基于电聚合技术的新型分子印迹传感器的研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为传感器中最重要的研究方向之一,分子印迹电化学传感器的研究在近十年中取得了巨大进展。分子印迹聚合物膜在电化学转换器表面的固定化方法有涂膜法、原位引发聚合法和电化学聚合法等,其中电化学聚合法因具有制备简单、膜厚可控、膜与电极附着力强、重现性好等优点而成为非常有潜力的制备方法。本研究采用电化学聚合技术,分别基于分子间力和共价键力构建了五种新型的分子印迹电化学传感器。基于分子间力的印迹传感器的制备是以含有双官能团的邻苯二胺为单体,以分子量相当但含羟基个数不同的三氯生、己烯雌酚、沙丁胺醇为模板分子,探讨分子中羟基的个数对于印迹效应的影响;此外,为增强传感器的灵敏度,于电极表面引入纳米材料,采用对比实验证实了碳纳米管的增敏效应。基于共价键力的印迹传感器的制备是以含有双官能团的间氨基苯硼酸为单体,以邻二醇类物质多巴胺为模板,构建具有特异识别功能的新型传感器。论文的主要创新性工作如下:
     1.综述了基于电化学聚合技术的分子印迹传感器的主要研究现状,对电聚合膜制备过程中单体的选择、模板的去除以及电聚合分子印迹膜在传感器领域的应用进行了重点评述,对其不足及未来的发展进行了讨论。
     2.以具有双官能团的邻苯二胺为单体,以含一个羟基的三氯生为模板,基于分子间的相互作用力,采用电聚合法制备了三氯生分子印迹电化学传感器。用QCM(QuartzCrystal Microbalance)技术测量了膜的厚度,测定的膜厚为纳米级。探索了聚合介质、聚合电位、聚合扫描圈数、模板去除方式对印迹电极性能的影响。三氯生分子含一个羟基官能团,与聚合物骨架的氢键力较弱,模板容易被洗脱,用0.10mol/L NaOH溶液洗脱10min时即可去除模板。采用循环伏安法、电化学交流阻抗法对印迹传感器的性能进行了表征。以铁氰化钾溶液为电化学探针,采用间接分析法对三氯生进行测定,线性范围为2.0×10~(-7)~3.0×10~(-6)mol/L,检测限为8.0×10~(-8)mol/L。相对于裸电极,该传感器对结构类似物有良好的选择性。
     3.为进一步验证邻苯二胺作为电聚合分子印迹单体的广泛适应性,以邻苯二胺为单体,以含两个羟基的己烯雌酚为模板,基于分子间的相互作用力,采用电化学聚合法制备了己烯雌酚分子印迹电化学传感器。当聚合介质为PBS缓冲溶液(pH7.2)、聚合电位为0~0.8V、聚合圈数为20时,可制得性能稳定的分子印迹聚合物膜。己烯雌酚含有两个羟基,与聚合物骨架的氢键力较强,相对于三氯生印迹的传感器,模板的洗脱较困难,但同时在聚合物膜中产生的印迹点也增多,线性范围相应变宽。将含模板的聚合物电极于50%的乙醇水溶液浸泡10min时可去除模板。以铁氰化钾溶液为电化学探针,采用间接分析法对己烯雌酚进行测定,线性范围为1.0×10~(-7)~5.1×10~(-6)mol/L,检测限为3.0×10~(-8)mol/L。该印迹电极对结构类似物质选择性良好。
     4.为提高电聚合分子印迹传感器的灵敏度,在采用电聚合法制备分子印迹聚合物膜之前,先于电极表面修饰碳纳米材料层,利用纳米材料的高比表面、高导电性提高传感器的灵敏度。为验证纳米材料的增敏效果,首先以三氯生为模板,以邻苯二胺为单体,以单壁碳纳米管修饰的玻碳电极为工作电极,采用电聚合技术,在碳纳米管修饰玻碳电极表面制备分子印迹聚合物膜。对比试验表明,单壁碳纳米管具有显著的增敏效应。在此基础上,以沙丁胺醇为模板分子,以碳纳米管修饰的玻碳电极为工作电极,采用循环伏安法制备了沙丁胺醇分子印迹电化学传感器。相对于三氯生和己烯雌酚,含有三个羟基的沙丁胺醇与单体间的氢键结合力最大,洗脱困难,需采用电化学法去除模板,但同时嵌入聚合物膜中的印迹点增多,线性范围显著拓宽。采用线性溶出伏安法对沙丁胺醇进行测试,在最佳条件下,峰电流与沙丁胺醇的浓度在2.0×10~(-7)~5.0×10~(-5)mol/L范围内呈线性关系,检测限为7.0×10~(-8)mol/L。实验结果表明,模板分子在碳纳米管修饰的印迹电极上的响应显著大于没有修饰碳纳米管层的印迹电极。印迹电极对沙丁胺醇有特异选择性,对共存物质有较强的抗干扰能力。
     5.为进一步增强印迹传感器的选择性,以间氨基苯硼酸为单体,多巴胺为模板,基于间氨基苯硼酸和邻二羟基类物质多巴胺间的可逆共价键合作用,采用电聚合技术构建了共价键型的分子印迹电化学传感器。采用循环伏安法、电化学交流阻抗法对印迹电极的性能进行了表征。对印迹电极的制备条件进行了优化。当聚合介质为PBS溶液(pH7.0)、聚合电位为0~1.2V、扫描圈数为20圈时制备的印迹电极具有良好的稳定性及分子识别性。将含模板的电极于0.50mol/L H2SO4溶液中在0~1.5V循环扫描10圈,可去除模板。多巴胺在印迹电极上的氧化峰电流与浓度成线性关系,线性范围为0~6.0×10~(-5)mol/L,检测限为5.0×10~(-8)mol/L。制备的印迹电极对多巴胺呈现良好选择性,当溶液中含有等量的多巴胺和抗坏血酸时,抗坏血酸不干扰多巴胺的测定。
As one of the most important researches of electrochemical biosensors, molecularimprinting sensors obtained great achievements over the past10years. Several procedures areused to prepare molecularly imprinted polymer (MIP) films on transducer surfaces, includingdrop-coating or spin-coating of a solution of a pre-prepared polymer, in situ chemicalpolymerization and electropolymerization. In comparison with other procedures of MIP filmpreparation, the MIP films prepared by electropolymerization have superior properties withrespect to adherence to the transducer surface, simplicity and speed of preparation, easycontrol of the film thickness and high reproducibility. Five types of MIP sensors wereprepared respectively based on covalent or noncovalent interaction by electropolymerizationin this study. For the preparation of MIP sensors based on the noncovalent interaction,o-phenylenediamine with two functional groups is selected as the monomer. Triclosan,diethylstilbestrol and salbutamol, with the similar molecular weight but the different hydroxylnumber, were selected as the target molecules. The effect of hydroxyl number in templates onthe properties of MIP sensors was studied in detail. In order to increase the sensitivity ofsensors, carbon nano-material was modified on the surface of electrodes and the enhancedsensitivity was realized. In the preparation of MIP sensor based on the covalent interaction,3-aminophenylboronic acid was used as the monomer and dopamine was used as the targetmolecules, and a sensor with special recognition capacity towards dopamine was constructed.The main innovative works in this paper are described as follows:
     1. An evaluation of literatures on the recent achivements aiming at the MIP sensors baseon electropolymerization is presented. The main focus is on the choice of functionalmonomers and the removal of templates in the electrosynthesized preparation of MIP films.The application of the electrosynthesized molecularly imprinted polymers (MIPs) asrecognition elements of chemical sensors is summarized. The future development and thelimitations in this research field are discussed.
