010,82(17): 7178-7184.
    [18]Zhang, Y., Tang, Z., Wang, J., Wu, H., Maham, A., Lin, Y. Hairpin DNA switch for ultrasensitive spectrophotometric detection of DNA hybridization based on gold nanoparticles and enzyme signal amplification [J]. Anal Chem,2010,82(15): 6440-6446.
    [19]Zhu, N., Lin, Y., Yu, P., Su, L., Mao, L. Label-free and sequence-specific DNA detection down to a picomolar level with carbon nanotubes as support for probe DNA [J]. Anal Chim Acta,2009,650(1):44-48.
    [20]Kim, K., Yang, H., Park. S. H., Lee, D. S., Kim, S. J., Lim, Y. T., Kim, Y. T. Washing-free electrochemical DNA detection using double-stranded probes and competitive hybridization reaction [J]. Chem Commun,2004,13):1466-1467.
    [21]Luo, X., Lee, T. M., Hsing, I. M. Immobilization-free sequence-specific electrochemical detection of DNA using ferrocene-labeled peptide nucleic acid [J]. Anal Chem,2008,80(19):7341-7346.
    [22]Xu, W., Xue, X., Li, T., Zeng, H., Liu, X. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification [J]. Angew Chem Int Ed,2009,48(37):6849-6852.
    [23]Li, T., Dong, S., Wang, E. Enhanced catalytic DNAzyme for label-free colorimetric detection of DNA [J]. Chem Commun,2007,41):4209-4211.
    [24]Pokorski, J. K., Nam, J. M., Vega, R. A., Mirkin, C. A., Appella, D. H. Cyclopentane-modified PNA improves the sensitivity of nanoparticle-based scanometric DNA detection [J]. Chem Commun,2005,16):2101-2103.
    [25]Weizmann, Y., Patolsky, F., Willner, I. Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles [J]. Analyst,2001,126(9):1502-1504.
    [26]Zhang, M., Guan, Y. M., Ye, B. C. Ultrasensitive fluorescence polarization DNA detection by target assisted exonuclease Ⅲ-catalyzed signal amplification [J]. Chem Commun,2011,47(12):3478-3480.
    [27]Saghatelian, A., Guckian, K. M., Thayer, D. A., Ghadiri, M. R. DNA Detection and Signal Amplification via an Engineered Allosteric Enzyme [J]. Journal of the American Chemical Society,2002,125(2):344-345.
    [28]Liu, C. H., Li, Z. P., Du, B. A., Duan, X. R., Wang, Y C. Silver nanoparticle-based ultrasensitive chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms [J]. Anal Chem,2006,78(11):3738-3744.
    [29]Fan, A., Lau, C., Lu, J. Colloidal gold-polystyrene bead hybrid for chemiluminescent detection of sequence-specific DNA [J]. Analyst,2008,133(2): 219-225.
    [30]Patolsky, F., Weizmann, Y., Katz, E., Willner, I. Magnetically amplified DNA assays (MADA):sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles [J]. Angew Chem Int Ed,2003,42(21):2372-2376.
    [31]Zhang, J., Qi, H., Li, Y., Yang, J., Gao, Q., Zhang, C. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex [J]. Anal Chem,2008,80(8):2888-2894.
    [32]Weizmann, Y, Patolsky, F., Katz, E., Willner, I. Amplified DNA sensing and immunosensing by the rotation of functional magnetic particles [J]. J Am Chem Soc, 2003,125(12):3452-3454.
    [33]Wang, H., Li, J., Wang, Y., Jin, J., Yang, R., Wang, K., Tan, W. Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides:a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms [J]. Anal Chem,2010,82(18):7684-7690.
    [34]Peng, H., Zhang, L., Kjallman, T. H., Soeller, C., Travas-Sejdic, J. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA [J]. J Am Chem Soc,2007,129(11):3048-3049.
    [35]Wang, F., Elbaz, J., Teller, C., Willner, I. Amplified detection of DNA through an autocatalytic and catabolic DNAzyme-mediated process [J]. Angew Chem Int Ed, 2011,50(1):295-299.
    [36]Connolly, A. R., Trau, M. Isothermal detection of DNA by beacon-assisted detection amplification [J]. Angew Chem Int Ed,2010,49(15):2720-2723.
