基于直接电子传递型电化学免疫传感器和微孔板式化学发光免疫分析法快速检测骨肉瘤耐药相关蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨肉瘤是最常见的原发性恶性骨肿瘤,好发于青少年,恶性程度高,早期即可发生转移,预后差,是严重危害青少年身心健康的恶性肿瘤。近年来,随着新辅助化疗、手术等综合治疗的发展,骨肉瘤的五年生存率逐渐上升到60%~70%。但是,仍有不少的患者因肿瘤复发、转移而导致治疗失败,其主要原因是肿瘤细胞对化疗药物产生的多药耐药。
     骨肉瘤耐药性与其耐药基因表达的标志性耐药蛋白密切相关,通过检测骨肉瘤标志性耐药蛋白,对骨肉瘤病理学分级、化疗过程中的药物监测、疗效评估、快速筛选适合患者的抗肿瘤药物有着极其重要的作用,并可为临床上实现个体化化疗和预后判断提供科学的实验依据。
     目前用于骨肉瘤标志性耐药蛋白的临床监测方法主要包括酶联免疫吸附法(ELISA)、免疫组化染色法、基因芯片、RT-PCR等技术,但这些方法均存在一定的局限性,如敏感性不高、操作繁琐、周期长、费用高等问题,迫切需要开发研制一种快速、简便、灵敏、准确、经济的骨肉瘤耐药相关蛋白检测技术,电化学免疫传感器技术及化学发光免疫分析技术为解决这一难题提供了新的出路。
     本文设计并研制了两种电化学免疫传感器和一种化学发光免疫分析技术,成功实现了骨肉瘤相关耐药蛋白(肿瘤坏死因子-α和金属硫蛋白-3)检测,为临床提供了新型的检测手段,有助于实现临床上骨肉瘤化疗过程中的实时药物耐药监测,以便及时调整化疗方案,实现骨肉瘤的个体化化疗,大大改善患者的预后。全文共分为三部分,分述如下:
     第一部分:基于铁氰化钾作为指示信号的免标记电化学免疫传感器用于肿瘤坏死因子α(TNF-α)的超灵敏检测
     本章节主要以K_3[Fe(CN)_6]作为免标记电化学信号物质,构建了nafion/K_3[Fe(CN)_6]-壳聚糖-戊二醛(K-CS-GA)复合物修饰的电化学免疫传感器,根据抗原-抗体反应原理,用于肿瘤坏死因子(TNF-α)的精密检测。利用扫描电子显微镜(SEM)、循环伏安技术(CV)和荧光倒置显微镜等对修饰电极的制备过程进行表征,以及利用紫外可见分光光度法(UV-VIS)和红外分光光度法(FTIR)对制备的修饰复合物K-CS-GA溶液进行表征。实验结果表明,在最佳实验条件下,该方法所制备的nafion-K-C-GCE免疫传感器具有较强的生物大分子识别能力,具有较高的灵敏度和较宽的检测范围,用于检测TNF-α的线性范围为0.02~34ng/ml,其检测限为10pg/ml,用于骨肉瘤血清样本测定结果令人满意,并且该免疫传感器合成方法简单易行,所用修饰复合物K-CS-GA溶液廉价易得并且具有长期稳定性。因此,该电化学免疫传感器具有广阔的临床应用前景。
     第二部分:建立基于K_3[Fe(CN)_6]氧化还原信号和C-dots/nafion薄膜固定抗体的电化学免疫传感器用于金属硫蛋白(MT-3)的检测
     本章节通过滴涂方式,构建了C-dots/nafion和K-CS-GA复合物修饰的电化学免疫传感器,以K_3[Fe(CN)_6]作为电化学氧化还原信号来源,通过应用C-dots对差分脉冲伏安曲线氧化峰电流信号进行放大,并且以免疫反应为基础,用于金属硫蛋白(MT-3)的精密测定。该方法先将电化学信号活性复合物K-CS-GA和C-dots/nafion复合物依次修饰在处理好的电极上,再将捕获抗体组装在修饰C-dots/nafion复合物薄膜的电极表面,利用差分脉冲伏安技术,通过对比抗原-抗体反应前后检测电流变化的大小来检测目标物质。实验结果表明,在最佳实验条件下,该免疫传感器具有较好的特异性,测得MT-3的浓度线性范围为5pg mL-1~20ng mL-1,其检测限为2pg mL-1,明显低于目前已有的检测MT-3方法的检测限,检测骨肉瘤血清样本的结果与酶联免疫吸附试验(ELISA)的检测结果比较没有显著性差异,结果令人满意。
     第三部分:微孔板式化学发光免疫分析法测定人血清中肿瘤坏死因子α(TNF-α)
     本章节建立了一种基于微孔板的化学发光免疫分析方法,用于检测人血清中的肿瘤坏死因子α。该方法具有灵敏度高、特异性强、快速、稳定性好、重复性好等特点。对免疫反应的试验条件及各项物理化学参数,如反应温度、温育时间、包被液、稀释度、发光底物的用量等进行了测定和优化。在最佳条件下,该方法的线性范围是10-2000pg/ml,检测限为5.46pg/ml;批内和批间变异系数均小于10%;回收率在90-110%之间,通过本法对实际血清样本进行检测,并将结果与商品化试剂盒的测定结果进行相关分析,其相关系数r=0.9857,证实本法可用于骨肉瘤血清中肿瘤坏死因子α的临床测定。
Osteosarcoma is the most common malignant bone tumor and occurs mostfrequently during adolescence. Due to its high malignancy degree, poor prognosis andthe metastasis happened in early stage, the osteosarcoma has unfavorable effect on thephysical and mental health of adolescents. In recent years, with the development ofneoadjuvant chemotherapy and radical surgery, the five-year survival rate ofosteosarcoma increases to60%~70%. However, due to the multidrug resistance oftumor cell to chemotherapy, there are many patients with failure treatment because ofrelapse and metastasis of tumor.
