07MnNiCrMoVDR钢焊接性的物理和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界石化工业的飞速发展,乙烯的产需量不断提高。目前,乙烯球罐向着高参数、大型化发展的趋势日益明显,这种发展趋势对乙烯球罐用钢及其焊接性提出了更高的要求。另外,由于焊接残余应力的存在严重威胁着乙烯球罐的使用安全,并直接影响着其运行寿命,因此研究焊接工艺与残余应力之间的关系对于控制乙烯球罐焊后残余应力有着十分重要的意义。本研究以国产低温压力容器用钢07MnNiCrMoVDR为研究对象,利用物理模拟和数值模拟的方法对其焊接热影响区的组织和性能以及焊接接头的残余应力分布进行了系统的研究。
     研究过程中,采用一次回归正交试验的方法,分别考察了热输入和预热温度对07MnNiCrMoVDR钢焊接热影响区组织和性能的影响。测定了不同工艺参数下焊接热影响区的热循环曲线,利用SYSWELD有限元分析软件,采用双椭球焊接热源模型,分析了07MnNiCrMoVDR钢的焊接温度场的变化,并给出了工艺参数与t_(8/5)和t_H的关系模型;采用热模拟试验的方法对07MnNiCrMoVDR钢的焊接热影响区的组织和性能进行了研究,并利用线性回归的方法给出了性能的预测模型。以低温韧性作为目标函数优化了焊接工艺参数。经过优化和试验证明,最佳焊接工艺参数配比为:小线能量(10KJ/cm)和高预热温度(180℃)。
     通过对不同焊接工艺参数下焊接热应力的数值模拟,定量分析了焊后残余应力的分布和大小,以及热输入和预热温度对焊接残余应力的影响规律,为乙烯球罐在生产中的实际应用提供理论依据。考察了焊后热处理对07MnNiCrMoVDR钢焊接接头组织、性能以及应力分布情况的影响规律,研究发现热处理后的等效峰值应力可以降低到200MPa左右;经热处理后,粗晶区的板条马氏体转变为回火索氏体,并有大颗粒碳化物不均匀析出,碳化物的不均匀析出显著降低了粗晶热影响区的低温韧性。
With the rapid development of the world's petrochemical industry, the amount of ethylene production and demand rising. At present, the ethylene sphere towards high parameters and large-scale development is increasingly clear that this trend of ethylene tank and weldability of steel made a higher demand. In addition, because of the existence of welding residual stresses, a serious threat to the ethylene spherical tank’s service life and even might result in severe security disaster, therefore it is very important to control the welding residual stress by study the relationship of welding parameters and residual stress. In this paper, the low-temperature pressure vessel steel of 07MnNiCrMoVDR was made as a research object, the physical modeling and numerical simulation were used to investigate the heat-affected zone of welded joints and the performance and the residual stress distribution in systemic.
     Taking into account the influence of heat input and preheat temperature, using a regression orthogonal experiment and welding thermal simulation technology, 07MnNiCrMoVDR steel HAZ microstructure and properties in different welding parameters were studied. The thermal cycle for different condition were measured. The Sysweld software with double ellipsoid heat source model was used to analysis the change of welding temperature field and the relationship modeling between welding parameters and t_H, t_(8/5) were given. Linear regression method was used to establish the forecast formula of performance, and also utilize the MATLAB to optimize the welding procedure by the low temperature toughness optimal solution as the objective function. The small linear energy (10KJ/cm) and the high preheating temperature(180℃) is the best craft parameter.
     The thermal stress with different welding parameters was simulated by numerical method. The distribution and size of welding residual stress and the rules affected by heat input and preheat temperature were analyzed quantitatively.The application of ethylene spherical tanks in practical manufacturing will be theoretically based on such an examination. Finally, the change of microstructure and performance after the heat treatment also was inspected in this paper. From this we find the 07MnNiCrMoVDR steel has reheat brittleness in coarse grain zone, this phenomenon maybe relative with the alloying elements separated out in the crystal boundary.
引文
[1]国务院.中国石化产业调整和振兴规划细则[OB/EL]. http://www.gmpiz. gov.cn/a/xinwenzhongxin/hangyexinxi/2010/0511/135.html, 2010-05-11.
    [2]中国投资顾问产业研究中心. 2010-2015年中国乙烯行业投资分析及前景预测报告[OB/EL]. http://www.ocn.com.cn/reports/2006153yixi.htm ,2010-06-24.