     2. Base on the noncovalent interaction, a MIP amperometric sensor was prepared byelectropolymerization using o-phenylenediamine (o-PD) as a monomer in the presence oftemplate triclosan which contains a hydroxyl group. Thickness of thepoly(o-phenylenediamine)(POPD) film with the nanometer was determined by QuartzCrystal Microbalance (QCM) technique. Factors affecting the properties of sensor, such as pHvalue of supporting electrolyte, polymerized potential, scan number and the ways of removingthe template were investigated in detail. The noncovalent interaction between the templateand the monomer is no strong because triclosan contains only one hydroxyl group. Thetemplate can be quickly removed by immersing the electrode in NaOH solution for10min.The sensor was applied for the detection of triclosan by an indirect method taking potassiumferricyanide, an electrochemical probe, as the mediator between the imprinted electrodes andsubstrate solutions. The sensor responses sensitively to triclosan over a linear range of2.0×107to3.0×106mol/L and the detection limit as low as8.0×108mol/L is obtained. Thissensor provides an efficient way for eliminating interferences from compounds with similar structures to that of triclosan compared to bare electrode.
     3. In order to verify the flexibility of o-PD as a functional mononer used forelectropolymerized preparation of MIP, diethylstilbestrol, a molecular containing twohydroxyl groups, was selected as a template. The prepared MIP sensor had the best propertieswhen the electropolymerization of o-PD was conducted by cyclic voltammetry (20scans) inthe range of0~0.8V (scan rate50mV/s) in a PBS buffer (pH7.2). The interaction forcebetween the monomer and the template is still the noncovalent interaction, butdiethylstilbestrol with two hydroxyl groups can form more hydrogen bonds with the polymermatrix, which makes it is more difficult to remove the template from the polymer thantriclosan imprinted sensor.50%ethanol-water solution was used to get rid of diethylstilbestrolembedded in the polymer matrix and10min is needed in order to reach complete remove.The sensor was applied for the detection of diethylstilbestrol by an indirect method takingpotassium ferricyanide as the mediator between the imprinted electrodes and substratesolutions. The sensor responses sensitively to diethylstilbestrol over a linear range of1.0×10~(-7)~5.1×10~(-6)mol/L and a detection limit as low as3.0×10~(-8)mol/L is obtained. Thissensor provides an efficient way for eliminating interferences from compounds with similarstructures to that of diethylstilbestrol compared to bare electrode.
     4. Carbon nano-materials have the excellent properties, such as the large surface area,high electrical conductivity, and are often used for the construction of sensors with highsensitivity. In order to improve the sensitivity of the MIP sensor, bare electrode was modifiedby carbon nano-materials before the formation of the MIP film. Triclosan imprinted sensorwas first prepared using o-PD as a monomer and a single-walled carbon nanotubes (SWNTs)modified GC electrode as a work electrode. Comparative trial between the bare electrode andthe SWNTs modified electrode verified the contribution of SWNTs to the enhanced sensitivity.Salbutamol imprinted SWNTs modified sensor was then prepared at the similarelectropolymerized conditions. Salbutamol contains three hydroxyl groups and can form morehydrogen bonds with the polymer matrix than both triclosan and diethylstilbestrol, whichmakes it embedded deeply in polymer matrix and very difficult to be removed. Onlyelectrochemical methods can remove the templates. On the other hand, with the increase ofhydrogen bonds between the monomer and the template, number of templates in the polymermatrix increases, the imprinted cavities increase and the linear range is widened accordingly.The sensor responses sensitively to salbutamol over the linear range of2.0×10~(-7)~5.0×10~(-5)mol/L and the detection limit as low as7.0×10~(-8)mol/L at the optimum conditions using linearstripping voltammetry. The results showed that SWNTs can increase the sensitivity of MIPsensors dramatically. The MIP sensor modified by SWNTs has the good recognition abilitytowards diethylstilbestrol.
     5. In order to increase the selectivity of MIP sensors, a MIP sensor based on thereversible covalent interaction between3-aminophenylboronic acid (APB) and dopamine wasdeveloped. The boronic acid group is known to rapidly and reversibly form complexes withdiols in aqueous solution. Cyclic voltammetry and Electrochemical Impedance Spectroscopy(EIS) was performed to characterize the dopamine imprinted sensor. Factors affecting theproperties of sensor, such as pH value of supporting electrolyte, polymerized potential, scan number and the ways of removing the template were investigated in detail. The prepared MIPsensor had good stability and selectivity when the electropolymerization of APB wasconducted by cyclic voltammetry (20scans) in the range of0~1.2V (scan rate50mV/s) in aPBS buffer (pH7.0). The templates can be removed by potential cycling between0~1.5V (10scans) in0.50mol/L sulfuric acid. The response of the imprinted sensor to dopamine waslinearly proportional to its concentration over the range0~6.0×10~(-5)mol/L, with a lowdetection limit of5.0×10~(-8)mol/L. The imprinted sensor showed high recognition ability andaffinity for dopamine and could eliminate the interference of the same concentration ofascorbic acid.
