Be/HR-1和Be/中间层/HR-1不锈钢扩散连接的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铍属稀有金属,因其具有密度低,比强度和比热容高以及导热性好等优点,被广泛运用于核能、航空和航天工业。铍的缺点是延展性差,脆性大,从而给铍构件的设计和制造带来不少困难。另外,铍的化学活性高,在高温下极易氧化,它与许多金属能生成脆性的金属间化合物,影响构件的性能和使用寿命,因而研究铍/不锈钢热静压扩散连接工艺、成分、组织、结构和性能的关系,具有重要的理论意义和实用价值。本项目通过对Be/HR-1、Be/Cu/HR-1、Be/Al/HR-1和Be/Ag-Cu/HR-1不锈钢热静压后成分、组织、结构和性能的研究,得出了以下结果:
     ①Be/HR-1不锈钢热静压时,铍、铁两元素只能生成固溶度很小的有限固溶体,故扩散形式主要为沿晶界扩散,生成的脆性金属间化合物主要分布在晶界上。
     ②Be/Cu/HR-1不锈钢热静压时,因铜在铍中的固溶度较大,在铁中的固溶度小。故铍铜之间的扩散既有沿晶界扩散,也有晶内扩散;铜在不锈钢中的扩散主要为沿晶界扩散。因此,铍/铜/HR-1不锈钢热静压时,出现了明显的铜往两侧不对称扩散现象。
     ③Be/Al/HR-1不锈钢热静压时,铝在铁中固溶度约为20%(原子百分数,下同),而与铍基本上不互溶,两者形成共晶。因此,铝在铁中的扩散既有沿晶界扩散,也有晶内扩散,而在铍中的扩散主要为沿晶界扩散。
     ④Be/Ag-Cu/HR-1不锈钢热静压时,因铜在铍中的固溶度较大,银在铍中的固溶度小,铜往铍中扩散容易进行,导致银铜合金中的银铜分离,也导致中间层往两侧的不对称扩散现象发生。
     ⑤Be/HR-1和Be/中间层/HR-1不锈钢热静压后得到的都是层状组织,层状组织的层面近似垂直于外力方向,层与层之间近似平行。
     ⑥Be/HR-1不锈钢热静压时,除基材物相α-Be和γ-相之外,还生成铍铁、铍镍、铍铬等金属间化合物;Be/中间层/HR-1不锈钢热静压时,除两基材元素间形成金属间化合物外,中间层的合金元素也将与基材的元素形成金属间化合物。生成的金属间化合物主要沿晶分布。
     ⑦Be/HR-1和Be/中间层/HR-1不锈钢热静压试样的失效断口均为脆性断口。
     ⑧试验连接试样的抗拉强度从大到小的排列顺序为:Be/Ag-Cu/HR-1,Be/Cu/HR-1和Be/HR-1不锈钢。
     ⑨选用的中间层材料元素应尽可能与基材的元素互相固溶或生成混合物,尽量避免产生脆性的金属间化合物。
     ⑩压力的作用,不仅仅是使连接界面的接触面积逐渐扩大,它还将使试样产生动态形变再结晶和扩散性蠕变,也能影响扩散焊区的扩散速度和晶粒大小。单轴向压力作用下,基材或扩散焊区出现织构。
     ⑾用计算机模拟的热静压试样的成分分布与实验值比较吻合,计算机是优化热静压工艺的重要手段。
Metal beryllium is the rare metals, and is widely applied to industry of nuclear, aviation and spaceflight due to the characteristic of low density, high strength ratio, high specific heat and excellent property of heat. But beryllium’s high brittleness and low ductibility make its component design and producing much difficulty. Furthermore, beryllium is an active element ,which is prone to form brittle inter-metals, which influence the component’s use and life. So researching the diffusion bonding in the hot pressing between Be and HR-1 stainless steel plays an important role in theory and practice, especially studing the relationship among diffusion bonding technique, components, structure and performances.
     The components, structures and performances of diffusion bondings in the hot pressing of Be/HR-1 stainless steel, Be/Cu/HR-1 stainless steel, Be/Al/HR-1 stainless steel and Be/Ag-Cu/HR-1 stainless steel have been studied in this item, the conclusions are as follows:
     ①D uring the process of hot pressing of Be/HR-1 stainless steel, Fe and Be form incomplete solid solution with very little solubility limit. Therefore the dominating way is diffusing along the grain boundaries, and brittle inter-metallic compounds form mainlyon the grain boundaries.
