基于AgCu/Ni中间层的SiO_2陶瓷与TC4钛合金钎焊工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiO_2玻璃陶瓷具有耐热、抗震且多孔、热膨胀性能可调、耐腐蚀、热稳定性能好、较大的高温粘性等特点,在宇航工业中可将SiO_2玻璃陶瓷与TC4合金(即Ti-6Al-4V)连接应用于发动机隔舱上。目前,陶瓷隔舱是在外径处通过机械连接方式实现与燃烧室的连接,消极质量较重,因此本课题要实现SiO_2陶瓷隔舱与TC4钛合金结构件的可靠连接。解决消极质量重的问题,同时提高构件连接的气密性。本文采用钎焊的方法解决SiO_2玻璃陶瓷与TC4合金的连接问题,深入探讨连接机理,确定最佳工艺,得到性能符合要求的构件。
     采用AgCu/Ni复合中间层进行了SiO_2陶瓷与TC4钛合金的钎焊连接,通过多种分析测试方法确定了钎焊接头典型的界面结构为:TC4钛合金/针状α-Ti/ Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu)过共析组织/Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu)过共晶组织/Ti_2(Ni,Cu)+Ti_2(Cu,Ni)化合物/Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu)过共晶组织/ Ti_4O_7+TiSi_2/SiO_2陶瓷。钎焊温度为970℃,保温时间为10min的接头抗剪强度最高,平均值达到110MPa,此时接头断裂发生在陶瓷母材上,接头界面中各层强度较高,使接头强度高于母材。
     多种工艺参数下的钎焊试验表明:钎焊温度对界面产物种类影响不大,但对陶瓷侧Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu)过共晶组织的分布有一定影响。钎焊温度较低时,焊缝中部有少量该组织呈岛状分布。当钎焊温度达到970℃时,该组织已呈带状近连续分布于靠近陶瓷侧反应层的区域。钎焊温度升高至980℃,陶瓷侧连续的Ti(s.s) + Ti_2(Cu, Ni) + Ti_2(Ni, Cu)过共晶组织明显增厚。钎焊温度对陶瓷侧Ti_4O_7+TiSi_2反应层厚度影响不大。保温时间对陶瓷侧岛状Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu)过共晶组织的分布与钎焊温度的影响类似,但对陶瓷侧Ti_4O_7+TiSi_2反应层生长的影响却不同,保温时间的延长,导致Ti_4O_7+TiSi_2反应层厚度增加明显。
     根据所观察到的接头界面结构,确定了界面形成过程具体分为以下几个阶段:中间层与两待焊母材的物理接触;AgCu钎料箔片的熔化以及液态AgCu与Ni箔片、钛合金母材的相互作用;共晶液相大量出现、钎料中Ti、Cu、Ni、Ag原子共存、陶瓷侧反应层开始形成;钎焊温度下钎料液相对钛合金母材继续溶解、焊缝中液相成分均匀化、陶瓷侧反应层厚度增加;钎料对钛合金母材溶解的停止、陶瓷侧反应层反应的终止以及过共析组织的形成;Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu)过共晶组织的形成;焊缝中心金属间化合物的凝固。分析了焊缝中Ag、Cu、Ti、Ni各元素的作用机理,其中,来自于TC4母材的Ti元素是该连接过程中不可或缺的重要组元,Ti与中间层合金通过共晶接触反应作用形成了对SiO_2陶瓷润湿性极好的液态钎料,Ti原子进入焊缝后,迅速扩散到陶瓷侧与陶瓷形成反应层,实现钎料与陶瓷之间的良好冶金结合。
     通过分析钎料在钛合金母材侧的冶金反应,发现共晶液相倾向于在钛合金一侧产生,这主要是由于Ni向Ti中的扩散系数比Ti向Ni中的扩散系数大很多。得到了钎焊温度恒定的情况下,保温一段时间后焊缝中Ti在液态钎料中的浓度表达式,并以此为切入点得到了焊后TC4钛合金母材的溶解厚度表达式,这对有效控制钛合金母材溶解量,防止发生溶蚀具有重要意义。
     研究了钎焊过程中钎料液相在SiO_2陶瓷侧的铺展行为及界面反应行为。以活性元素Ti的行为特征为主线,获得了陶瓷侧反应层的生长动力学方程,通过钎焊温度和保温时间两个中间变量实现了对陶瓷侧反应层成长的微观调控。
Due to the properties of heat and vibration-resisting, multi-micropore, adjustable thermal expansion property, corrosion-resisting, excellent thermal stability and large high-temperature viscosity, SiO_2 glass ceramic is bonded to TC4 alloy (Ti-6Al-4V) to manufacture engine bay in aerospace fields. So far, ceramic bay is mechanically bonded to the combustor at external diameter, resulting in large negative mass. Therefore, reliable joining of SiO_2 glass ceramic to TC4 alloy is expected in the present work to decrease the negative mass and improve the gas impermeability at the same time. High quality joining of SiO_2 glass ceramic to TC4 alloy is successfully realized by brazing, and the optimal brazing parameters are identified as well as the bonding mechanism.