引文
1. Wulf G, Sarhan A. Use of polymers with enzyme-analogous structures for the resolution ofracemates[J]. Angew Chem Int Ed Engl,1972,11(4):341-344
    2. Chen L X, Xu S F, Li. J H. Recent advances in molecular imprinting technology: current status,challenges and highlighted application[J]. Chem Soc Rev,2011,40(5):2922-2942
    3. Nunez O, allart-Ayala H, Martins C P B, et al. New trends in fast liquid chromatography for food andenvironmental analysis[J]. J Chromatogr A,2012,1228:298-323
    4. Lasáková M, Jandera P. Molecularly imprinted polymers and their application in solid phaseextraction[J]. J Sep Sci,2009,32(5-6):799-812
    5.吕春晖,王硕,方国臻,等.分子印迹在仿生免疫吸附分析中的应用[J].化学进展,2012,24(5):844-851
    6. Xu Z X, Gao H J, Zhang L M, et al. The biomimetic immunoassay based on molecularly imprintedpolymer: a comprehensive review of recent progress and future prospects[J]. J Food Sci,2011,76(2):69-75
    7. Alvarez-Lorenzo C, Concheiro A. Molecularly imprinted polymers for drug delivery[J]. JChromatogr B,2004,804(1):231-245
    8. Singh B, Chauhan N. Molecular imprinted polymers for use as drug delivery devices: preliminaryevaluation[J]. J Macromol Sci Pure Appl Chem,2008,45(9):776-784
    9. Resmini M. Molecularly imprinted polymers as biomimetic catalysts[J]. Anal Bioanal Chem,2012,402(10):3021-3026
    10. Wulff G, Liu J. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the roleof transition state stabilization[J]. Acc Chem Res,2012,45(2):239-247
    11. Ye L, Mosbach K. Molecular Imprinting: Synthetic materials as substitutes for biological antibodiesand receptors[J]. Chem Mater,2008,20(3):859-868
    12. Whitcombe M J, Chianella I, Larcombe L, et al. The rational development of molecularly imprintedpolymer-based sensors for protein detection[J]. Chem Soc Rev,2011,40(3):1547-1571
    13. Suryanarayanan V, Wu C T, Hob K C. Molecularly imprinted electrochemical sensors[J].Electroanalysis,2010,22(16):1795-1811
    14. Malitesta C, Mazzotta E, Picca R A, et al. MIP sensors-the electrochemical approach[J]. Anal BioanalChem,2012,402(5):1827-1846
    15. Fuchs Y, Soppera O, Haupt K. Photopolymerization and photostructuring of molecularly imprintedpolymers for sensor applications-A review[J]. Anal Chim Acta,2012,717:7-20
    16. Avila M, Zougagh M, Rios A, et al. Molecularly imprinted polymers for selective piezoelectric sensingof small molecules[J]. Trends Anal Chem,2008,27(1):54-65
    17.何永红,高志贤,晁福寰.分子印迹-仿生传感器的研究进展[J].分析化学,2004,32(10):1407-1412
    18.李春涯,王长发,王成行.分子印迹电化学传感器的研究进展[J].分析科学学报,2006,22(5):605-610
    19.栾崇林,李铭杰,李仲谨.分子印迹电化学传感器的研究进展[J].化工进展,2011,30(2):353-370
    20. Pan M, Fang G, Duan Z, et al. Electrochemical sensor using methimazole imprinted polymer sensitizedwith MWCNTs and Salen-Co (III) as recognition element[J]. Biosens Bioelectron,2012,31(1):11-16
    21. Pesavento M, Agostino G D, Biesuz R, et al. Ion selective electrode for dopamine based on amolecularly imprinted polymer[J]. Electroanalysis,2012,24(4):813-824
    22. Sharma P S, Pietrzyk-Le A, D’Souza F, et al. Electrochemically synthesized polymers in molecularimprinting for chemical sensing[J]. Anal Bioanal Chem,2012,402(10):3177-3204
    23. Blanco-LopezM C, Gutierrez-Fernandez S, Lobo-Castanon M J, et al. Electrochemical sensing withelectrodes modified with molecularly imprinted polymer films[J]. Anal Bioanal Chem2004,378(8):1922-1928
    24. Diaz A F, Kanazawa K K, Gardini G P. Electrochemical polymerization of pyrrole[J]. J Chem SocChem Comm,1979,(14):635-636
    25.董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,2003.304-347
    26. Schlesinger M, Paunovic M. Modern electroplating: Fifth Edition[M]. Hoboken, New Jersey: JohnWiley&Sons Inc.421-432
    27. Schab-Balcerzak E. Electropolymerization[M]. Croatia: In Tech,2011.187-190
    28. Syritski V, Reut J, Menaker A, et al. Electrosynthesized molecularly imprinted polypyrrole films forenantioselective recognition of l-aspartic acid[J]. Electrochim Acta,2008,53(6):2729-2736
    29. zkorucuklu S P, ahin Y, Alsancak G. Voltammetric behaviour of sulfamethoxazole onelectropolymerized-molecularly imprinted overoxidized polypyrrole[J]. Sensors,2008,8(12):8463-8478
    30. zcan L, Sahin M, Sahin Y. Electrochemical preparation of a molecularly imprintedpolypyrrole-modified pencil graphite electrode for determination of ascorbic acid[J]. Sensors2008,8(9):5792-5805
    31. Albano D R, Sevilla F. Piezoelectric quartz crystal sensor for surfactant based on molecularly imprintedpolypyrrole [J]. Sens Actuators B,2007,121(1):129-134
    32. Spurlock L D, Jaramillo A, Praserthdam A, et al. Selectivity and sensitivity of ultrathinpurine-templated overoxidized polypyrrole film electrodes[J]. Anal Chim Acta,1996,336(1-3):37-46
    33. zcan L, Sahin Y. Determination of paracetamol based on electropolymerized-molecularly imprintedpolypyrrole modified pencil graphite electrode[J]. Sens Actuators B,2007,127(2):362-369
    34. Kong Y, Zhao W, Yao S, et al. Molecularly imprinted polypyrrole prepared by electrodeposition for theselective recognition of tryptophan enantiomers[J]. J. Appl Polym Sci,2010,115(4):1952-1957
    35. Choi S W, Chang H J, Lee N, et al. Detection of mycoestrogen zearalenone by a molecularly imprintedpolypyrrole-based surface plasmon resonance (SPR) sensor[J]. J Agric Food Chem,2009,57(4):1113-1118
    36. Deore B, Chen Z, Nagaoka T. Potential-induced enantioselective uptake of amino acid into molecularlyimprinted overoxidized polypyrrole[J]. Anal Chem,2000,72(17):3989-3994
    37. Mazzotta E, Malitesta C, Díaz-álvarez M, et al. Electrosynthesis of molecularly imprinted polypyrrolefor the antibiotic levofloxacin[J]. Thin Solid Films,2012,520(1):1938-1943
    38. Tonelli D, Ballarin B, Guadagnini L, et al. A novel potentiometric sensor for l-ascorbic acid based onmolecularly imprinted polypyrrole[J]. Electrochim Acta,2011,56(20):7149-7154