     ②D uring the process of hot pressing of Be/Cu/HR-1 stainless steel, the solubility limit of Cu in Be is larger than in Fe. Therefore Cu diffuses into the Be not only along the grain boundaries but also through the grains, while diffuses along the grain boundaries largely in the stainless steel, which is why there is an obvious asymmetry diffusion of Cu into Be and stainless during the hot processing.
     ③T he solubility limit of Al in iron is about 20%(atom%)at room temperature , whereas it does not dissolve in Be and they form eutectic. So during the process of hot pressing of Be/Al/HR-1stainless steel, Al diffuses into the iron not only along the grain boundaries, but also throughout the grains, which diffuses mainly along the grain boundaries in the Be.
     ④D uring the process of hot pressing of Be/Ag-Au/HR-1 stainless steel,the solid solubility limit of Cu in Be is larger than that of Ag in Be, so it is easier for Cu to diffuse into Be, which leads to separation of Ag and Cu in Ag-Cu alloys and asymmetry diffusion of intermediate layer into the two sides.
     ⑤A fter hot pressing, there are lamellar structures in Be/HR-1 stainless steels and Be/interlayer/HR-1 stainless steels, and the lamellar layers are almost perpendicular to the outside forces direction, with the layers almost paralleling to each other.
     ⑥During the process of hot pressing of Be/HR-1 stainless steel, Be-Fe, Be-Ni, Be-Cr and so on inter-metallic compounds are formed, while during the process of hot pressing of Be/interlayer /HR-1 stainless steel, elements of interlayer and matrix as well as between two matrix materials form inter-metallic compounds. Inter-metallic compounds form mainly on the grain boundaries.
     ⑦Fractures of Be/HR-1 stainless steels and Be/interlayer /HR-1 stainless steels both are brittle.
     ⑧T ensile strength of Be/Ag-Cu/HR-1 stainless steel is most among the tested materials, as followed by that of Be/Cu/HR-1 stainless steel and Be/HR-1 stainless steels.
     ⑨Elements of chosen interlayer materials should form solid solution or eutectic with that of matrix materials as possible in order to avoid the formation of brittle inter-metallic compounds.
     ⑩Pressure not only makes the contact areas of connected interface enlarge gradually but also cause dynamic formed re-crystallization and diffusion creep, which affects diffusion ratio of diffusion welding zones and grain size. Matrixes or diffusion welding zones may form texture under pressure of a single axle direction.
     ⑾The simulation of concentration profile of hot pressings specimens can accords with the experimental profile. The computer is an important tool toptimize the hot processing parameters.
引文
[1]张柯柯,涂益民.特种先进连接方法[M].哈尔滨:哈尔滨工业大学出版社, 2007. 122-170.
    [2]李志远,钱乙余,张九海等.先进连接方法[M].北京:机械工业出版社, 2000. 130-150.
    [3]李亚江,王娟,夏春智.特种焊接技术及应用[M].第二版,北京:机械工业出版社, 2008. 133-179.
    [4] [苏]H.φ.卡扎柯夫.何康生等译.真空扩散焊接[M].北京:国防工业出版社, 1976. 4-6.
    [5] [苏]H.φ.卡扎柯夫著.何康生等译.材料中的扩散焊接[M].北京:国防工业出版社, 1982. 7-11.
    [6] [美]M. M.舍瓦尔兹著.袁文钊等译.金属焊接手册[M].第二版,北京:国防工业出版社, 1998. 323-329.
    [7]何康生.异种金属焊接[M].北京:机械工业出版社, 1986. 308-400.
    [8]刘中青.异种金属焊接技术指南[M].北京:机械工业出版社, 1997. 269-439.
    [9] Tohimasa Kuroda. Development of Joining Technology for Be/Cu-alloy and Be/SS by HIP[J]. Journal of Nuclear Materials, 1998, 258-263: 258-264.
    [10] Hadjiivanov K, Avreyska V, Tzvetkov G, et al. Distribution of the composition and micromechanical properties of Be/316L stainless steel following diffusion bonding[J]. Surface and Interface Analysis, 2001, 32(1): 88-90.
    [11] Iwadachi, Takaharu Assignee. Composite bonding material of beryllium, copper alloy and stainless steel and composite bonding method[P]. Japan, US6176418, 2001. 1. 23.
    [12]张友寿,秦有钧,吴东周等.铍的粉末冶金工艺及焊接研究进展[J].焊接学报, 2001, 22(5): 93-95.