    [3]袁榕,姚佐权,陈学东.球形储罐的建造技术及其发展趋势[J] .压力容器,1997,14(1): 49~60.
    [4]关桂苹,袁中文.大型球罐材质的应用[J] .化工装备技术, 2001 ,22 (6) : 30~34.
    [5] Xiao Chen. Weldability and stress corrosion resistance of WDL series steel with low susceptibility to weld cracking [J] . International Journal of Pressure Vessels and Piping, 1999, 76:19~22.
    [6]叶唐,胡传顺. 07MnNiCrMoVDR钢的开发及其在低温球罐上的应用[J].钢铁研究,2007,39(3):49~51.
    [7]方国爱,龚敬文. 1500m3乙烯球罐用CF-62钢板锻件及其焊接接头的低温韧性实验研究[J].压力容器,1994,11(2):11~19.
    [8]陈晓. CF-62钢制1500m3大型低温球罐用44mm厚钢板性能研究及数理分析[J].压力容器,1991,11(2):4~10+63.
    [9] Chen Xiao.Properties and Application of HSLA Steel(WDL-60)with low Susceptibility to weld Cracks.In:Microalloyed HSLA Steel[C].World Materials Conference Proceedings. 1998: 249~258.
    [10] Deshimaru Shinichi, Takahashi Kazuhide, Endo Shigeru, et al. Steels for Production, Transportation and Storage of Energy[R]. JFE Technical Report, 2004, (2): 55~67.
    [11]秦晓钟.国外压力容器用低合金高强度钢近况[J].化工与通用机械, 1981, (6): 43~53.
    [12]中华人民共和国国家技术监督局, GB150-1998,钢制压力容器[S] .北京:中国标准出版社,1998.
    [13]章燕谋.锅炉与压力容器用钢[M].西安:西安交通大学出版社,1997.
    [14]陈国邦.低温工程材料[M].杭州:浙江大学出版社,1998.
    [15]邱正华,张桂红,吴忠宪.低温钢及其应用[J].石油化工设备技术,2004,25(2): 43~46.
    [16] Hrivnak I. Welding and weldability of cryogenic steels[C]. Transport and Storage of LPG and LNG. Belgium: Royal Flemish Societyof Engineers, 1984: 219~242.
    [17]赵红艳,刘宗奎.低温钢及其应用[J].山东理工大学学报(自然科学版),2003,17(5):102~104.
    [18] Ruicheng Tong, Xucheng Wang. Simplified Method Based on the Deformation Theory for Structural Limit Analysis Numerical Application and Investigation on Mesh Density [J]. The International Journal of Pressure Vessels and Piping, 1997, 70(1):51-58.
    [19] Zingoni, Alphose. Stress Analysis of a Storage Vessel in the Form of a Complete Triaxial Ellipsoid: Hydrostatic Effects [J].The International Journal of Pressure Vessels and Piping, 1995, 62(3): 269-279.
    [20]窦万波. 10000m3大型天然气球罐设计及制造关键技术研究[D].北京工业大学,2009.
    [21]李书瑞,陈晓.高性能WH530钢板力学性能及焊接性能研究[J].压力容器, 1998, 15(1): 12-20.
    [22]于启湛,丁成钢,史元春.低温用钢的焊接[M].北京:机械工业出版社,2009.
    [23]白世武,李午申,邸新杰等. 07MnNiCrMoVDR钢焊接粗晶热影响区的韧化机理[J].焊接学报,2008,29(3):25-28.
    [24]张建军,李午申,邸新杰等. 07MnNiCrMoVDR钢焊接热影响区性能预测和工艺参数的优化[J].焊接学报,2008,29(3):29-32.
    [25]张国英,张辉,曾梅光.新型钢材强韧性与微结构[M].北京:科学出版社,2005.
    [26]张文钺.焊接冶金学(基本原理)[M].北京:机械工业出版社,2002.
    [27]杜则裕.工程焊接冶金学[M].北京:机械工业出版社,1993.
    [28]李午申,唐伯钢.中国钢材、焊接性与焊接材料发展及需要关注的问题[J].焊接,2008,1:1-12.
    [29]李午申.我国新型钢铁材料及焊接性与焊接材料的发展[J].机械工人(热加工),2005,8:20-25.
    [30]刘会杰.焊接冶金与焊接性[M].北京:机械工业出版社. 2007.