     The drug resistance of osteosarcoma is correlated with the drug resistanceprotein expressed by the corresponding drug resistance gene, the detection ofosteosarcoma drug resistance protein plays an important role in pathological gradingof osteosarcom, drug monitoring during chemotherapy, assessment of curative effect,screening suitable anti-tumor drug for patients, also, it could provide scientificexperiment basis for individual chemotherapy and prognosis in clinical practice.
     In recent years, the monitoring methods of drug resistance protein includedELISA, immunohistochemistry, gene chip and RT-PCR, etc. But there were somelimitations in these methods, such as low sensibility, complex operation, lengthenedanalysis times, higher cost and so on. It is urgent to contrive a analysis methodincluding shortened analysis time, simple, sensibility and economic. Electrochemicalimmunosensor and chemiluminescence enzyme immunoassay provide a new way tosolve this difficult problem.
     We design and establish two electrochemical immunosensor analysis methodsand a chemiluminescence enzyme immunoassay method which succeed to detect multidrug resistance related protein of osteosarcoma. It is hopeful to real time monitormultidrug resistance between of chemotherapy of osteosarcoma, adjustchemotherapy scheme timely, realize individual chemotherapy, and enormouslyimprove prognosis of patients. It consists of three chapters:
     Chapter1Label-free electrochemical immunosensor based on K_3[Fe(CN)_6] assignal for facile and sensitive determination of tumor necrosis factor-alpha
     Using K_3[Fe(CN)_6] as the label-free signal material, buiding the electrochemicalimmunosensor which was modified with nafion/K_3[Fe(CN)_6]-chitosan-glutaraldehyde(K-CS-GA) in this section. According to the antigen-antibody reactionprinciple, the immunosensor was used to accurately detect the tumor necrosisfactor-alpha (TNF-α). The different modified electrodes were characterized viascanning electron microscopy (SEM), cyclic voltammetry (CV) and invertedflurescence microscopy. The prepared K-CS-GA solution was characterized byultraviolet and visible spectrophotometry (UV-VIS) and infrared spectrophotometry(FTIR). In addition, all experimental conditions were optimized in the wholeexperiment. The approach show that the immunosensor had high sensitivity, goodstability and low cost. Under optimal experimental conditions,the linear rangecovered from0.02to34ng mL-1, the detection limit had been as10pg mL-1. Theresult of detecting osteosarcoma serum sample was satisfactory. Thus, theimmunosensor would be promising in clinical application.
     Chapter2Sensitive electrochemical immunoassay of Metallothionein-3basedon K_3[Fe(CN)_6] as redox active signal and C-dots/nafion film for antibodyimmobilization
     Building a C-dots/nafion and K-CS-GA solution modified electrochemicalimmunosensor by dropping-coating way in this section, was used to detect themetallothionein-3(MT-3), which was based on immunoreaction. The K_3[Fe(CN)_6]was used as the electrochemical redox active material, and the nanomaterial C-dotswas used to amplified the anodic peak signal of differential pulse volt-ampere curve.Firstly, the K-CS-GA solution and C-dots/nafion compound were successively modified the prepared GCE. Secondly, the capture antibody assembled theC-dots/nafion compound film of the modified electrode. Then, the current signal ofdifferential pulse volt-ampere changed when the antigen-antibody reaction happened.The experimental result show the immunosensor possessed good specificity under theoptimal experimental conditions. The linear range of detection covered from5pg mL-1to20ng mL-1, the detection limit had been up to2pg mL-1. The detectionlimit of proposed method was obviously lower than the other detection method ofmetallothionein-3(MT-3). The result of detecting osteosarcoma serum wassatisfactory, if it was compared with the result of enzyme-linked immuno sorbentassay (ELISA).
     Chapter3Microplate chemiluminescence enzyme immunoassay for thedetermination of tumor necrosis factor-alpha in human serum
     A micro-plate based chemiluminescent immunoassay for measurement of TNF-α in human serum was built. The method had high sensitivity, high specificity,rapidity, and reproducibility. Experimental conditions, such as temperature, coatingbuffer, the volume of substrate, incubation time, dilution ratio and other relevantvariables upon the immunoassay had been examined and optimized. The proposedmethod exhibited high performance which the linear range was10-2000pg ml-1andthe detection limit was5.46pg ml-1. A coefficient of variance of less than10%wasobtained for both intra-assay and inter-assay precision. The recovery was between90-110%,The present method had been successfully applied to the analysis of TNFαin human serum. Good correlations were obtained between the results by the proposedmethod and the commercial radioimmunoassay kit. The proposed method exhibitedgood potential in the fabrication of TNF-αdiagnostic kits which could be used in theclinical analysis.