    [37]Sato, K., Tachihara, A., Renberg, B., Mawatari, K., Tanaka, Y., Jarvius, J., Nilsson, M., Kitamori, T. Microbead-based rolling circle amplification in a microchip for sensitive DNA detection [J]. Lab Chip,2010,10(10):1262-1266.
    [38]Nakayama, S., Yan, L., Sintim, H. O. Junction probes-sequence specific detection of nucleic acids via template enhanced hybridization processes [J]. J Am Chem Soc,2008,130(38):12560-12561.
    [39]Hecht, A., Kumar, A. A., Kopelman, R. Label-acquired magnetorotation as a signal transduction method for protein detection:aptamer-based detection of thrombin [J]. Anal Chem,2011,83(18):7123-7128.
    [40]Voller, A., Bartlett, A., Bidwell, D. E. Enzyme immunoassays with special reference to ELISA techniques [J]. J Clin Pathol,1978,31(6):507-520.
    [41]Schmalzing, D., Nashabeh, W. Capillary electrophoresis based immunoassays:a critical review [J]. Electrophoresis,1997,18(12-13):2184-2193.
    [42]Goldsmith, S. J. Radioimmunoassay:review of basic principles [J]. Semin Nucl Med,1975,5(2):125-152.
    [43]Aebersold, R., Mann, M. Mass spectrometry-based proteomics [J]. Nature,2003, 422(6928):198-207.
    [44]Hawkridge, A. M., Muddiman, D. C. Mass spectrometry-based biomarker discovery:toward a global proteome index of individuality [J]. Annu Rev Anal Chem, 2009,2(265-277.
    [45]Ellington, A. D., Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature,1990,346(6287):818-822.
    [46]Tuerk, C., Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase [J]. Science,1990,249(4968): 505-510.
    [47]Sefah, K., Phillips, J. A., Xiong, X., Meng, L., Van Simaeys, D., Chen, H., Martin, J., Tan, W. Nucleic acid aptamers for biosensors and bio-analytical applications [J]. Analyst,2009,134(9):1765-1775.
    [48]Song, S. P., Wang, L. H., Li, J., Zhao, J. L., Fan, C. H. Aptamer-based biosensors [J]. Trac-Trends Anal Chem,2008,27(2):108-117.
    [49]Strehlitz, B., Nikolaus, N., Stoltenburg, R. Protein detection with aptamer biosensors [J]. Sensors,2008,8(7):4296-4307.
    [50]Willner, I., Zayats, M. Electronic aptamer-based sensors [J]. Angew Chem Int Ed, 2007,46(34):6408-6418.
    [51]Schweitzer, B., Roberts, S., Grimwade, B., Shao, W., Wang, M., Fu, Q., Shu, Q., Laroche, I., Zhou, Z., Tchernev, V. T., Christiansen, J., Velleca, M., Kingsmore, S. F. Multiplexed protein profiling on microarrays by rolling-circle amplification [J]. Nat Biotechnol,2002,20(4):359-365.
    [52]Nallur, G., Luo, C., Fang, L., Cooley, S., Dave, V., Lambert, J., Kukanskis, K., Kingsmore, S., Lasken, R., Schweitzer, B. Signal amplification by rolling circle amplification on DNA microarrays [J]. Nucleic Acids Res,2001,29(23):E118.
    [53]Carr, P. W., Stoll, D. R., Wang, X. Perspectives on recent advances in the speed of high-performance liquid chromatography [J]. Anal Chem,2011,83(6):1890-1900.
    [54]Zhang, M., Zhang, B. H., Chen, L., An, W. Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation [J]. Cell Res,2002,12(2):123-132.
    [55]Huang, C. C., Huang, Y. F., Cao, Z., Tan, W., Chang, H. T. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors [J]. Anal Chem,2005,77(17):5735-5741.
    [56]Lai, R. Y., Plaxco, K. W., Heeger, A. J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum [J]. Anal Chem, 2007,79(1):229-233.
    [57]Li, Y., Lee, H. J., Corn, R. M. Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging [J]. Anal Chem,2007,79(3):1082-1088.