    [13] Zhang Peng-cheng, Kong Ji-lan, Zhou Shang-qi, et al. Computer modeling of composition of Be/00Cr17Ni14Mo2 stainless steel joint following diffusion bonding[J]. Nuclear Power Engineering, 2003, 24(2): 145-148.
    [14] Hadjiivanov K, Avreyska V, Tzvetkov G, et al. Distribution of the composition and micromechanical properties of Be/316L stainless steel following diffusion bonding[J]. Surface and Interface Analysis, 2001, 32(1): 88-90.
    [15]张鹏程,申亮,白彬等.铍/HR-1不锈钢热等静压扩散连接界面特性研究[J].稀有金属材料与工程, 2002, 31(1): 41-43.
    [16]冷邦义,鲜晓斌,罗德礼等. Be/CLAM钢热等静压连接界面特性及力学性能[J].稀有金属材料与工程, 2008, 37(12): 2157-2160.
    [17] Makino T, Iwadachhi T, er al. Interface Formation and Strength of Be/DSCu Diffusion Bonding.Journal of Nuclear Materials, 1998, 258-263: 313-317.
    [18] Odegard Jr B C, Cadden C H, Yang N Y C, et al. Failure analysis of beryllium tile assemblies following high heat flux testing for ITER program[J]. Fusion Engineering and Design, 2004, 49-50: 309-314.
    [19] Kheder A R I, Akbar A A, Jubeh N M. Diffusion welding of OFHC copper to austenitic stainless steel 316L[J]. International Journal for the Joining of Materials, 2004, 16(4): 97-102.
    [20] Boudot C, Bobin Vastra I, Lorenzetto P, et al. Manufacture of tow primary first wall panel prototypes with Beryllium armor for ITER[J]. Fusion Engineering and Design, 2003, 66-68: 347-352.
    [21] Lorenzetto P, Cardella A, Daenner W, et al. ITER primary first wall mock-up fabrication and testing for Be/Cu alloy joining development[J]. Fusion Engineering and Design, 2002, 61-62: 643-648.
    [22]顾钰熹.特种工程材料焊接[M].沈阳:辽宁科学技术出版社, 1998. 297.
    [23] Hatano T, Kurdda T, Barabash V, et al. Development of Be/DSCu HIP bonding and thermo-mechanic evaluation[J]. Journal of Nuclear Masterials, 2002, 307-311: 1537-1540.
    [24] Saint A ntonin F, Barberi D, Le Marois G, et al. Development and characterization of Be/Glidcop joints obtained by hot isostatic pressing for high temperature working conditions[J]. Journal of Nuclear Masterials, 1998, 258-263: 1973-1977.
    [25] Sherlock P, Erskine A, Lorenzetto P, et al. Application of a diffusion bonding methodology to develop a Be/Cu HIP bond suitable for the ITER blanket[J]. Fusion Engineering and Design, 2003, 66-68: 425-429.
    [26] Wang Xi-sheng, Zhang Peng-cheng, Xian Xiaobin, et al. Interface characterization of Be/CuCrZr joints by hot isostatic pressing bonding[J]. Rare Metal Materials and Engineering, 2008, 37(12): 2161-2164.
    [27] Tan Jia-mei1, Zhang Peng-cheng, Chen Ji-ming, et al. Research on Be/CuCrZr bonding by hot isostatic pressing at intermediate temperature[J]. Nuclear Power Engineering, 2007, 28(S): 61-64.
    [28] Barabash V R, LGitarsky L S, et al. Beryllium-metals Joints for Application in the Plasma-Facing Components[J]. Journal of Nuclear Materials, 1994, 212-215: 1604-1607.
    [29] Flament T. Compatibility of Stainless steels and Lithium Based Ceramics with Beryllium[J]. Journal of Nuclear Materials, 1992, 191-194 : 163-167.
    [30] Kheder A R I, Akbar A A, Jubeh N M. Diffusion welding of OFHC copper to austenitic stainless steel 316L[J]. International Journal for the Joining of Materials, 2004, 16(4): 97-102.
    [31] Nishi H. Notch toughness evaluation of diffusion-bonded joint of alumina dispersion- strengthened copper to stainless steel[J]. Fusion Engineering and Design, 2006, 81(1-4): 269-274.
    [32] Yilmaz, Osman1, Aksoy. Investigation of micro-crack occurrence conditions in diffusion bonded Cu-304 stainless steel couple[J]. Journal of Materials Processing Technology, 2002, 121(1): 136-142.