引文
[1] Wafa H. Grimer R J. Surgical options and outcomes in bone sarcoma [J]. Expertreview of anticancer therapy.2006,6:239-248.
    [2] Skinner H B. Current Diagnosis and Treatment in Orthopedics [J].2nd. New YorkMcGraw. Hill.2000,277:289-294.
    [3] Lee P D, Noble-Topham S E, Bell R S et al. Quantitative analysis of multidrugresistance gene exp ression in human osteosarcomas [J]. Br J Cancer.1996,74(7):1046-1050.
    [4] Posl M, Grahl K, AmlingM et al. P-glycop rotein exp ression in osteosarcoma [J].Pathologe.1996,17(1):50-55.
    [5] Smith M A, Merry S, Smith J G et al.Clinically relevantcon centrations ofverapamil do not enchance the sensitivity of human bone marrow [J]. CFU. GMtoadriamycinand VP-16, Br J Cancer.1988,57(6):576-582.
    [6] Norimasa S, Tetsuro M, Tatsuto K et al. Two dyridineanalogue swith moreeffective ability to reverse multidrug resistance and with lower calciumchanneblocking activity than their dihydrop ridine counter parts [J]. Cancer Res.1990,50(5):3055-3059.
    [7] Muller F, Ferrandis G E, Cornil S I, et al. Evidence for transcriptional control ofhumanmdr1gene exp ression by verapami in mul-tidrug resistant leukemia cell [J].Molecular Pharma Col,1995,47(6):51-57.
    [8] Sato W, Fukazawa N, Nakanishi O, et al. Resersal ofmultidrug resistance by anovel quinoline derivative [J]. MS-209, Cancer Chemother Pharmacol.1995,35(4):271-277.
    [9] Jedlitschky G, Leier I, Buchholz U, et al.ATP dependent transport of glutathionesconjugates by the multidrug resistane associated protein [J]. Cancer Res.1994,54(8):4833-4836.
    [10] Wang J C. DNA topoisomerases [J]. Annu RevBiochem.1996,65:635-692.
    [11] Nartey N, Cherian M G, Banerjee D, et al. Immunohisto chemical localizationofmetallothionein in human thyroid tumors [J]. Am J Patho1.1987,129(1):177-182.
    [12] Shnyder SD, HayesAJ, Pringle J, et al. P-glycop rotein and metallothionein expression and resistance to chemotherapy in osteosarcoma [J]. Br J Cancer.1998,78(6):757-759.
    [13] Chin J L, Banerjee D, Kadhim S A, et al. Metallothionein in testiculargerm celltumors and drug resistance [J]. Cancer.1993,72(10):3029-3035.
    [14] Kelley S L, Basu A, Teicher B A, et al. Overerp ression of metallothioneinconfers resistance to anticancer drugs [J]. Science.1988,241(4874):1813-1815.
    [15] Yates A M, Elvin S J, Williamson D E, The optimisation of a murine TNF-alphaELISA and the application of the method to other murine cytokines [J]. J.Immunoassay.1999,20:31-44.
    [16] Zeman K, Kantorski J, Paleolog E M, Feldmann M, Tchorzewski H, The role ofreceptors for tumour necrosis factor-alpha in the induction of humanpolymorphonuclear neutrophil chemiluminescence [J]. Immunol. Lett.1996,53:45-50.
    [17] Saito K, Kobayashi D, Sasaki M, Araake H, Kida T, Yagihashi A, Yajima T,Kameshima H, Watanabe N, Detection of Human Serum Tumor Necrosis Factor-a inHealthy Donors [J]. Using a Highly Sensitive Immuno-PCR Assay, Clin. Chem.1999,45:665-669.
    [18] Lai W Q, Tang D P, Que X H, Zhuang J Y, Fu L B, Chen G N, Enzyme-catalyzedsilver deposition on irregular-shaped gold nanoparticles for electrochemicalimmunoassay of alpha-fetoprotein [J]. Analytica Chimica Acta.2012,755:62-68.
    [19] Wang J, Liu G D, Engelhard M H, Lin Y H., Sensitive Immunoassay of aBiomarker Tumor Necrosis Factor-α Based on Poly(guanine)-Functionalized SilicaNanoparticle Label [J]. Anal. Chem.2006,78:6974-6979.
    [20] Yin Z Z, Liu Y., Jiang L P, Zhu J J, Electrochemical immunosensor of tumornecrosis factorα based on alkaline phosphatase functionalized nanospheres [J].Biosens. Bioelectron.2011,26:1890-1894.
    [21] Lei J P, Ju H X, Signal amplification using functional nanomaterials forbiosensing [J]. Chem. Soc. Rev.2012,41:2122-2134.
    [22]林金明,赵利霞,王栩,编著.化学发光免疫分析[M].北京:化学工业出版社,2008.