    [58]Yang, L., Fung, C. W., Cho, E. J., Ellington, A. D. Real-time rolling circle amplification for protein detection [J]. Anal Chem,2007,79(9):3320-3329.
    [59]Green, R. J., Usui, M. L., Hart, C. E., Ammons, W. F., Narayanan, A. S. Immunolocalization of platelet-derived growth factor A and B chains and PDGF-alpha and beta receptors in human gingival wounds [J]. J Periodontal Res,1997,32(2): 209-214.
    [1]Cummins, J. M., Velculescu, V. E. Implications of micro-RNA profiling for cancer diagnosis [J]. Oncogene,2006,25(46):6220-6227.
    [2]Ehsani, A., Saetrom, P., Zhang, J., Alluin, J., Li, H. T., Snove, O., Aagaard, L. Rossi, J. J. Rational Design of Micro-RNA-like Bifunctional siRNAs Targeting HIV and the HIV Coreceptor CCR5 [J]. Mol Ther,2010,18(4):796-802.
    [3]Kato, M., Slack, F. J. microRNAs:small molecules with big roles-C. elegans to human cancer [J]. Biol Cell,2008,100(2):71-81.
    [4]Couzin, J. Breakthrough of the year. Small RNAs make big splash [J]. Science, 2002,298(5602):2296-2297.
    [5]Riddihough, G. In the forests of RNA dark matter-Introduction [J]. Science, 2005,309(5740):1507-1507.
    [6]Wark, A. W., Lee, H. J., Corn, R. M. Multiplexed detection methods for profiling microRNA expression in biological samples [J]. Angew Chem Int Ed,2008,47(4): 644-652.
    [7]Cissell, K. A., Shrestha, S., Deo, S. K. MicroRNA Detection:Challenges for the Analytical Chemist [J]. Anal Chem,2007,79(13):4754-4761.
    [8]Valoczi, A., Hornyik, C., Varga, N., Burgyan, J., Kauppinen, S., Havelda, Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes [J]. Nucleic Acids Res,2004,32(22):e175.
    [9]Thomson, J. M., Parker, J., Perou, C. M., Hammond, S. M. A custom microarray platform for analysis of microRNA gene expression [J]. Nat Methods,2004,1(1): 47-53.
    [10]Shingara, J., Keiger, K., Shelton, J., Laosinchai-Wolf, W., Powers, P., Conrad, R., Brown, D., Labourier, E. An optimized isolation and labeling platform for accurate microRNA expression profiling [J]. RNA,2005,11(9):1461-1470.
    [11]Pena, J. T., Sohn-Lee, C., Rouhanifard, S. H., Ludwig, J., Hafner, M., Mihailovic, A., Lim, C., Holoch, D., Berninger, P., Zavolan, M., Tuschl, T. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues [J]. Nat Methods,2009,6(2): 139-141.
    [12]Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T.. Barbisin, M., Xu, N. L., Mahuvakar. V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., Guegler, K. J. Real-time quantification of microRNAs by stem-loop RT-PCR [J]. Nucleic Acids Res,2005,33(20):e179.
    [13]Khan, N., Cheng, J., Pezacki, J. P., Berezovski, M. V. Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis [J]. Anal Chem,2011,83(16):6196-6201.
    [14]Zhou, W. J., Chen, Y., Corn, R. M. Ultrasensitive microarray detection of short RNA sequences with enzymatically modified nanoparticles and surface plasmon resonance imaging measurements [J]. Anal Chem,2011,83(10):3897-3902.
    [15]Knudsen, S. M., Lee, J., Ellington, A. D., Savran, C. A. Ribozyme-mediated signal augmentation on a mass-sensitive biosensor [J]. J Am Chem Soc,2006, 128(50):15936-15937.
    [16]Kausar, A., McKay, R. D., Lam, J., Bhogal, R. S., Tang, A. Y., Gibbs-Davis, J. M. Tuning DNA stability to achieve turnover in template for an enzymatic ligation reaction [J]. Angew Chem Int Ed,2011,50(38):8922-8926.
    [17]Hurst, S. J., Hill, H. D., Mirkin, C. A. "Three-dimensional hybridization" with polyvalent DNA-gold nanoparticle conjugates [J]. J Am Chem Soc,2008,130(36): 12192-12200.