    [33] Yu Zhishui, Wang Fengjiang, Li Xiaoquan, et al. Diffusion bonding of copper alloy to stainless steel with Ni and Cu interlayer[J]. Transactions of Nonferrous Metals Society of China, 2000, 10(1): 88-91.
    [34] S Sato , T Hatano, et al. Optimization of HIP Bonding Condition s for ITER Shielding Blanket/first Wall Made From Austenitic Stainless Steel And Dispersion Strengthened Copper alloy[J]. Journal of Nuclear Materials, 1998, 258-263: 265~270.
    [35] Liu Shuying. Joints performance of diffusion bonding between pure Cu and stainless steel and dynamic analysis of atomic diffusion[J]. Transactions of the China Welding Institution, 2009, 30(9): 101-104.
    [36]吴继红,张斧,严建成.铜-钨/不锈钢热等静压焊接界面组织的研究[J].焊接, 2002, (6): 13-15.
    [37]李卓然,张九海,冯吉才.锡青铜与钢的扩散连接[J].宇航材料工艺, 1999, 28(2): 6-8.
    [38]李卓然,,张九海,冯吉才.锡青铜-镍-钢扩散连接工艺研究[J].焊接技术, 1999, (3): 51-55.
    [39]黑田晋一,才田一幸,西本和俊. A6061とSUS316の直接结合部の组织と特性[C].溶接学会论文集, 1999, 17(3): 484-489.
    [40] Tatlock, Gordon J, Murray, et al. The behaviour of iron and aluminium during the diffusion welding of carbon steel to aluminium[J]. Journal of Materials Science, 2007, 42(14): 5692-5699.
    [41]周荣林.钛合金与不锈钢的扩散连接[J].宇航材料工艺, 1999 , 28(1): 46-50.
    [42]孙荣禄.中间过渡金属对钛合金与不锈钢扩散焊接头强度的影响[J].焊接学报, 1996, 16(4): 212-215.
    [43] Qin Bin, Sheng Guang-min, Huang Jia-wei1, et al. Application of nickel nano-particles in the diffusion bonding of titanium alloy and stainless steel[J]. Nuclear Power Engineering, 2004, 25(5): 457-462.
    [44]孙荣禄,杨文杰,于斌.钛合金与不锈钢扩散焊中间金属的选择[J].新材料新工艺, 1997, (5): 15-18.
    [45]秦斌,盛光敏,周波等.钛合金与不锈钢的扩散焊接[J].中国有色金属学报, 2004, 14(9): 1545-1550.
    [46]周小玲,盛光敏,韩靖等.表面自纳米化对钛合金与不锈钢的扩散焊接的影响[J].核动力工程, 2009, 30(1): 78-81.
    [47]孟胶东,曲文卿. Al-Cu双金属复合结构的扩散连接试验研究[J].材料工程, 2003, (1): 34-37.
    [48]曲文卿,董峰.异种材料的连接[J].航天制造技术, 2006 , (3): 44-49.
    [49] Hussain P, Isnin A. Joining of austenitic stainless steel and ferritic stainless steel to sialon[J]. Journal of Materials Processing Technology, 2001, 113: 222-227.
    [50]刘会杰,冯吉才.陶瓷与金属扩散连接的研究现状[J].焊接, 2000, (9): 7-12. .
    [51]陈飞雄.硬质合金与金属的扩散连接[J].稀有金属与硬质合金, 1994, 118(9): 14-20.
    [52]王艳芳.硬质合金与钛合金真空扩散焊工艺研究[J].热加工工艺, 2007, 36(15): 37-39.
    [53]杨雄,冉小丰,刘昌明.水平射流钻头真空扩散焊中间层材料对接头性能的影响试验[J].石油天然气学报, 2008, 30(5): 152-154.
    [54]李云,吴红,尚福军等. TiAl金属间化合物与42CrMo钢的真空扩散连接[J].兵器材料科学与工程, 2001, 24(3): 45-47.
    [55]何鹏,张秉刚,冯吉才等.以Ti/V/Cu和V/Cu为中间层的TiAl合金与42CrMo钢的扩散连接[J].宇航材料工艺, 2000, 30(4): 53-57.
    [56] He P, Feng J C, Zhang B G, et al. Microstucture and strength of diffusion-bonded joints of TiAl base alloy to steel[J]. Materials Characterization, 2002, 48(5): 401-406.
    [57] He P, Feng J C, Zhang B G, et al. A new technology for diffusion bonding intermetallic TiAl to steel with composte barrier layers[J]. Materials Characterization, 2003, 50(1): 87-92.