    39. Ramanavicienea A, Ramanavicius A. Molecularly imprinted polypyrrole-based synthetic receptor fordirect detection of bovine leukemia virus glycoproteins[J]. Biosens Bioelectron,2004,20(6):1076-1082
    40. Mazzotta E, Picca R A, Malitesta C, et al. Development of a sensor prepared by entrapment of MIPparticles in electrosynthesised polymer films for electrochemical detection of ephedrine[J]. BiosensBioelectron,2008,23(7):1152-1156
    41. Ramanavicienea A, Ramanavicius A. Molecularly imprinted polypyrrole-based synthetic receptor fordirect detection of bovine leukemia virus glycoproteins[J]. Biosens Bioelectron,2004,20(6):1076-1082
    42. Kan X, Xing Z, Zhu A, et al. Molecularly imprinted polymers based electrochemical sensor for bovinehemoglobin recognition[J]. Sens Actuators B,2012,168:395-401
    43. Kan X, Zhou H, Li C, et al. Imprinted electrochemical sensor for dopamine recognition anddetermination based on a carbon nanotube/polypyrrole film[J]. Electrochim Acta,2012,63:69-75
    44.左言军,余建华,黄启斌,等.分子印迹纳米膜的制备及其在检测神经性毒剂沙林中的应用[J].分析化学,2003,31(7):769-773
    45. Feng L, Liu Y, Tan Y, et al. Biosensor for the determination of sorbitol based on molecularly imprintedelectrosynthesized polymers[J]. Biosens Bioelectron,2004,19(11):1513-1519
    46.汪莲艳,陆枫,吴福全,等.金属螯合物印迹聚邻苯二胺膜的电化学合成及表征[J].物理化学学报,2011,27(6):1451-1456
    47. Kan X, Liu T, Zhou H, et al. Molecular imprinting polymer electrosensor based on gold nanoparticlesfor theophylline recognition and determination[J]. Microchim Acta,2010,171(3-4):423-429
    48. Wang Y, Tang J, Luo X, et al. Development of a sensitive and selective kojic acid sensor based onmolecularly imprinted polymer modified electrode in the lab-on-valve system[J]. Talanta,2011,85(5):2522-2527
    49. Dua D, Chena S, Caib J, et al. Recognition of dimethoate carried by bi-layer electrodeposition of silvernanoparticles and imprinted poly-o-phenylenediamine[J]. Electrochim Acta,2008,53(22):6589-6595
    50. Zheng X, Lin R, Zhou X, et al. Electrochemical sensor of4-aminobutyric acid based on molecularlyimprinted electropolymer[J]. Anal Methods,2012,4(2):482-487
    51. Yang L, Wei W, Xia J, et al. Capacitive biosensor for glutathione detection based on electropolymerizedmolecularly imprinted polymer and kinetic investigation of the recognition process[J]. Electroanalysis,2005,17(11):969-977
    52. Kang J, Zhang H, Wang Z, et al. A novel amperometric sensor for salicylic acid based on molecularlyimprinted polymer-modified electrodes[J]. Polym-Plast Technol,2009,48(6):639-645
    53. Cheng Z, Wang E, Yang X. Capacitive detection of glucose using molecularly imprinted polymers[J].Biosens Bioelectron,2001,16(3):179-185
    54. Peng H, Zhang Y, Zhang J, et al. Development of a thickness shear mode acoustic sensor based on anelectrosynthesized molecularly imprinted polymer using an underivatized amino acid as the template[J].Analyst,2001,126(2):189-194
    55. Liu X, Li C, Wang C, et al. The preparation of molecularly imprinted poly(o-phenylenediamine)membranes for the specific o,odimethyl--hydroxylphenyl phosphonate sensor and its characterization by acimpedance and cyclic voltammetry[J]. J Appl Polym Sci,2006,101(4):2222-2227
    56. Liu P, Zhang X, Xu W, et al. Electrochemical sensor for the determination of brucine in human serumbased on molecularly imprinted poly-o-phenylenediamine/SWNTs composite film[J]. Sens Actuators B,2012,163(1):84-89
    57. Go′mez-Caballero A, Unceta N, Aranzazu Goicolea M, et al. Voltammetric determination ofmetamitron with an electrogenerated molecularly imprinted polymer microsensor[J]. Electroanalysis,2007,19(2-3):356-363
    58. Go′mez-Caballero A, Aranzazu Goicolea M, Barrio Ramo′n J. Paracetamol voltammetric microsensorsbased on electrocopolymerized–molecularly imprinted film modified carbon fiber microelectrodes[J]. TheAnalyst,2005,130(7):1012-1018
    59. Peng H, Liang, C, Zhou A, et al. Development of a new atropine sulfate bulk acoustic wave sensorbased on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine[J].Anal Chim Acta,2000,423(2):221-228
    60. G′omez-Caballero A, Unceta N, Aranzazu Goicolea M, et al. Evaluation of the selective detection of4,6-dinitro-o-cresol by a molecularly imprinted polymer based microsensor electrosynthesized in asemiorganic media[J]. Sens Actuators B,2008,130(2):713-722
    61. Song W, Chen Y, Xu J, et al. Dopamine sensor based on molecularly imprinted electrosynthesizedpolymers[J]. J Solid State Electrochem,2010,14(10):1909-1914
    62. Ouyang R, Lei J, Ju H, et al. A molecularly imprinted copolymer designed for enantioselectiverecognition of glutamic acid[J]. Adv Funct Mater,2007,17(16):3223-3230
    63. Weetall H H, Rogers K R. Preparation and characterization of molecularly imprintedelectropolymerized carbon electrodes[J]. Talanta,2004,62(2):329-335
    64. Panasyuk T L, Mirsky V M, Piletsky S A, et al. Electropolymerized molecularly imprinted polymers asreceptor layers in capacitive chemical sensors[J]. Anal Chem,1999,71(20):4609-4613
    65. Wang Z, Kang J, Liu X, et al. Capacitive Detection of Theophylline Based on ElectropolymerizedMolecularly Imprinted Polymer[J]. Int J Polym Anal Charact,2007,12(2):131-142
    66. Najafi M, Baghbanan A A. Capacitive chemical sensor for thiopental assay based onelectropolymerized molecularly imprinted polymer[J]. Electroanalysis,2012,24(5):1236-1242
    67. Li H, Wang Z H, Wu B W, et al. Rapid and sensitive detection of methyl-parathion pesticide with anelectropolymerized, molecularly imprinted polymer capacitive sensor[J]. Electrochim Acta,2012,62:319-326
    68. Li H, Xie C, Li S, et al. Electropolymerized molecular imprinting on gold nanoparticle-carbonnanotube modified electrode for electrochemical detection of triazophos[J]. Colloid Surface B,2012,89:175-181