    [18]Leemhuis, H., Euverink, G. J., Dijkhuizen, L. High-throughput screening for gene libraries expressing carbohydrate hydrolase activity [J]. Biotechnol Lett,2003,25(19): 1643-1645.
    [19]Wang, H. Q., Li, Y. Q., Wang, J. H., Xu, Q., Li, X. Q., Zhao, Y. D. Influence of quantum dot's quantum yield to chemiluminescent resonance energy transfer [J]. Anal Chim Acta,2008,610(1):68-73.
    [20]Medintz, I. L., Clapp, A. R., Mattoussi, H., Goldman, E. R., Fisher, B., Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors [J]. Nat Mater,2003,2(9):630-638.
    [21]Barken, K. B., Haagensen, J. A., Tolker-Nielsen, T. Advances in nucleic acid-based diagnostics of bacterial infections [J]. Clin Chim Acta,2007,384(1-2): 1-11.
    [22]Uttamchandani, M., Neo, J. L., Ong, B. N., Moochhala, S. Applications of microarrays in pathogen detection and biodefence [J]. Trends Biotechnol,2009,27(1): 53-61.
    [23]Weile, J., Knabbe, C. Current applications and future trends of molecular diagnostics in clinical bacteriology [J]. Anal Bioanal Chem,2009,394(3):731-742.
    [24]Rich, R. L., Myszka, D. G. Survey of the year 2000 commercial optical biosensor literature [J]. J Mol Recognit,2001,14(5):273-294.
    [25]Stenger, D. A., Andreadis, J. D., Vora, G. J., Pancrazio, J. J. Potential applications of DNA microarrays in biodefense-related diagnostics [J]. Curr Opin Biotechnol, 2002,13(3):208-212.
    [26]Loy, A., Bodrossy, L. Highly parallel microbial diagnostics using oligonucleotide microarrays [J]. Clin Chim Acta,2006,363(1-2):106-119.
    [27]van Doorn, R., Slawiak, M., Szemes, M., Dullemans, A. M., Bonants, P., Kowalchuk, G. A., Schoen, C. D. Robust detection and identification of multiple oomycetes and fungi in environmental samples by using a novel cleavable padlock probe-based ligation detection assay [J]. Appl Environ Microbiol,2009,75(12): 4185-4193.
    [28]Heller, M. J. DNA microarray technology:devices, systems, and applications [J]. Annu Rev Biomed Eng,2002,4(129-153.
    [29]Zhang, C. Y., Hu, J. Single quantum dot-based nanosensor for multiple DNA detection [J]. Anal Chem,2010,82(5):1921-1927.
    [30]Guo, J., Yang, L., Chen, L., Morisset, D., Li, X., Pan, L., Zhang, D. MPIC:A High-Throughput Analytical Method for Multiple DNA Targets [J]. Anal Chem,2011, 83(5):1579-1586.
    [31]Li, H., Rothberg, L. J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction [J]. J Am Chem Soc,2004, 126(35):10958-10961.
    [32]Kalogianni, D. P., Elenis, D. S., Christopoulos, T. K., loannou, P. C. Multiplex quantitative competitive polymerase chain reaction based on a multianalyte hybridization assay performed on spectrally encoded microspheres [J]. Anal Chem, 2007,79(17):6655-6661.
    [33]Tani, H., Kanagawa, T., Kurata, S., Teramura, T., Nakamura, K., Tsuneda, S., Noda, N. Quantitative method for specific nucleic acid sequences using competitive polymerase chain reaction with an alternately binding probe [J]. Anal Chem,2007, 79(3):974-979.
    [34]Hu, J., Zhang, C.-y. Sensitive Detection of Nucleic Acids with Rolling Circle Amplification and Surface-Enhanced Raman Scattering Spectroscopy [J]. Anal Chem, 2010,82(21):8991-8997.
    [35]Li, J., Deng, T., Chu, X., Yang, R., Jiang, J., Shen, G., Yu, R. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms [J]. Anal Chem,2010,82(7): 2811-2816.
    [36]Wang, J. Nanomaterial-based amplified transduction of biomolecular interactions [J]. Small,2005,1(11):1036-1043.