    [23]靳辉,王栩,辛天兵,等.微孔板化学发光酶免疫分析法定量检测肿瘤标志物CA72-4的方法学研究[J].科学通报,2008,53:2958-2963.
    [24] Ren S, Wang X, Tang B, Hu G, Li Z, Lin-J-M. Micro-plate chemiluminescenceenzyme immunoassay for clinical determination of progesterone in human serum [J].Chin J Anal Chem.2008,36(6):729-734.
    [25] Wei H, Lin J-M, Wu D, Zhao L, Li Z, Ying X. Detection of17β-Estradiol inriver water and human urine by highly sensitive chemiluminescence enzymeimmunoassay [J]. Chin J Anal Chem.2007,35(3):320-324.
    [26] Xiao Q, Li H, Hu G, Wang H, Li Z, Lin J-M. Development of a rapid andsensitive magnetic chemiluminescent enzyme immunoassay for detection ofluteinizing hormone in human serum [J]. Clin Biochem.2009,42:1461-1467.
    [27] Li Z, Zhao L, Lin J-M, et al. Development of a highly sensitive, second antibodyformat chemiluminescence enzyme immunoassay for the determination of17β-estradiol in wastewater [J]. Anal Chim Acta.2006,558:290-295.
    [28] Siangproh W, Dungchai W, Lin J-M, et al. Development of a sensitivemicro-magnetic chemiluminescence enzyme immunoassay for the determination ofcarcinoembryonic antigen [J]. Anal Bioanal Chem.2007,387:1965-1971.
    [29] Wang X, Ying X, Lin J-M, et al. Evaluation of carbohydrate antigen50(CA50)in human serum using magnetic particle-based chemiluminescence enzymeimmunoassay [J]. Anal Chim Acta.2007,598:261-267.
    [30]王栩,林金明.化学发光免疫分析技术新进展[J].分析实验室,2007,26:111-122.
    [31] Velan B, Halmann M, Chemiluminescence immunoassay:a new sensitive methodfor determination of antigen [J]. Immunochemistry.1978,15(5):331-333.
    [1] Nam J M, Thaxton C S, Mirkin C A, Nanoparticle-Based Bio-Bar Codes for theUltrasensitive Detection of Proteins [J]. Science.2003,301:1884-1886.
    [2] Erickson J S, Ligler F S, Analytical chemistry: Home diagnostics to music [J].Nature.2008,456:178–179.
    [3] Wu J, Fu Z F, Yan F, Ju H X, Biomedical and clinical applications ofimmunoassays and immunosensors for tumor markers [J]. Trends Anal. Chem.2007,26:679-688.
    [4] Yan M, Ge S G, Gao W Q, Chu C C, Yu J H, Song X R, Fluorescenceimmunosensor based on p-acid-encapsulated silica nanoparticles for tumor markerdetection [J]. Analyst.2012,137:2834-2839.
    [5] Chen Z, Wu J, Wang C, Ju H X, Yan F, Highly sensitive chemiluminescenceimaging immunoassay of multiple tumor markers by multienzyme-nanoparticleamplification for cancer screening [J]. Anal. Chem.2012,84:2410-2415.
    [6] Lin D J Wu J, Yan F, Deng S Y, Ju H X, Ultrasensitive immunoassay of proteinbiomarker based on electrochemiluminescent quenching of quantum dots by heminbiobarcoded nanoparticle tags [J]. Anal. Chem.2011,83:5214-5221.
    [7] Lai W Q, Tang D P, Que X H, Zhuang J Y, Fu L B, Chen G N, Enzyme-catalyzedsilver deposition on irregular-shaped gold nanoparticles for electrochemicalimmunoassay of alpha-fetoprotein [J]. Analytica Chimica Acta.2012,755:62-68.
    [8] Wang J, Liu G D, Engelhard M H, Lin Y H, Sensitive Immunoassay of aBiomarker Tumor Necrosis Factor-α Based on Poly(guanine)-Functionalized SilicaNanoparticle Label [J]. Anal. Chem.2006,78:6974-6979.
    [9] Yin Z Z, Liu Y, Jiang L P, Zhu J J, Electrochemical immunosensor of tumornecrosis factorα based on alkaline phosphatase functionalized nanospheres [J].Biosens. Bioelectron.2011,26:1890-1894.
    [10] Lei J P, Ju H X, Signal amplification using functional nanomaterials forbiosensing [J]. Chem. Soc. Rev.2012,41:2122-2134.
    [11] Malhotra R, Paetl V, Vaque J P, Gutkind J S, Rusling J F, UltrasensitiveElectrochemical Immunosensor for Oral Cancer Biomarker IL-6Using CarbonNanotube Forest Electrodes and Multilabel Amplification [J]. Anal. Chem.2010,82:3118-3123.
    [12] Xu Q N, Yan F, Lei J P, Leng C, Ju H X, Disposable ElectrochemicalImmunosensor by Using Carbon Sphere/Gold Nanoparticle Composites as Labels forSignal Amplification [J]. Chem. Eur. J.2012,18:4994-4998.