    69. Liao H, Zhang Z, Li H, et al. Preparation of the molecularly imprinted polymers-based capacitivesensor specific for tegafur and its characterization by electrochemical impedance and piezoelectric quartzcrystal microbalance[J]. Electrochim Acta,2004,49(24):4101-4107
    70. Li J, Zhao J, We Xi. A sensitive and selective sensor for dopamine determination based on amolecularly imprinted electropolymer of o-aminophenol[J]. Sens Actuators B,2009,140(2):663-669
    71.申晴,崔莉凤,赵硕,等.微囊藻毒素分子印迹传感器的制备与应用[J].分析化学,2012,40(3):442-446
    72.马秀玲,陈日耀,郑曦,等.柚皮苷分子印迹传感器的制备与应用[J].分析化学,2010,38(1):100-104
    73. Xie C, Li H, Li S, et al. Surface molecular self-assembly for organophosphate pesticide imprinting inelectropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbonelectrode[J]. Anal Chem,2010,82(1):241-249
    74. Wang Z, Li H, Chen J, et al. Acetylsalicylic acid electrochemical sensor based on PATP–AuNPsmodified molecularly imprinted polymer film[J]. Talanta,2011,85(3):1672-1679
    75. Huang J, Zhang X, Liu S, et al. Electrochemical sensor for bisphenol A detection based on molecularlyimprinted polymers and gold nanoparticles[J]. J Appl Electrochem,2011,41(11):1323-1328
    76. Pan M F, Fang G Z, Liu B, et al. Novel amperometric sensor using metolcarb-imprinted film as therecognition element on a gold electrode and its application[J]. Anal Chim Acta,2011,690(2):175-181
    77.张进,徐岚,吕瑞红,等.妥拉苏林分子印迹膜传感器的制备及识别特性研究[J].化学学报,2010,68(2):157-161
    78. Zhang J, Wang Y, Lv R, et al. Electrochemical tolazoline sensor based on gold nanoparticles andimprinted poly-o-aminothiophenol film[J]. Electrochim Acta,2012,55(12):4039-4044
    79.刘志航,宦双燕,沈国励,等.以分子印迹电聚合膜为仿生受体检测辛可宁[J].高等学校化学学报,2005,26(6):1049-1051
    80. Huan S, Hu S, Shen G, et al. Au microelectrode based on molecularly imprinted oligomer film for rapidelectrochemical sensing[J]. Anal Lett,2003,36(11):2401-2416
    81. Riskin M, Ben-Amram Y, Tel-Vered R, et al. Molecularly imprinted Au nanoparticles composites on ausurfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, andethylene glycol dinitrate[J]. Anal Chem,2011,83(8):3082-3088
    82. Riskin M, Tel-Vered R, Bourenko T, et al. Imprinting of molecular recognition sites throughelectropolymerization of functionalized Au nanoparticles: Development of an electrochemical tnt sensorbased on π-donor-acceptor interactions[J]. J Am Chem Soc,2008,130(30):9726-9733
    83. Frasconi M, Tel-Vered R, Riskin M, et al. Surface plasmon resonance analysis of antibiotics usingimprinted boronic acid-functionalized au nanoparticle composites[J]. Anal Chem,2010,82(6):2512-2519
    84. Pietrzyk A, Kutner W, Chitta R, et al. Melamine Acoustic Chemosensor Based on MolecularlyImprinted Polymer Film [J]. Anal Chem,2009,81(24):10061-10070
    85. Pietrzyk A, Suriyanarayanan S, Kutner W, et al. Selective histamine piezoelectric chemosensor using arecognition film of the molecularly imprinted polymer of bis(bithiophene) derivatives[J]. Anal Chem,2009,81(7):2633-2643
    86. Weng C H, Yeh W M, Ho K C, et al. A microfluidic system utilizing molecularly imprinted polymerfilms for amperometric detection of morphine[J]. Sens Actuators B,2007,121(2):576-582
    87. Yeh W M, Ho K C. Amperometric morphine sensing using a molecularly imprinted polymer-modifiedelectrode[J]. Anal Chim Acta,2005,542(1):76-82
    88. Wua C T, Chena P Y, Chena J G, et al. Detection of nicotine based on molecularly imprintedTiO2-modified electrodes[J]. Anal Chim Acta,2009,633(1):119-126
    89. Apodaca D C, Pernites R B, Ponnapati R, et al. Advincul. Electropolymerized Molecularly ImprintedPolymer Film: EIS Sensing of Bisphenol A[J]. Macromolecules,2011,44(17):6669-6682
    90. Vergara A V, Pernites R B, Pascua S, et al. QCM sensing of a chemical nerve agent analog viaelectropolymerized molecularly imprinted polythiophene films[J]. J Polym Sci Part A: Polym Chem,2012,50(4):675-685
    91. Pernites R, Ponnapati R, Felipe M J, et al. Electropolymerization molecularly imprinted polymer(E-MIP) SPR sensing of drug molecules: pre-polymerization complexed terthiophene and carbazoleelectroactive monomers[J]. Biosens Bioelectron,2011,26(5):2766-2771
    92. Pernites R B, Ponnapati R R, Advincula R C. Advincula.surface plasmon resonance (SPR) detection oftheophylline via electropolymerized molecularly imprinted polythiophenes[J]. Macromolecules,2010,43(23):9724-9735
    93. Apodaca D C, Pernites R B, Ponnapati R R, et al. Electropolymerized molecularly imprinted polymerfilms of a bis-terthiophene dendron: folic acid quartz crystalmicrobalance sensing[J]. Appl Mater Interfaces,2011,3(2):191-203
    94. Pardieu E, Cheap H, Vedrine C, et al. Molecularly imprinted conducting polymer based electrochemicalsensor for detection of atrazine[J]. Anal Chim Acta,2009,649(2):236-245
    95. Xing X, Liu S, Yu J, et al. Electrochemical sensor based on molecularly imprinted film atpolypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode fordetermination of tryptamine[J]. Biosens Bioelectron,2012,31(1):277-283
    96. Liu Y T, Deng J, Xiao X L, et al. Electrochemical sensor based on a poly(para-aminobenzoic acid) filmmodifiedglassy carbon electrode for the determination of melamine in milk[J]. Electrochim Acta,2011,56(12):4595-4602
    97. Zhou L, Ye G R, Yuan R, et al. A capacitive sensor based on molecularly imprinted polymers andpoly(p-aminobenzene sulfonic acid) film for detection of pazufloxacin mesilate[J]. Sci China Ser BChemistry,2007,50(4):547-553
    98. Yuan L, Zhang J, Zhou P, et al. Electrochemical sensor based on molecularly imprinted membranes atplatinum nanoparticles-modified electrode for determination of17β-estradiol[J]. Biosens Bioelectron,2011,29(1):29-33
    99. Dutta P, Pernites R B, Danda C, et al. SPR detection of dopamine using cathodicallyelectropolymerized, molecularly imprinted poly-p-aminostyrene thin films[J]. Macromol Chem Phys,2011,212(22):2439-2451