    [31] A P Coldren, Y E Smith, et al. Microstructure and Properties of Low-Carbon Mn-Mo-Nb Steels [A]. Proceedings of Aime Symposium on processing and Properties of Low-Carbon Steels [C]. Cleve Ohio, 1972:51-65.
    [32] U Sharma, D G Ivey. Microstructure of Microalloyed Linepipe Steels [A]. 2000 International Pipeline Conference [C]. ASME, 2000, 1:193-210.
    [33] T Araki, et al. Atlas for Bainitic Microstructures, Continuous Cooled ZwMicrostructures of Low-Carbon Steel[J]. ISIJ, 1992, 1:4-5.
    [34] S W Thompson, D J Colvin, G Krauss. Continuous Cooling Transformations and Microstructures in a Low-Carbon, High-Strength, Low-Alloy Plate Steel[J]. METALLURGICAL TRANSACTIONS A, 1990, 21(6): 1493-1507. [35 George KRAUSS, Steven W THOMPSON. Ferritic Microstructures in Continuously Cooled Low- and Ultralow- carbon Steels[J]. ISIJ, 1995, 35:937-945.
    [36]中国机械工程学会焊接学会.焊接手册:材料的焊接(2版)[M].北京:机械工业出版社,2001.
    [37]李亚江.焊接冶金学:材料焊接性[M].北京:机械工业出版社,2006.
    [38]田德允,张瑞成,翁志刚等.微合金高强钢焊接热影响区中粒状贝氏体微观结构的试验研究[J].金属学报,2000,36(2):181-186.
    [39] Garcia C I, Lis A K, Pytel S M , et al. Ultra-low carbon bainitic plate steels Processing[J]. Microstructure properities I& SM, 1991,10: 97-106.
    [40]冯耀荣,柴惠芬.低碳超低碳微合金化管线钢显微组织的研究进展[J].材料导报,2002,16(6):9-12.
    [41]田燕.焊接区断口金相分析[M].北京:机械工业出版社,1991.
    [42]吕德林,李砚珠.焊接金相分析[M].北京:机械工业出版社,1987.
    [43]于启湛.钢的焊接脆化[M].北京:机械工业出版社,1990.
    [44]高惠临,董玉华.管线钢焊接临界粗晶区局部脆化现象的研究[J],材料热处理学报, 2001, 22(2): 60-65.
    [45] Fukuhisa MATSUDA, Kenji IKEUCHI, Jimsun LIAO. Weld HAZ toughness andits improvement of low alloy steel SQV-2A for pressure vessesls [J]. Trans. JWRI, 1993, 22(2):271.
    [46] Chen Z, Lorotto M H. Nature of large precipitates in titanium-containing HSLA steels[J], Material Science and Technology,1987,3(10):836~844.
    [47] Adrian H, Pickering F B. Effect of Ti addition on austenite grain growth kinetics of medium carbon V-Nb steels containing 0.008~0.18% N[J].Material Science and technology, 1991, 7(2):176~182.
    [48] Strid J, Easterling K E. On the chemistry and stability of complex carbide and nitrides in microalloyed steels[J]. Acta metal, 1985, 33(11): 2057~2074.
    [49] Tsai C L, Feng Z L. A computational analysis of thermal and mechanical conditions for weld metal solidification cracking [J]. Welding Research Abroad,1996,42(1):34-41.
    [50]莫春立,钱百年.焊接热源计算模式的研究进展[J].焊接学报,2002,22(3): 93-96.
    [51]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社,1999.
    [52]吴言高,李午申,邹宏军,等.焊接数值模拟技术发展现状[J].焊接学报,2002,23(3):89-92.
    [53]赵敏,孙长伟,杜则裕.焊接热模拟技术及其应用[J].焊接技术,1999,4:41-42.
    [54]陈楚,张月娥.焊接热模拟技术[M].北京,机械工业出版社,1985.
    [55]李英民,崔宝侠,苏仕方.计算机在材料热加工领域中的应用[M].北京:机械工业出版社,1996.
    [56]陈伯蠡.焊接冶金原理[M].北京:清华大学出版社,1991.
    [57] Kermanpur A, Shaynanian M, Yeganeh VE. Three-dimensional thermal simulation and experimental investigation of GTAW circumferentially butt-welded Incoloy 800 pipes[J]. Journal of Materials Processing Technology, 2008, 199(1-3): 295-303.
    [58] Lars-Erik Lindgren. Finite element modeling and simulation of welding Part1 : increased complexity[J]. Journal of thermal stress, 2001, 24: 141-192.