    [13] Slaney T R, Nie J, Hershey N D, Thwar P K, Linderman J, Burns M A, KenedyRT, Push–Pull Perfusion Sampling with Segmented Flow for High Temporal andSpatial Resolution in Vivo Chemical Monitoring [J]. Anal. Chem.2011,83:5207-5213.
    [14] Wei Q, Zhao Y F, Xu C X, Wu D, Cai Y Y, He J, Li H, Du B, Yang M H,Nanoporous gold film based immunosensor for label-free detection of cancerbiomarker [J]. Biosens. Bioelectron.2011,26:3714-3718
    [15] Hu C Y, Yang D P, Xu K, Cao H M, Wu B N, Cui D X, Jia N Q, Ag@BSACore/Shell Microspheres As an Electrochemical Interface for Sensitive Detection ofUrinary Retinal-Binding Protein [J]. Anal. Chem.2012,84:10324-10331.
    [16] Tian J N, Huang J L, Zhao Y C, Zhao S L, Electrochemical immunosensor forprostate-specific antigen using a glassy carbon electrode modified with ananocomposite containing gold nanoparticles supported with starch-functionalizedmulti-walled carbon nanotubes [J]. Microchimica acta.2012,178:81-88.
    [17] Palomera N, Vera J L, Melénde E, Ramirez-Vick J E, Tomar M S, Arya S K,Singh S P, Redox active poly(pyrrole-N-ferrocene-pyrrole) copolymer basedmediator-less biosensors [J]. J. Electroanalytical Chem.2011,658:33–37.
    [18] Yuan L, Wei W, Liu SQ, Label-free electrochemical immunosensors based onsurface-initiated atom radical polymerization [J]. Biosens. Bioelectron.2012,38:79-85.
    [19] Shi W T, Ma Z F, A novel label-free amperometric immunosensor forcarcinoembryonic antigen based on redox membrane [J]. Biosens. Bioelectron.2011,26:3068-3071.
    [20] Wei Q., Mao K X, Wu D, Dai Y X, Yang J, Du B, Yang M H, Li H, A novellabel-free electrochemical immunosensor based on graphene and thioninenanocomposite [J]. Sensors and Actuators B.2010,149:314-318.
    [21] Hu F X, Chen S H, Yuan R, Application of magnetic core–shell microspheres onreagentless immunosensor based on direct electrochemistry of glucose oxidase fordetection of carbohydrate antigen19-9[J]. Sensors and Actuators B.2013,176:713-722.
    [22] Wang R M, Chen X, Ma J., Ma Z F, Ultrasensitive detection of carcinoembryonicantigen by a simple label-free immunosensor [J]. Sensors and Actuators B.2013,176:1044-1050.
    [23] Old L J, Tumor necrosis factor (TNF)[J]. Science.1985,230:630-632.
    [24] Old L J, Polypetide mediator network [J]. Nature.1987,326:330-331.
    [25] Jones E Y, Stuart D I, Walker N P C, Structure of tumour necrosis factor [J],Nature.1989,338:225-228.
    [26] DeKossodo S, Houba V, Grau G E, Group W C S, Assaying tumor necrosis factorconcentrations in human serum a WHO International Collaborative Study [J]. J.Immunol. Methods.1995,182:107-114.
    [27]李向东,鲁开化,郭树忠. TNF-在血管内皮细胞凋亡中的作用[J].第四军医大学学报,2001,22(12):1078-1081.
    [28]王继琛,李海,王乐,柯茂林.骨肉瘤患者血清TNFα的改变[J].第四军医大学学报,2005,26(8):704.
    [29]秦大明,谷贵山,徐莘香.肿瘤坏死因子辅佐骨肉瘤化疗的体外研究[J].白求恩医科大学学报,1999,25(4):399-401.
    [30] Yates A M, Elvin S J, Williamson D E, The optimisation of a murine TNF-alphaELISA and the application of the method to other murine cytokines [J]. J.Immunoassay.1999,20:31-44.
    [31] Zeman K, Kantorski J, Paleolog E M, Feldmann M, Tchorzewski H, The role ofreceptors for tumour necrosis factor-alpha in the induction of humanpolymorphonuclear neutrophil chemiluminescence [J]. Immunol. Lett.1996,53:45-50.
    [32] Saito K, Kobayashi D, Sasaki M, Araake H, Kida T, Yagihashi A, Yajima T,Kameshima H, Watanabe N, Detection of Human Serum Tumor Necrosis Factor-a inHealthy Donors, Using a Highly Sensitive Immuno-PCR Assay [J], Clin. Chem.1999,45:665-669.
    [33] Liu G D, Wu H, Wang J, Lin Y H, Apoferritin-Templated Synthesis of MetalPhosphate Nanoparticle Labels for Electrochemical Immunoassay [J]. Small.2006,2:1139-1143.
    [34] Yuan L, Hua X, Wu Y F, Pan X H, Liu S Q, Polymer-Functionalized SilicaNanosphere Labels for Ultrasensitive Detection of Tumor Necrosis Factor-alpha [J].Anal Chem.2011,83:6800-6809.
    [35] Li T, Si Z Z, Hu L Q, Qi H Z, Yang M H, Prussian Blue-functionalized ceriananoparticles as label for ultrasensitive detection of tumor necrosis factor-α [J].Sensors and Actuators B.2012,171–172:1060–1065.