    100. Deore B, Freund M S. Saccharide imprinting of poly (aniline boronic acid) in the presence offluoride[J]. Analyst,2003,128(6):803-806
    101. Rick J, Chou T C. Using protein templates to direct the formation of thin-film polymer surfaces[J].Biosens Bioelectron,2006,22(4):544-549
    102. Sallacan N, Zayats M, Bourenko T, et al. Imprinting of nucleotide and monosaccharide recognitionsites in acrylamidephenylboronic acid-acrylamide copolymer membranes associated with electronictransducers[J]. Anal Chem,2002,74(3):702-712
    103. Wu S, Tan W, Xu H. Protein molecularly imprinted polyacrylamide membrane: for hemoglobinsensing[J]. Analyst,2010,135(10):2523-2527
    104. Liao H, Zhang Z, Nie L, et al. Electrosynthesis of imprinted polyacrylamide membranes for thestereospecific L-histidine sensor and its characterization by AC impedance spectroscopy and piezoelectricquartz crystal technique[J]. J Biochem Biophys Methods,2004,59(1):75-87
    105. Mazzotta E, Malitesta C. Electrochemical detection of the toxic organohalide2,4-DB using aCo-porphyrin based electrosynthesized molecularly imprinted polymer[J]. Sens Actuators B,2010,148(1):186-194
    106. Panasyuk T, Campo Dall'Orto V, Marrazza G,, et al. Molecular imprinted polymers prepared byelectropolymerization of Ni-(protoporphyrin IX)[J]. Anal Lett,1998,31(11):1809-1824
    107. Pellicer C, Gomez-Caballero A, Unceta N, et al. Using a portable device based on a screen-printedsensor modified with a molecularly imprinted polymer for the determination of the insecticide fenitrothionin forest samples[J]. Anal Methods,2010,2(9):1280-1285
    108. Gong J L, Gong F C, Kuang Y, et al. Capacitive chemical sensor for fenvalerate assay based onelectropolymerized molecularly imprinted polymer as the sensitive layer[J]. Anal Bioanal Chem,2004,379(2):302-307
    109. Gong J L, Gong F C, Zeng G M, et al. A novel electrosynthesized polymer applied to molecularimprinting technology[J]. Talanta,2003,61(4):447-453
    110. Aghaei A, Milani Hosseini M R, Najafi M. A novel capacitive biosensor for cholesterol assay that usesan electropolymerized molecularly imprinted polymer[J]. Electrochim Acta,2010,55(5):1503-1508
    111. Luo N, Hatchett D W, Rogers K R. Recognition of pyrene using molecularly imprintedelectrochemically deposited poly(2-mercaptobenzimidazole)or poly(resorcinol)on gold electrodes[J].Electroanalysis,2007,19(19-20):2117-2124
    112. Fu X C, Wu J, Nie L, et al. Electropolymerized surface ion imprinting films on a goldnanoparticles/single-wall carbon nanotube nanohybrids modified glassy carbon electrode forelectrochemical detection of trace mercury(II) in water[J]. Anal Chim Acta,2012,720:29-37
    113. Liu K, Wei W Z, Zeng J X, et al. Application of a novel electrosynthesized polydopamine-imprintedfilm to the capacitive sensing of nicotine[J]. Anal Bioanal Chem2006,385(4):724-729
    114. Ulyanova Y V, Blackwell A E, Minteer S D. Minteer. Poly(methylene green) employed as molecularlyimprinted polymer matrix for electrochemical sensing[J]. Analyst,2006,131(2):257-261
    115. Lorenzo R A, Carro A M, Alvarez-Lorenzo C, et al. To remove or not to remove? the challenge ofextracting the template to make the cavities available in molecularly imprinted polymers (MIPs)[J]. Int JMol Sci,2011,12:4327-4347
    116.左伯莉,刘国宏.化学传感器原理及应用[M].北京:清华大学出版社,2006.1-10
    117.徐秀明,王俊德,李海洋. QCM和SAW传感器的原理及其在现场检测中的应用[J].化学进展,2005,17(5):876-880
    118.吴启辉,肖晓银,杨毅芸.邻苯二胺的电聚合及膜氧化还原过程的研究[J].应用化学,1999,16(5):5-8
    119. Losito I, Palmisano F, Zambonin P G. o-Phenylenediamine electropolymerization by cyclicvoltammetry combined with electrospray ionization-ion trap mass spectrometry[J]. Anal Chem,2003,75(19):4988-4995
    120. Pisarevskaya E Y, Serdyuk T M, Ovsyannikova E V. Electropolymerization features ofo-phenylenediamine on carbon electrode with developed surface[J]. Synthetic Met,2010,160(21-22):2366-2370
    121. Du Y F, Qi X M, Zhao P, et al. Electropolymerization of o-Phenylenediamine in an Ionic Liquid[J].Chin Chem Lett,2004,15(9):1098-1100
    122. Recksiedler C L, Deore B A, Freund M S. A novel layer-by-layer approach for the fabrication ofconducting polymer/rna multilayer films for controlled release[J]. Langmuir2006,22(6):2811-2815
    123. Deore B A, Freund M S. Self-doped polyaniline nanoparticle dispersions based on boronicacid-phosphate complexation[J]. Macromolecules,2009,42(1):164-168
    124. Latch D E, Packer J L, Arnold W A, et al. Photochemical conversion of triclosan to2,8-dichlorodibenzo-p-dioxin in aqueous solution[J]. J Photochem Photobiol A,2003,158(1):63-66
    125. Canosa P, Morales S, Rodriguez I, et al. Aquatic degradation of triclosan and formation of toxicchlorophenols in presence of low concentrations of free chlorine[J]. Anal Bioanal Chem,2005,383(7-8):1119-1126
    126. Wu J L, Lam N P, Martens D, et al. Triclosan determination in water related to wastewatertreatment[J]. Talanta,2007,72(5):1650-1654
    127. Chu S G, Metcalfe C D. Simultaneous determination of triclocarban and triclosan in municipalbiosolids by liquid chromatography tandem mass spectrometry[J]. J Chromatogr A,2007,1164(1-2):212-218
    128. Shelver W L, Kamp L M, Church J L, et al. Measurement of triclosan in water using a magneticparticle enzyme immunoassay[J]. J Agric Food Chem,2007,55(10):3758-3763
    129. Tsai T H, Thiagarajan S, Chen S M. Electrochemical fabrication of nano TiO2bilayer film modifiedelectrode and electroanalytical applications[J]. Int J Electrochem Sci,2011,6(9):3878-3889
    130. Safavi A, Maleki N, Shahbaazi H R. Electrochemical determination of triclosan at a mercuryelectrode[J]. Anal Chim Acta,2003,494(1-2):225-233
    131. Yang J Q, Wang P, Zhang X J, et al. Electrochemical sensor for rapid detection of triclosan using amultiwall carbon nanotube film[J]. J Agric Food Chem,2009,57(20):9403-9407