    [59]汪建华,戚新海.三维瞬态焊接温度场的有限元模拟[J].上海交通大学学报,1996,30(3):120-125.
    [60]朱援祥,张小飞,杨兵等.基于有限元的多次补焊焊接残余应力的数值模拟[J].焊接学报,2002,23(1):65-68.
    [61]李冬林,于有生,温家伶等.堆焊温度场的三维动态有限元模拟[J].武汉理工大学学报,2002,26(5):671- 673.
    [62]李亚江,沈孝芹,孟繁军等.高强度钢焊接区拘束应力的有限元分析[J].焊接学报,2002,23(5):57-64.
    [63]武强. 07MnNiCrMoVDR钢焊接热影响区性能的模拟研究[D].天津大学,2007.
    [64]李瑞. 07MnNiMoV乙烯球罐用钢焊接残余应力的数值模拟[D].天津大学,2006.
    [65]辛希贤.管线钢焊接热影响区在二次热循环中的组织转变与韧性[J].焊管,1994,17(1):28~31.
    [66] Mutsuo Nakanishi, Yu-ichi komizo, Seta Ichiro. Improvement of welded HAZ toughness by dispersion with nitride particles and oxide particles[J]. Journal of the Japan Welding Society. 1983,52(2):117~131.
    [67]高国梁. M-A组元对热影响区缺口韧性的影响[J].钢管,1998, 27(4): 55~60.
    [68]罗志昌,朗毅,等.HQ-70钢热影响区韧性的研究[J].清华大学学报(自然科学版),1989,29(5):59~65.
    [69]李丽,王嘉麟等.CF -62钢焊后消除应力热处理脆化的研究[J].焊接,2002(4),11~14.
    [70]茆诗松,丁元,周纪芗等.回归分析及其试验设计[M].上海:华东师范大学出版社,1986.
    [71]刘晓莉.实验设计中的回归分析方法研究[J].数理统计与管理,2001,20(4):14~16.
    [72]张文钺.焊接传热学[M].北京:机械工业出版社,1989:11-31.
    [73]莫春立,钱百年,国旭明等.焊接热源计算模式的研究进展[J].焊接学报,2001,22(3):93-96.
    [74] Tailor GA, Hughes M, Pericleous K. The application of three dimension finite volume method to the modeling of welding phenomena [A]. Modeling of casting, welding and advanced solidification processⅨ[C]. San Diego. Edited by Prter. R. Sahrn, 2000: 852-859.
    [75]朱援海张小飞.基于有限元的多次补焊焊接残余应力的数值模拟[J].焊接学报,2002, 23(1):65-68.
    [76]李冬林,于有生.堆焊温度场的三维动态模拟[J].武汉理工大学学报,2002,26(5):671-673.
    [77]李亚江,沈孝芹.高强度钢焊接区拘束应力的有限元分析[J].焊接学报,2002,23(5):57~64.
    [78] Tsai C L, Feng Z L. A computational analysis of thermal and mechanical conditions for weld metal solidification cracking [J]. Welding Research Abroad, 1996, 42(1):34-41.
    [79] J. Goldak. Modeling thermal stresses and distortions in welds[C]. Proc. of the 2nd Int. Conf. on Trends in welding Research. 1989:71-79.
    [80] J.Goldak. A new finite model for welding heat source [J]. Metallurgical Transactions, 1984, 15B (2):299-305.
    [81]陈翠新. X80高强管线钢的焊接性及其模拟仿真[D].天津大学,2005.
    [82]严春妍. LNG储罐用9Ni钢的焊接性及其模拟研究[D].天津大学,2008.
    [83] G Ravichandran,V P Raghupathy,N Ganesan. Analysis of temperature distribution during circumferential welding of cylindrical and spherical components using the finite element method[J]. Computers & Structures, 1996, 59(2): 225-255.
    [84] Tso-Liang Teng, Peng-Hsiang Chang. A study of residual stresses in multi-pass girth-butt welded pipes[J]. Int. J. Ves.& piping, 1997,74:59~70.
    [85]张文钺,杨清峡.焊接HAZ硬化因子的研究[J].焊接学报,1991 ,12(4): 195-200.
    [86] Corttell C L M. Hardness equivalent may lead to a more critical measure ofweldability [J].Metal Construction, 1984, 16(12):740-744.
    [87] Bibby M J, Goldak J A, Jefferson I, et al. A methodology for computing heat affected zone hardness, microstructure and preheat temperature[C]// International Conference on Comptuer Technology in Welding. Cambridge, England, 1988.