     SiO_2 glass ceramic was brazed to TC4 alloy using AgCu/Ni composite interlayer. According to several testing methods, the typical interface structure was identified to be TC4 alloy/acicularα-Ti/Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu) hypereutectoid structure/ Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu) hypereutectic structure/Ti_2(Ni,Cu)+Ti_2(Cu,Ni) compounds/Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu) hypereutectic structure/Ti_4O_7+TiSi_2/SiO_2 ceramic when the joint was brazed at 970℃for 10min. Under this condition, the largest shear strength 110MPa was reached. The fracture occurred on SiO_2 glass ceramic because of its lower strength than that of each interfacial layer.
     Based on the brazing experiments under different parameters, species of the interface products were hardly influenced by the brazing temperature, but it was not the condition for the hypereutectic structure near SiO_2 /braze interface. When the brazing temperature was low, island-like Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu) hypereutectic structures were distributed at SiO_2 glass ceramic side. As the temperature rised to 970℃, these structures had distributed continuously near the reaction layer at ceramic side, and they were thickened as the temperature increased to 980℃. Ti_4O_7+TiSi_2 layer was hardly influenced by the brazing temperature. The effect of holding time on Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu) hypereutectic structures was similar to that of temperature, however, effect of time on Ti_4O_7+TiSi_2 layer was quite different, the holding time longer, the reaction layer thicker.
     According to the observed interfacial microstructure, joint formation was divided into the following seven stages: physical contact of the brazed surfaces; melting of AgCu and interaction between liquid AgCu and Ni foil, TC4 alloy; formation of eutectic liquid, coexistence of Ti, Cu, Ni, Ag, and appearance of reaction products at ceramic side; dissolution of TC4 alloy, homogeneousness of liquid filler and width increase of reaction layer at ceramic side; stop of dissolution of TC4 alloy and reaction at ceramic side, formation of hypereutectoid microstructure; formation of hypereutectic microstructure Ti(s.s)+Ti_2(Cu,Ni)+Ti_2(Ni,Cu); solidification of intermetallic compounds on joint center. Effect mechanisms of element Ag, Cu, Ti and Ni on joint formation were studied. Among these elements, Ti is the most important. Ti dissolved from Ti alloy by eutectic reaction and diffused to ceramic side, resulting in the reaction layer formation and excellent spreading of liquid filler on SiO_2 glass ceramic.
     Metallurgy reaction at Ti alloy side was researched. The result was that eutectic liquid tended to appear at Ti alloy side instead of Ni filler side, because diffusion coefficient of Ni to Ti is much larger than that of Ti to Ni. Concentration of Ti in the liquid filler after dwelling was obtained. Dissolution thickness X of TC4 alloy after brazing was calculated based on the concentration of Ti, and this is meaningful to control the dissolution of Ti alloy and prevent the erosion of base material.
     Spreading and interface reaction of liquid filler on SiO_2 glass ceramic were investigated. Growth kinetics equation of reaction layer at SiO_2 side was attained according to the process property of active element Ti, realizing the micro-controlling of reaction layer growth via the brazing temperature and dwelling time.