    [58] Li Ya-jiang, Wang Juan. XRD and TEM analysis in the interface of diffusion bonding for Fe3Al/Q235 dissimilar materials[J]. Journal of Materials Science Technology, 2003, 19(1): 81-84.
    [59]李亚江,王娟. Fe3Al/18-8异种材料真空扩散焊工艺研究[J].材料科学与工艺, 2004, 12(1): 45-48.
    [60]许志武,吕世雄,闫久春等.非连续增强铝基复合材料固相焊接研究现状[J].哈尔滨工业大学学报, 2004, 36(5): 593-598.
    [61] Liu Li-ming, Dong Chang-fu, Gao Zhen-kun. Diffusion welding process and joint's microstructure behavior of SiC/6061Al composite[J]. Rare Metals, 2004, 23(4): 347-351.
    [62] Arik Halil, Aydin Mustafa, Kurt Adem, et al. Weldability of Al4C3-Al composites via diffusion welding technique[J]. Materials and Design, 2005, 26(6): 555-560.
    [63] Gao Zhen-kun, Liu Li-ming. Diffusion welding process of aluminum matrix composite in low vacuum environment[J]. Transactions of the China Welding Institution, 2005, 26(5): 73-76+80.
    [64]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社, 1998. 1-62.
    [65] M A DAYANDY. Metallurgical and Materials Transaction. 1984, 15A: 649-659.
    [66] M A DAYANDY. Metallurgical and Materials Transaction. 1983, 14A: 1851-1858.
    [67] M A DAYANDY. Defect Diffusion Forum. 1993, 95-98: 521-535.
    [68] M A DAYANDY. Metallurgical and Materials Transaction. 1996, 27A: 2504-2509.
    [69] M A DAYANDY. Metallurgical and Materials Transaction. 1999, 30A: 535-543.
    [70] Barrer R M. Diffusion in and Through Solids[M]. Cambridge uni. Press, 1951.
    [71] Shewmon P G. Diffusion in Solids[M]. Mc Graw-Hill, 1963.
    [72] Jost W. Diffusion in Solids, Liquids and Gases[M]. Academic Press, 1960
    [73] Lazarus D. Diffusion in Metals[M]. Solid State Physics, 1970.
    [74]周如松.金属物理[M].北京:高等教育出版社, 1992年.
    [75]丁学勇.三元合金中组元扩散系数的预测模型[J].金属学报, 2000, 36(8): 28-32.
    [76]张九海,何鹏.扩散连接行为数值模拟的发展现状[J]. 2000,焊接学报, 21(4): 84-91.
    [77]刘会杰. SiC与TiAl扩散连接中界面反应层的成长模型[J].焊接学报, 2001, 22(1): 53-55.
    [78]张贵锋.日本关于固相扩散焊界面空洞收缩机理的研究[J].焊接学报, 2001, 22(10): 14-18.
    [79]陈楚.数值分析在有限元中的应用[M].上海:上海交通大学出版社, 1985.
    [80]何鹏,冯吉才,钱乙余.扩散连接界面物理接触行为的动态模型[J].焊接学报, 2001, 22(5): 60-64.
    [81]夏春智,李亚江,王娟.工艺参数对Fe3Al/Q235扩散焊接头应力分布的影响[J].焊接技术, 2006, 5(5): 10-12.
    [82]刘浩,柯孚久,潘晖等.铜-铝扩散焊及拉伸的分之动力学模拟[J].物理学报, 2007, 56(1): 407-412.
    [83]沈孝芹,李亚江, Puchkov U A等. Al2O3-TiC/1Cr18Ni9Ti扩散焊接头应力分布[J].焊接学报, 2008, 29(10): 41-44.
    [84]何鹏,冯吉才,钱乙余.扩散连接接头区域元素浓度分布的数值分析[J].焊接学报, 2002, 23(3): 80-82.
    [85]董建新,何冬,张麦仓等.热等静压扩散连接反应层元素互扩散的动力学模拟计算[J].北京科技大学学报, 2003, 25(1): 36-39.
    [86]李亚江,王娟,尹衍升等. Fe3Al/18-8不锈钢扩散焊界面附近的元素扩散[J].金属学报, 2005, 41(2): 150-156.
    [87] Rybin V V, Greenberg B A, Antonova O V, et al. Examining the bimetallic joint of orthorhombic titanium aluminide and titanium alloy (diffusion welding)[J]. Welding Journal (Miami, Fla), 2007, 86(7): 205-210.