    [36] Chetcuti A F, Wong D K Y, Stuart M C, An Indirect PerfluorosulfonatedIonomer-Coated Electrochemical Immunosensor for the Detection of the ProteinHuman Chorionic Gonadotrophin [J]. Anal. Chem.1999,71:4088-4094.
    [37] Zhuo Y, Yuan R, Chai Y Q, Hong C L, Functionalized SiO2labeled CA19-9antibodies: A new strategy for signal amplification of antigen–antibody sensingprocesses [J]. Analyst.2010,135:2036–2042.
    [38] Dai H, Yang C P, Tong Y J, Xu G F, Ma X L, Lin X Y, Chen G N, Label-freeelectrochemiluminescent immunosensor for a-fetoprotein: performance ofNafion–carbon nanodots nanocomposite films as antibody carriers [J]. Chem.Commun.2012,48:3055-3057.
    [1] Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M. The growth inhibitory factorthat is deficient in the Alzheimer's disease brain is a68amino acidmetallothionein-like protein [J]. Neuron.1991.7(2):337-347.
    [2] Tian Z Q, Wang X L, Wu W, Li B Q., Wang, Y J. Expression of Metallothionein-3in Esophageal Cancer and Its Correlations to Expression of Metallothionein-1and-2[J]. Chinese Journal of Cancer.2008,27:160-164.
    [3]薄爱华,杨邢泽,左瑞峰,等.金属硫蛋白在消化管癌组织中的表达及意义[J],2004,5(11):473-475.
    [4]张瑞芬,罗贤懋,魏慧娟.金属硫蛋白过表达对乳腺癌细胞生长和有关基因表达水平的影响[J],中华肿瘤杂志,2001,23(3):128.
    [5] Smith D J, Jaggi M, Zhang W, et al. Metallothioneins and resistance to cisplatinand radiation in prostate cancers[J]. Urology.2006,67(6):1341-1347.
    [6]罗海燕,周静萍,高岩.金属硫蛋白在颌骨骨肉瘤中的表达[J].现代口腔医学杂志,2001,15(4):241-243.
    [7] Garvey J S. Metallothionein: structure/antigenicity and detection/quantitation innormal physiological fluids [J]. Environ Health Perspect.1984,54:117-127.
    [8] Lei J P, Ju H X. Signal amplification using functional nanomaterials for biosensing[J]. Chem. Soc. Rev.2012,41:2122-2134.
    [9] Ronkainen N J, Halsall H B, Heineman W R, Electrochemical biosensors [J].Chem. Soc. Rev.2010,39:1747-1763.
    [10] Vallée-Bélisle A, Ricci F, Uzawa T, Xia F, Plaxco K W. BioelectrochemicalSwitches for the Quantitative Detection of Antibodies Directly in Whole Blood [J]. J.AM. CHEM. SOC.2012,134(37):15197-15200.
    [11] Lin J H, Wei Z J, Zhang H H, Shao M J. Sensitive immunosensor for thelabel-free determination of tumor marker based on carbon nanotubes/mesoporoussilica and graphene modified electrode [J]. Biosens. Bioelectron.2013,41(15):342-347.
    [12] Yuan L, Wei W, Liu S Q. Label-free electrochemical immunosensors based onsurface-initiated atom radical polymerization [J]. Biosens. Bioelectron.2012,38(1):79-85.
    [13] Lai G S, Wu J, Ju H X, Yan F. Streptavidin-FunctionalizedSilver-Nanoparticle-Enriched Carbon Nanotube Tag for Ultrasensitive MultiplexedDetection of Tumor Markers [J]. Advanced Functional Materials.2011,21(15):2938-2943.
    [14] Li H, He J, Li S J, Turner A P F. Electrochemical immunosensor with N-dopedgraphene-modified electrode for label-free detection of the breast cancer biomarkerCA15-3[J]. Biosens. Bioelectron.2013,43(15):25-29.
    [15] Baker S N, Baker G A. Luminescent Carbon Nanodots: Emergent Nanolights [J].Angew. Chem. Int. Ed.2010,49:6726-6744.
    [16] Shi W, Li X H, Ma H M. A Tunable Ratiometric pH Sensor Based on CarbonNanodots for the Quantitative Measurement of the Intracellular pH of Whole Cells [J].Angew. Chem. Int. Ed.2012,51(26):6432-6435.
    [17] Zhu A W, Qu Q, Shao X L, Kong B, Tian T. Carbon-Dot-Based Dual-EmissionNanohybrid Produces a Ratiometric Fluorescent Sensor for In Vivo Imaging ofCellular Copper Ions [J]. Angew. Chem. Int. Ed.2012,51(29):7185-7189.
    [18] Dai H, Xu G F, Gong L S, Yang C P, Lin Y Y, Tong Y J, Chen J H, Chen G N.Electrochemical detection of triclosan at a glassy carbon electrode modifies withcarbon nanodots and chitosan [J]. Electrochimina Acta.2012,80(1):362-367.