    132. Amiri M, Shahrokhian S, Psillakis E, et al. Electrostatic accumulation and determination of triclosanin ultrathin carbon nanoparticle composite film electrodes[J]. Anal Chim Acta,2007,593(1):117-122
    133. Pemberton R M, Hart J P. Electrochemical behaviour of triclosan at a screen-printed carbon electrodeand its voltammetric determination in toothpaste and mouthrinse products[J]. Anal Chim Acta,1999,390(1-3):107-115
    134. Ghanem M A, Compton R D, Coles B A, et al. Microwave activation of electrochemical processes:High temperature phenol and triclosan electro-oxidation at carbon and diamond electrodes[J]. ElectrochimActa,2007,53(3):1092-1099
    135. Greenman J, Nelson D G A. Hydrolysis of triclosan monophosphate by dental plaque and selectedspecies of oral micro-organisms[J]. J Dent Res,1996,75(8):1578-1584
    136.约瑟夫.王.分析电化学[M]:第三版.朱永春,张玲译.北京:化学工业出版社,2008.158-170
    137. Chiba K,Ohsaka T, Ohnuki Y, et al. Electrochemical preparation of a ladder polymer containingphenazine rings[J]. J Electroanal Chem,1987,219(1-2):117-124
    138. Losito I, Palmisano F, Zambonin P G. o-Phenylenediamine electropolymerization by cyclicvoltammetry combined with electrospray ionization-ion trap mass spectrometry[J]. Anal Chem,2003,75(19):4988-4995
    139. Losito I, De Giglio E, Cioffi N, et al. Spectroscopic investigation on polymer films obtained byoxidation of o-phenylenediamine on platinum electrodes at different pHs[J]. J Mater Chem,2001,11(7):1812-1817
    140. Gaber A, Mersal M. Electrochemical sensor for voltammetric determination of catechol based onscreen printed graphite electrode[J]. Int J Electrochem Sci,2009,4(4):1167-1177
    141. Casademont G, Perez B, Regueiro J A G. Simultaneous determination, in calf urine, of twelve anabolicagents as heptafluorobutyryl derivatives by capillary gas chromatography-mass spectrometry[J]. JChromatogr Biomed Appl,1996,686(2):189-198
    142. Quintana J B, Carpinteiro J, Rodriguez I, et al. Determination of natural and synthetic estrogens in waterby gas chromatography with mass spectrometric detection[J]. J Chromatogr A,2004,1024(1-2):177-185
    143. Lopez de Alda M J, Barcelo D. Determination of steroid sex hormones and related synthetic compoundsconsidered as endocrine disrupters in water by fully automated on-line solid phase extraction-liquidchromatography-diode array detection[J]. J Chromatogr A,2001,911(2):203-210
    144. Benijts T, Dams R, Gunther W, et al. Analysis of estrogenic contaminants in river water using liquidchromatography coupled to ion trap based mass spectrometry[J]. Rapid Commun Mass Spectrom,2002,16(14):1358-1364
    145. Wang J, Ye H, Jiang Z, et al. Determination of diethylstilbestrol by enhancement of luminol-hydrogenperoxide-tetrasulfonated cobalt phthalocynanine chemiluninescence[J]. Anal Chim Acta,2004,508(2):171-176
    146. Liao S, Wu X, Xie Z. Determination of some estrogens by flow injection analysis with acidic potassiumpermanganate-formaldehyde chemiluminescence[J]. Anal Chim Acta,2005,537(1-2):189-195
    147. Arts J M, Van Baak M J, Elloit C J, et al. Comparison of convetional immunoassays and the oestrogenradioreceptor assay for screening for the presence of oestrogenic anabolic compounds in urine samples[J].Analyst,1998,123(12):2579-2583
    148. Biryol I, Salci B, Erdic E. Voltammetric investigation of diethylstilbestrol[J]. J Pharmaceut Biomed,2003,32(6):1227-1234
    149. Qiu B, Wang W, Chi Y W, et al. Electrochemical behaviors of diethylstilbestrol and its application inpharmacokinetics[J]. Anal Biochem,2005,336(2):196-201
    150. Zhang S H, Wu K B, Hu S S. Voltammetric determination of diethylstilbestrol at carbon paste electrodeusing cetylpyridine bromide as medium[J]. Talanta,2002,58(4):747-754
    151. Fei J J, Wen X Q, Yi L H, et al. Electrochemical determination diethylstilbestrol by a single-walledcarbon nanotube/platinum nanoparticle composite film electrode[J]. J Appl Electrochem,2008,38(1):1527-1533
    152. Qu K, Zhang X, Lv Z, et al. Simultaneous detection of diethylstilbestrol and malachite green usingconductive carbon black paste electrode[J]. Int J Electrochem Sci,2012,7(3):1827-1839
    153. Ngundi M M, Sadik O A, Yamaguchi T, et al. First comparative reaction mechanisms of b-estradiol andselected environmental hormones in a redox environment[J]. Electrochem Commun,2003(5):61-67
    154. Willner I, Willnrt B. Functional nanoparticle architectures for sensoric, optoelectronic,anbioelectronic applications[J]. Pure App Chem,2002,74(9):1773-1783
    155. Male K B, Hrapovic S, Liu Y L, et al. Electrochemical detection of carbohydrates using coppernanoparticles and carbon nanotubes[J]. Anal Chim Acta,2004,516(1):35-41
    156. Liu Y, Wu S, Ju H X, et al. Amperometric glucose biosensing of gold nanoparticles and carbonnanotube multilayer membranes[J]. Electroanalysis,2007,19(9):986-992
    157. Rodriguez M C, Sandoval J, Galicia L, et al. Highly selective determination of uric acid in thepresence of ascorbic acid at glassy carbon electrodes modified with carbon nanotubes dispersed inpolylysine[J]. Sens Actuators B,2008,134(2):559-565
    158. Wang J, Timchalk C, Lin Y. Carbon nanotube-based electrochemical sensor for assay of salivarycholinesterase enzyme activity: An exposure biomarker of organophosphate qesticides and nerve agents[J].Environ Sci Technol,2008,42(7):2688-2693
    159. Boo H, Jeong R A, Park S, et al. Electrochemical nanoneedle biosensor based on multiwall carbonnanotube[J]. Anal Chem,2006,78(2):617-620
    160. Wong H S P, Akinwande D. Carbon nanotube and graPhene deviee [M]. New York: PhysiesCambridge University Press,2011:73-74
    161. Ajayan P M. Nanotubes from carbon[J]. Chem Rev,1999,99(7):1787-1800
    162. Azamian B R, Davis J J, Coleman K S, et al. Bioelectrochemical single-walled carbon nanotubes[J]. JAm Chem Soc,2002,124(43):12664-12665