    [88]张文钺.焊接物理冶金[M].天津:天津大学出版社,1991.
    [89] Mohinder S G,Angus P A. Theory and Practice using Matlab[M]. John Wiley & Sons, Inc. 2001.
    [90]刘鲭洁,陈桂明,杨旗.基于Matlab工具的遗传算法求解有约束最优化问题[J].兵工自动化, 2008, 11:43-44.
    [91]姚东,王爱民. MATLAB命令大全[M].北京:人民邮电出版社, 2000.
    [92]薛定宇,陈阳泉.高等应用数学问题的MATLAB求解[M].北京:清华大学出版社, 2004.
    [93]张炳范,李午申.焊接最优化基础[M].天津:天津大学出版社,1990.
    [94]周振丰.焊接冶金学(金属焊接性)[M].北京:机械工业出版社,1996.
    [95]顾钰熹.焊接连续冷却转变图及其应用[M].北京:机械工业出版社,1990.
    [96]徐祖耀.马氏体相变与马氏体(第二版)[M].北京:科学出版社,1999.
    [97]翁志刚,关丽君.微合金高强钢焊接热影响区中粒状贝氏体微观结构的实验研究[J].金属学报,2000,36(2): 181-186.
    [98] Matsuda F, Fukada Y, Okada H, et al. Review of mechanical andmetallurgical investigations of martensite-austenite constituent in welded joints in Japan [J]. Welding in the World, 1996, 37(3):134-154.
    [99] Garcia C I, Lis A K, Pytel S M, et al. Ultra-low carbon bainitic plate steels: processing, microstructure, and properties [J]. Iron and Steelmaker, 1991, 18(10): 97-106.
    [100]肖纪美.合金相与相变[M].北京:冶金工业出版社, 1987.
    [101]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1988.
    [102] Jang J I, Ju J B, Lee B W, et al. Effects of microstructure change on fracture characteristics in coarse-grained heat-affected zones of QLT-processed steel[J]. Materials Science and Engineering A, 2003, 340(1-2): 68-79.
    [103]陈铭谟.贝氏体的转变机制和高强度贝氏体钢设计[M].北京:国防工业出版社,1989.
    [104]方鸿生,王家军.贝氏体相变[M].北京:科学出版社,1999.
    [105]方鸿生.贝氏体相变[M].北京:科学出版社,1992.
    [106] O I Hunder, N Ryum. The kinetics of normal grain growth. Journal of Materials Science. 1980: 1104-1108.
    [107] C Zener. The effect of deformation on grain growth in Zener pinned systems[J] .Acta metal, 2001, 49(8): 1453-1461.
    [108]约翰J.伯克,沃克.威斯(编)王燕文,张永昌(译).超细晶粒钢[M].北京:国防工业出版社,1982.
    [109]骆宗安,苏海龙,张殿华等.多功能热力模拟实验机的研制与应用[C].第五届全国材料与热加工物理模拟机数值模拟学术会议论文集.洛阳:中国机械工程学会,2006: 321-326
    [110]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社,1999
    [111]李英民,崔宝侠,苏仕方.计算机在材料热加工领域中的应用[M].北京:机械工业出版社,1996.
    [112]张如前. 1000m3LPG卧式储罐用07MnNiCrMoVDR钢的焊接与热处理[J].化工建设工程,2001,23(6):26-28.
    [113]罗志昌,朗毅. HQ-70钢热影响区韧性的研究[J].清华大学学报(自然科学版), 1989, 29(5): 59-65.
    [114]李丽,王嘉麟. CF -62钢焊后消除应力热处理脆化的研究[J].焊接, 2002, 4: 11-14.
    [115]董大文. 07MnCrMoVDR钢制2000m3球罐再热裂纹分析及其修复工艺技术[J].化工设备与管道, 2003, 40(6): 44-47.
    [116]姚欣. HQ-80钢再热裂纹的机理[J].焊接学报, 2004, 25(6): 79-81.
    [117] Zhang Lei, Xu Tingdong. Nonequilibrium grain-boundary cosegregation og nitrogen and chromium in NiCrMoV steel[J]. Metallurgical and Materials Transactions A, 2005, 36A: 3311-3315.
    [118] Li Qingfen, Yang Shanglin, Li Li, et al. Experimental study on non-equilibrium grain-boundary segregation kinetics of phosphorus in an industrial steel[J]. Scripta Materialia, 2002, 47: 389-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700