    [37]Erdem, A. Nanomaterial-based electrochemical DNA sensing strategies [J]. Talanta,2007,74(3):318-325.
    [38]Ozsoz, M., Erdem, A., Kerman, K., Ozkan, D., Tugrul, B., Topcuoglu, N., Ekren, H., Taylan, M. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes [J]. Anal Chem,2003,75(9):2181-2187.
    [39]Yu, X., Munge, B., Patel, V., Jensen, G., Bhirde, A., Gong, J. D., Kim, S. N., Gillespie, J., Gutkind, J. S., Papadimitrakopoulos, F., Rusling, J. F. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers [J]. J Am Chem Soc,2006,128(34):11199-11205.
    [40]Mani, V., Chikkaveeraiah, B. V., Patel, V., Gutkind, J. S., Rusling, J. F. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification [J]. ACS Nano,2009,3(3): 585-594.
    [41]Popovic, M., Sarngadharan, M. G, Read, E., Gallo, R. C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-Ⅲ) from patients with AIDS and pre-AIDS [J]. Science,1984,224(4648):497-500.
    [42]Clavel, F., Guetard, D., Brun-Vezinet, F., Chamaret, S., Rey, M. A., Santos-Ferreira, M. O., Laurent, A. G., Dauguet, C., Katlama, C., Rouzioux, C., et al. Isolation of a new human retrovirus from West African patients with AIDS [J]. Science,1986,233(4761):343-346.
    [43]Bi, S., Zhou, H., Zhang, S. Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker [J]. Biosens Bioelectron,2009,24(10):2961-2966.
    [44]Munge, B., Liu, G., Collins, G., Wang, J. Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies [J]. Anal Chem, 2005,77(14):4662-4666.
    [45]Srivastava, S., Kotov, N. A. Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires [J]. Acc Chem Res,2008,41(12):1831-1841.
    [46]Wang, C., Ma, L., Chen, L. M., Chai, K. X., Su, M. Scanning calorimetric detections of multiple DNA biomarkers contained in complex fluids [J]. Anal Chem, 2010,82(5):1838-1843.
    [47]Kim, D. K., Yoo, S. M., Park, T. J., Yoshikawa, H., Tamiya, E., Park, J. Y., Lee, S. Y. Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs [J]. Anal Chem,2011,83(16):6215-6222.
    [48]Miao, J., Cao, Z., Zhou, Y., Lau, C., Lu, J. Instantaneous derivatization technology for simultaneous and homogeneous determination of multiple DNA targets [J]. Anal Chem,2008,80(5):1606-1613.
    [49]Taton, T. A., Lu, G., Mirkin, C. A. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes [J]. J Am Chem Soc,2001,123(21): 5164-5165.
    [50]Steemers, F. J., Ferguson, J. A., Walt, D. R. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays [J]. Nat Biotechnol,2000,18(1):91-94.
    [51]Wang, J., Liu, G., Merkoci, A. Electrochemical coding technology for simultaneous detection of multiple DNA targets [J]. J Am Chem Soc,2003,125(11): 3214-3215.
    [52]Cao, Y. C., Jin, R., Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J]. Science,2002,297(5586):1536-1540.
    [53]Zhang, D., Huarng, M. C., Alocilja, E. C. A multiplex nanoparticle-based bio-barcoded DNA sensor for the simultaneous detection of multiple pathogens [J]. Biosens Bioelectron,2010,26(4):1736-1742.
    [54]Zhi, Z. L., Morita, Y., Yamamura, S., Tamiya, E. Microfabrication of encoded microparticle array for multiplexed DNA hybridization detection [J]. Chem Commun, 2005,19):2448-2450.
    [55]Li, H., Lau, C., Lu, J. Carrier-resolved technology for homogeneous and multiplexed DNA assays in a 'one-pot reaction'[J]. Analyst,2008,133(9):1229-1236.
    [56]Li, Y., Cu, Y. T., Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes [J]. Nat Biotechnol,2005,23(7):885-889.
    [57]Bowden, M., Song, L., Walt, D. R. Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection [J]. Anal Chem,2005,77(17):5583-5588.
    [1]Forster, T. ZWISCHENMOLEKULARE ENERGIEWANDERUNG UND FLUORESZENZ [J]. Ann Phys-Berlin,1948,2(1-2):55-75.