    [19] Dai H, Yang C P, Tong Y J, Xu G F, Ma X L, Lin Y Y, Chen G N. Label-freeelectrochemiluminescent immunosensor for α-fetoprotein: performance ofNafion–carbon nanodots nanocomposite films as antibody carriers [J]. Chem.Commun.2012,48:3055-3057.
    [20] Zhang B, Liu C Y, Liu Y. A Novel One-Step Approach to Synthesize FluorescentCarbon Nanoparticles [J]. J. Inorg. Chem.2010,28:4411-4414.
    [21] Shi W T, Ma Z F. A novel label-free amperometric immunosensor forcarcinoembryonic antigen based on redox membrane [J]. Biosens. Bioelectron.2011,26(6):3068-3071.
    [22] Wang R M, Chen X, Ma J, Ma Z F. Label-free fiber-optic interferometricimmunosensors based on waist-enlarged fusion taper [J]. Sensors and Actuators B.2013,176:1044–1050.
    [23] Qiu L P, Wang C C, Hu P, Wu Z S, Shen G L, Yu R Q. A label-freeelectrochemical immunoassay for IgG detection based on the electron transfer [J].Talanta.2010,83:42-47.
    [24] Hu C Y, Yang D P, Xu K, Cao H M, Wu B N, Cui D X, Jia N Q, Ag@BSACore/Shell Microspheres As an Electrochemical Interface for Sensitive Detection ofUrinary Retinal-Binding Protein [J]. Anal. Chem.2012,84:1032410331.
    [1]石根,王栩,唐宝军,等.微孔板化学发光免疫分析法定量分析人血清中游离前列腺特异性抗原(f-PSA)[J].分析化学,2007,35:1541-1547.
    [2]林金明,赵利霞,王栩,编著.化学发光免疫分析[M].北京:化学工业出版社,2008.
    [3]靳辉,王栩,辛天兵,等.微孔板化学发光酶免疫分析法定量检测肿瘤标志物CA72-4的方法学研究[J].科学通报,2008,53:2958-2963.
    [4] Ren S, Wang X, Tang B, Hu G, Li Z, Lin J M. Micro-plate chemiluminescenceenzyme immunoassay for clinical determination of progesterone in human serum [J].Chin J Anal Chem.2008,36(6):729-734.
    [5] Wei H, Lin J M, Wu D, Zhao L, Li Z, Ying X. Detection of17β-Estradiol inriver water and human urine by highly sensitive chemiluminescence enzymeimmunoassay [J]. Chin J Anal Chem.2007,35(3):320-324.
    [6] Xiao Q, Li H, Hu G, Wang H, Li Z, Lin J M. Development of a rapid andsensitive magnetic chemiluminescent enzyme immunoassay for detection ofluteinizing hormone in human serum [J]. Clin Biochem.2009,42:1461-1467.
    [7] Li Z, Zhao L, Lin J M, et al. Development of a highly sensitive, second antibodyformat chemiluminescence enzyme immunoassay for the determination of17β-estradiol in wastewater [J]. Anal Chim Acta.2006,558:290-295.
    [8] Siangproh W, Dungchai W, Lin J M, et al. Development of a sensitivemicro-magnetic chemiluminescence enzyme immunoassay for the determination ofcarcinoembryonic antigen [J]. Anal Bioanal Chem.2007,387:1965-1971.
    [9] Wang X, Ying X, Lin J M, et al. Evaluation of carbohydrate antigen50(CA50)in human serum using magnetic particle-based chemiluminescence enzymeimmunoassay [J]. Anal Chim Acta.2007,598:261-267.
    [10]王栩,林金明.化学发光免疫分析技术新进展[J].分析实验室,2007,26:111-122.
    [11] Velan B, Halmann M. Chemiluminescence immunoassay:a new sensitive methodfor determination of antigen[J]. Immunochemistry.1978,15(5):331-333.
    [12]王继琛,李海,王乐,柯茂林.骨肉瘤患者血清TNFα的改变[J].第四军医大学学报,2005,26(8):704.
    [13]善秒,思令,等.一种抗凋亡蛋白人类Survivin是caspase-3和-7的直接抑制剂研究[J].生物化学,2001,40(4):1117-1123.
    [14] Lu C D, Altieri D C, Tanigawa N. Expression of a novel antiapoptosis gene,survivin, correlated with tumor cell apoptosis and p53accumulation in gastriccarcinomas[J]. Cancer Res.1998,58(9):1808-1812.
    [15]孙承庄,杨留才,刘洪,等. Survivin mRNA与TNF-α在骨肉瘤中的表达及其相关性[J].医药论坛杂志,2010,31(22):29-32.
    [1] Daniel R K, Klara T, et al. Electrochemical biosensors: recommended definitionsand classification [J]. Biosens. Bioelectron.2001,16(1-2):121-131.
    [2] Lai W Q., Tang D P, Que X H, Zhuang J Y, Fu L B, Chen G N, Enzyme-catalyzedsilver deposition on irregular-shaped gold nanoparticles for electrochemicalimmunoassay of alpha-fetoprotein [J]. Analytica Chimica Acta.2012,755:62-68.