    163. Wei B, Vajtai R, Ajayan P M. Reliability and current carrying capacity of carbon nanotubes[J]. Applphys Lett,2001,79(8):1172-1174
    164. Britto P J, Santhanam K S V, Rubio A, et al. Charge transfer on carbon nanotube electrodes[J]. AdvMater,1998,11(2):154-157
    165. Balanag V M, Yunus F, Yang P C. Efficacy and safety of budesonide/formoterol compared withsalbutamol in the treatment of acute asthma[J]. Pulm Pharmacol Ther,2006,19(2):139-147
    165. Valenzuela B, N′acher A, Casab′o V G, et al. The influence of active secretion processes on intestinalabsorption of salbutamol in the rat[J]. Eur J Pharm and Biopharm,2001,52(1):31-37
    166. Sheu S Y, Lei Y C, Tai Y T, et al. Screening of salbutamol residues in swine meat and animal feed byan enzyme immunoassay in Taiwan[J]. Anal Chim Acta,2009,654(2):148-153
    167. Ventura R, Damasceno L, Farr′e M, et al. Analytical methodology for the detection of β-agonists inurine by gas chromatography-mass spectrometry for application in doping control[J]. Anal Chim Acta,2000,418(1):79-92
    168.Ventura R, Ramírez R, Monfort N. Ultra performance liquid chromatography tandem massspectrometric method for direct quantification of salbutamol in urine samples in doping control[J]. JPharmaceut Biomed,2009,50(5):886-890
    169. Goyal R N, Oyama M, Singh S P. Fast determination of salbutamol, abused by athletes for doping, inpharmaceuticals and human biological fluids by square wave voltammetry[J]. J Electroanal Chem,2007,611(1-2):140-148
    170. Griese S, Kampouris D K, Kadara R O, et al. The underlying electrode causes the reported'electrocatalysis' observed at C60-modified glassy carbon electrodes in the case ofN-(4-hydroxyphenyl)ethanamide and salbutamol[J]. Electrochim Acta,2008,53(20):5885-5890
    171. Goyal R N, Kaur D, Singh S P, et al. Effect of graphite and metallic impurities of C60fullerene ondetermination of salbutamol in biological fluids[J]. Talanta,2008,75(1):63-69
    172. Wei Y, Zhang Q, Shao C, et al. Voltammetric determination of salbutamol on a glassy carbonelectrode coated with a nanomaterial thin film[J]. J Anal Chem,2010,65(4):398-403
    173.吴芸,陈昌云,赵波,等.基于聚硫堇/多壁碳纳米管共修饰沙丁胺醇电化学传感器构建[J].食品科学,2009,30(19):40-43
    174.Zhang Z H, Hu Y F, Zhang H B, et al. Novel layer-by-layer assembly molecularly imprinted sol-gelsensor for selective recognition of clindamycin based on Au electrode decorated by multi-wall carbonnanotube[J]. J Colloid Interf Sci,2010,334(1):158-164
    175. Yilmazn N, ZKAN S A, Uslu B, et al. Voltammetric determination of salbutamol based onelectrochemical oxidation at platinum and glassy carbon electrodes[J]. Tr J of Chemistry,1998,22(2):175-182
    176. Deore B A, Hachey S, Freund M S. Electroactivity of electrochemically synthesized poly(Anilineboronic acid) as a function of pH: role of self-doping self-doping[J]. Chem Mater,2004,16(8):1427-1432
    177.Deore B A, Freund M S. Self-doped polyaniline nanoparticle dispersions based on boronicacid-phosphate complexation[J]. Macromolecules,2009,42(1):164-168
    178.Ali S R, Parajuli R R, Ma Y, et al. Properties of poly-aminophenylboronate coatings in capillaryelectrophoresis for the selective separation of diastereoisomers and glycoproteins[J]. J Chromatogr A2004,1023(2):297-303
    179.Gabai R, Sallacan N, Chegel V. Characterization of the swelling of acrylamidophenylboronicacid-acrylamide hydrogels upon interaction with glucose by faradaic impedance spectroscopy,chronopotentiometry, quartz-crystal microbalance (QCM), and surface plasmon resonance (SPR)experiments[J]. Phys Chem B,2001,105(34):8196-8202
    180.狄玲,王苍,吴健,等.基于有机硼酸的糖传感器研究进展[J].分析化学,2011,9(4):592-598
    181.刘建华,葛春华,张向东,等.基于有机硼酸的共价键有机框架研究进展[J].化学通报,2012,75(5):432-440
    182.刘斌,孙向英,徐金瑞.含硼酸基的自组装膜对糖的电化学识别[J].分析化学,2004,32(5):601-605
    183. Ma Y, Yang X. One saccharide sensor based on the complex of the boronic acid and themonosaccharide using electrochemical impedance spectroscopy[J]. J Electroanal Chem,2005,580(2):348-352
    184. Yoshimi Y, Narimatsu A, Keisuke Nakayama M S. Development of an enzyme-free glucose sensorusing the gate effect of a molecularly imprinted polymer[J]. J Artif Organs,2009,12(4):264-270
    185. Li S, Davis E N, Anderson J. Development of boronic acid grafted random copolymer sensing fluidfor continuous glucose monitoring[J]. Biomacromolecules,2009,10(1):113-118
    186. Chen P C, Wan L S, Ke B B. Honeycomb-patterned film segregated with phenylboronic acid forglucose sensing[J]. Langmuir,2011,27(20):12597-12605
    187. Tan J, Wang H F, Yan X P. Discrimination of saccharides with a fluorescent molecular imprintingsensor array based on phenylboronic acid functionalized mesoporous silica[J]. Anal Chem,2009,81(13):5273-5280
    188. Huh P, Kim S C, Kim Y. Optical and electrochemical detection of saccharides withpoly(aniline-co-3-aminobenzeneboronic acid) prepared from enzymatic polymerization[J].Biomacromolecules,2007,8(11):3602-3607
    189. Arreguin S, Nelson P, Padway S, et al. Dopamine complexes of iron in the etiology and pathogenesisof Parkinson’s disease[J]. J Inorg Biochem,2009,103(1):87-93
    190. Rubianes M D, Rivas G A. Highly selective dopamine quantification using a glassy carbon electrodemodified with a melanin-type polymer[J]. Anal Chim Acta,2001,440(2):99-108
    191. Yu Z, Li X, Wang X, Ma X, et al. Voltammetric determination of dopamine and norepinphrine on aglassy carbon electrode modified with poly (L-aspartic acid)[J]. J Chem Soc,2012,124(2):537-544
    192. Yu D, Zeng Y, Qi Y, et al. A novel electrochemical sensor for determination of dopamine based onAuNPs@SiO2core-shell imprinted composite[J]. Biosens Bioelect,2012,38(1):270-277
    193. Ali S R, Parajuli R R, Ma Y, et al. Interference of ascorbic acid in the sensitive detection of dopamineby a nonoxidative sensing approach[J]. J Phys Chem B,2007,111(42):12275-12281

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700