    [88] Kong Ting-Fai, Chan Luen-Chow, Lee Tai-Chui. Weld diffusion analysis of forming bimetallic components using statistical experimental methods[J]. Materials and Manufacturing Processes, 2009, 24(4): 422-430.
    [89] [日]长崎诚三,平林真.刘安生译.二元合金状态图集[M].北京:冶金工业出版社, 2004. 4, 6, 26, 30, 78-80, 131.
    [90]周上祺. X射线衍射分析[M].重庆:重庆大学出版社, 1991. 162-176.
    [91]郭伟,赵熹华,宋敏霞.扩散连接界面理论的现状与发展[J].航天制造技术, 2004, (5):36-39.
    [92] Kowalski A, Bernasik A, Sadowski A. Bulk and grainboundary diffusion of titanium in yttria-stabilized zirconia[J]. Journal of the European Ceramic Society, 2000, (20): 951-958.
    [93]刘国勋.金属学原理[M].北京:冶金工业出版社, 1980. 211-280.
    [94] Takahashi Y, Inoue K. Recent Void Shrinkage Models and Their Applicability to Diffusion bonding[J]. Materials Science and Technology, 1992, 8: 953~965.
    [95] Schwarz S M, Kempshall B W, Giannuzzi L A. Effects of diffusion induced recrystallization on volume diffusion in the copper-nickel system [J]. Acta Materialia, 2003, (51): 2765~2766.
    [96] Soffaa W A, Laughlinb D E. High-strength age hardening copper-titanium alloys redivivus[J]. Progress in Materials Science, 2004, (49): 347~366.
    [97]何鹏. Ti/V/Cu/40Cr钢扩散连接界面组织结构对接头强度的影响[J].焊接, 2002, (7): 12-14.
    [98]何鹏,冯吉才,钱乙余等.扩散连接接头金属间化合物新相的形成机理[J].焊接学报, 2001, 22(1): 53-55.
    [99]陈国良.有序金属间化合物结构材料物理金属学基础[M].北京:冶金工业出版社, 1999. 118-124.
    [100] S S劳尔.傅子智译.工程中的有限元法[M].北京:科学出版社, 1985.
    [101]孔详谦.有限元法在传热学中的应用[M].北京:科学出版社, 1991.
    [102]潘金生.材料科学基础[M].北京:清华大学出版社, 1998.
    [103]夏立芳.金属中的扩散[M].哈尔滨:哈尔滨工业大学出版社, 1989.
    [104] Ernst Kozeschni. Multicomponent Diffusion Simulation Based on Finite Elements[J]. Metallurgical and Materials Transactions A, 1999, 30A: 2575-2582.
    [105]甄西彩,宋玉强,李世春. Al/Cu/Mg扩散偶相界面的扩散机理[J].理化检验-物理分册, 2008, 44(4): 168-171.
    [106] M A Ashworth, M H Jacobs, et al. Basic Mechanisms and Interface Reactions in HIP Diffusion Bonding[J]. Materials and Design , 2000, 21: 351-358.
    [107] A Hill, E R Wallach. Midelling Solid-State Diffusion Bonding[J]. Acta Metal, 1989, 37(9): 2425-2437.
    [108] M A Dayananda, Y H Sohn. A New Analysis For the Determination of Ternary Interdiffusion Coefficients from a Single Diffusion Couple[J]. Metallurgical and Materials Transaction A, 1999, 30A: 535-545.
    [109] J E Morral.乔芝郁译.冶金和材料计算物理化学[M]北京:冶金工业出版, 1998. 162-167.
    [110] D H Carter M, A M Bourke. Neutron Diffraction Study of The Deformation Behavior of Beryllium-aluminum Composites[J]. Acta mater, 2000, 48: 2885-2900.
    [111]李忠厚,刘小平,徐重.在双辉光离子渗金属中空位浓度梯度对扩散的影响[J].应用科学学报, 2000, 18(2): 183-1185.
    [112]韩逸,班春燕,巴启先等.液态金属扩散系数的测量方法与理论研究的进展[J].材料导报, 2004, 18(10): 10-13.
    [113]陈松,胡昌义,郭俊梅等. Ir/Mo互扩散研究[J].稀有金属材料与工程, 2005, 34(6): 916-919.
    [114]张丁非,彭建,兰伟等.硅相对铜在Al-Si-Cu合金中扩散速度影响的研究[J].金属热处理, 2006, 31(6): 13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700