    [3] Wang J, Liu G D, Engelhard M H, Lin Y H, Sensitive Immunoassay of aBiomarker Tumor Necrosis Factor-α Based on Poly(guanine)-Functionalized SilicaNanoparticle Label [J]. Anal. Chem.2006,78:6974-6979.
    [4] Yin Z Z, Liu Y., Jiang L P, Zhu J J, Electrochemical immunosensor of tumornecrosis factorα based on alkaline phosphatase functionalized nanospheres [J].Biosens. Bioelectron.2011,26:1890-1894.
    [5] Lei J P, Ju H X, Signal amplification using functional nanomaterials for biosensing[J]. Chem. Soc. Rev.2012,41:2122-2134.
    [6]霍群,蔡豪斌.电化学免疫传感器[J].临床检验杂志,2003,21(3):181-182.
    [7] Lai W Q, Tang D P, Que X H, Zhuang J Y, Fu L B, Chen G N, Enzyme-catalyzedsilver deposition on irregular-shaped gold nanoparticles for electrochemicalimmunoassay of alpha-fetoprotein [J]. Analytica Chimica Acta.2012,755:62-68.
    [8] Wang J, Liu G D, Engelhard M H, Lin Y H., Sensitive Immunoassay of aBiomarker Tumor Necrosis Factor-α Based on Poly(guanine)-Functionalized SilicaNanoparticle Label [J]. Anal. Chem.2006,78:6974-6979.
    [9] Yin Z Z, Liu Y, Jiang L P, Zhu J J, Electrochemical immunosensor of tumornecrosis factorα based on alkaline phosphatase functionalized nanospheres [J].Biosens. Bioelectron.2011,26:1890-1894.
    [10] Lei J P, Ju H X, Signal amplification using functional nanomaterials forbiosensing [J]. Chem. Soc. Rev.2012,41:2122-2134.
    [11] Zhong Z, Li M, Xiang D, et al. Signal amplification of electr-ochemicalimmunosensor for the detection of human serum IgG using double codified nanosilicaparticles as labels [J]. Biosens Bioelectron,2009,24(7):2246-2249.
    [12] Labib M, Hedstrom M, Amin M, et al. A capacitive immunosensor fordetection of cholera toxin [J]. Anal Chim Acta,2009,634(2):255-261.
    [13] Janata J, An immunoelectrode [J]. Am Chem Soc.1975,97(10):2914-2916.
    [14] Liang R, Peng H, Qiu J. Fabr ication, characterization, and application ofpotentiometric immuno sensor based on biocom patible and controllable threedimensional porous chitosan membranes [J]. J Colloid Interface Sci.2008,320(1):125-131.
    [15] Ciana L D, Bernacca G, Nitti C D, et al. Highly sensitive amperom etric enzymeimmunoassay for-fetoprotein in human serum [J]. Immunol Methods.1996,193(1):51-62.
    [16] Yagiuda K, Hemmi A, Ito S, et al. Development of a conduct ivity-basedimmunosensor for sensitive detection of methamphetamine (stimulant drug) in humanurine [J]. Biosens. Bioelectrion.1996,11(8):703-707.
    [17] Diiksma M, Kamp B, Hoogvliet J C, et al. Development of an electrochemicalimmunosensor for direct detection of interferon-γ at the attomolar level [J]. AnalChem,2001,73(3):901-907.
    [18] Rezaei B, Khayamian T, Majidi N, et al. Immobilization of specific monoclonalantibody on Au nanoparticles for hGH detection by elect rochemical impedance spectroscopy [J]. Biosens. Bioelectron.2009,25(2):395-399.
    [19]张波,府伟灵.压电免疫传感器生物识别分子固定方法及其研究进展[J].国际检验医学杂志,2008,29(4):324-326.
    [20] Yang G J, Huang J L, Meng W J, et al. A reusable capacitive immunosensor fordetection of Salmonella spp. Based on grafted ethylene diamine and self-assembledgold nanoparticle monolayers [J]. Anal Chim Acta.2009,647(2):159-166.
    [21]温志立,汪世平,沈国励,免疫传感器的发展概述[J].生物医学工程学杂志,2001,18:642-646.
    [22] Daniel R T, Klara T, et al. Electrochemical Biosensors:recommended definitionsand classification [J]. Biosens. Bioelectron.2001,16:121-131.
    [23] Janata J. An immunoelectrode [J]. J. Am. Chem. Soc.1975,97:2941-2916.
    [24] Willner, E. Katz, Integration of Layered Redox Proteins and ConductiveSupports for Bioelectronic Applications [J]. Angew. Chem. In. Ed.,2000,39:1181-1218.
    [25] Kohli P, Harrell C C, Cao Z, R, et al. DNA-Functionalized Nanotube Membraneswith Single-Base Mismatch Selectivity [J]. Science,2004,305(5686):984-986.
    [26] Narambuena C F, Del Popolo M G, Leiva E P M, On the Reasons for StepwiseChanges in the Tunneling Current across Metallic Nanogaps [J]. Nano Letters,2003,3(12):1633-1637.
    [27] Lee S B, Mitchell D T, Trofin L, et al. Antibody-Based Bio-NanotubeMembranes for Enantiomeric Drug Separations [J]. Science,2002,296(5576):2198-2200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700