    [2]Stryer, L. Fluorescence energy transfer as a spectroscopic ruler [J]. Annu Rev Biochem,1978,47:819-846.
    [3]Dennis, A. M., Bao, G. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes [J]. Nano Lett,2008,8(5):1439-1445.
    [4]Chang, E., Miller, J. S., Sun, J., Yu, W. W., Colvin, V. L., Drezek, R., West, J. L. Protease-activated quantum dot probes [J]. Biochem Biophys Res Commun,2005, 334(4):1317-1321.
    [5]Xu, C., Xing, B., Rao, J. A self-assembled quantum dot probe for detecting beta-lactamase activity [J]. Biochem Biophys Res Commun,2006,344(3):931-935.
    [6]Yao, H., Zhang, Y., Xiao, F., Xia, Z., Rao, J. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases [J]. Angew Chem Int Ed,2007,46(23):4346-4349.
    [7]Algar, W. R., Susumu, K., Delehanty, J. B., Medintz, I. L. Semiconductor quantum dots in bioanalysis:crossing the valley of death [J]. Anal Chem,2011, 83(23):8826-8837.
    [8]Liu, M. Y., Lou, X. H., Du, J., Guan, M., Wang, J., Ding, X. F., Zhao, J. L, DNAzyme-based fluorescent microarray for highly selective and sensitive detection of lead(II) [J]. Analyst,2012,137(1):70-72.
    [9]Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P. W., Langer, R., Farokhzad, O. C. Quantum dot-Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer [J]. Nano Letters,2007,7(10):3065-3070.
    [10]Medintz, I. L., Clapp, A. R., Brunel, F. M., Tiefenbrunn, T., Uyeda, H. T., Chang, E. L., Deschamps, J. R., Dawson, P. E., Mattoussi, H. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates [J]. Nat Mater,2006,5(7):581-589.
    [11]Medintz, I. L., Konnert, J. H., Clapp, A. R., Stanish, I., Twigg, M. E., Mattoussi, H., Mauro, J. M., Deschamps, J. R. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly [J]. Proc Natl Acad Sci US A,2004,101(26):9612-9617.
    [12]Patolsky, F., Gill, R., Weizmann, Y., Mokari, T., Banin, U., Willner, I. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots [J]. J Am Chem Soc,2003,125(46):13918-13919.
    [13]Clapp, A. R., Medintz, I. L., Mauro, J. M., Fisher, B. R., Bawendi, M. G., Mattoussi, H. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J]. J Am Chem Soc,2004,126(1):301-310.
    [14]Medintz, I. L., Clapp, A. R., Mattoussi, H., Goldman, E. R., Fisher, B., Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors [J]. Nat Mater,2003,2(9):630-638.
    [15]dos Remedios, C. G., Moens, P. D. Fluorescence resonance energy transfer spectroscopy is a reliable "ruler" for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor [J]. J Struct Biol,1995, 115(2):175-185.
    [16]Zhang, C. Y., Yeh, H. C., Kuroki, M. T., Wang, T. H. Single-quantum-dot-based DNA nanosensor [J]. Nat Mater,2005,4(11):826-831.
    [17]Zhang, C. Y, Hu, J. Single quantum dot-based nanosensor for multiple DNA detection [J]. Anal Chem,2010,82(5):1921-1927.
    [18]Wang, Q., Yang, L. J., Yang, X. H., Wang, K. M., He, L. L., Zhu, J. Q., Su, T. Y. An electrochemical DNA biosensor based on the "Y" junction structure and restriction endonuclease-aided target recycling strategy [J]. Chem Commun,2012,48(24): 2982-2984.
    [19]Kong, R. M., Zhang, X. B., Zhang, L. L., Huang, Y., Lu, D. Q., Tan, W., Shen, G. L., Yu, R. Q. Molecular beacon-based junction probes for efficient detection of nucleic acids via a true target-triggered enzymatic recycling amplification [J]. Anal Chem,2011,83(1):14-17.
    [20]Nakayama, S., Yan, L., Sintim, H. O. Junction probes-sequence specific detection of nucleic acids via template enhanced hybridization processes [J]. J Am Chem Soc,2008,130(38):12560-12561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700