引文
1 A. R. Boccaccini. Glass and Glass-Ceramic Matrix Composite Materials. International Ceramic Review. 2002, 51:24~35
    2 H. S. Zhao, T. X. Liang, B. Liu. Synthesis and Properties of Copper Conductive Adhesives Modified by SiO2 Nanoparticles. International Journal of Adhesion & Adhesives. 2007, 27:429~433
    3 H. Wolfram, R. Volker, A. Elke, V. H. Christian. Principles and Phenomena of Bioengineering with Glass-Ceramics for Dental Restoration. Journal of the European Ceramic Society. 2007, 27:1521~1526
    4 F. Pinakidou, M. Katsikini, P. Kavouras, F. Komninou, T. Karakostas, E. C. Paloura. Structural Role and Coordination Environment of Fe in Fe2O3-PbO-SiO2-Na2O Composite Glasses. Journal of Non-Crystalline Solids. 2008, 354:105~111
    5 S. KhatibZadeh, M. Samedani, B. E. Yekta, S. Hasheminia. Effect of Sintering and Melt Casting Methods on Properties of A Machinable Fluor-Phlogopite Glass–Ceramic. Journal of Materials Processing Technology. 2008, 203:113~116
    6 R. F. Wang, Z. Lu, C. Q. Liu, R. B. Zhu, et al.. Characteristics of A SiO2–B2O3–Al2O3–BaCO3–PbO2–ZnO Glass–Ceramic Sealant for SOFCs. Journal of Alloys and Compounds. 2007, 432:189~193
    7 R. Zheng, S. R. Wang, H.W. Nie, T.L. Wen. SiO2–CaO–B2O3–Al2O3 Ceramic Glaze as Sealant for Planar ITSOFC. Journal of Power Sources. 2004, 128: 165~172
    8 F. Zhou, J. Y. Pan, K. M. Chen. Liquid-Phase Bonding of Silicon Nitride Ceramics Using Y2O3–Al2O3–SiO2–TiO2 Mixtures. Materials Letters. 2004, 58:1383~1386
    9 A. Guedes, A. Pinto, M. Vieira, F. Viana. The Effect of Brazing Temperature on the Titanium/Glass-Ceramic Bonding. Journal of Materials Processing Technology. 1999, 92-93:102~106
    10 O. Torun. Microstructure and Bond Strength of Diffusion-Bonded Nickel Aluminide–Titanium Joints. Intermetallics. 2009, 17:179~181
    11 A. Elrefaey, W. Tillmann. Solid State Diffusion Bonding of Titanium to SteelUsing A Copper Base Alloy as Interlayer. Journal of Materials Processing Technology. 2009, 209:2746~2752
    12 O. Torun, I. Celikyurek. Boriding of Diffusion Bonded Joints of Pure Nickel to Commercially Pure Titanium. Materials and Design. 2009, 30:1830~1834
    13 Y. C. Chen, K. Nakata. Microstructural Characterization and Mechanical Properties in Friction Stir Welding of Aluminum and Titanium Dissimilar Alloys. Materials and Design. 2009, 30:469~474
    14王快社,张小龙,沈洋,等. TC4钛合金搅拌摩擦焊连接组织形貌研究.稀有金属材料与工程. 2008, 37(11):2045~2048
    15赵红凯,肖锋,任飞,等. TC4钛合金高转速惯性摩擦焊接头组织及性能分析.焊接. 2008, 11:46~49
    16 S. A. A. Akbari Mousavi, P. Farhadi Sartangi. Experimental Investigation of Explosive Welding of Cp-Titanium/AISI 304 Stainless Steel. Materials and Design. 2009, 30:459~468
    17王纯.钛合金活性焊剂钨极氩弧焊焊缝成形.现代焊接. 2008, 5:15~20
    18朱友生,陈国余.自动TIG焊在钛合金拼板焊中的应用.稀有金属快报. 2008, 27(12):22~25
    19陈俐,巩水利,姚伟.活性剂对钛合金激光焊焊缝成形影响.焊接. 2008, 11: 32~37
    20杜汉斌.钛合金激光焊接及其熔池流动场数值模拟.华中科技大学博士学位论文. 2003:45
    21杨尚磊,楼松年. 7715D高温钛合金的电子束焊接.青岛科技大学学报. 2008, 29(6):530~532
    22夏明星,郑欣. TC4钛合金与Nb-W-Mo-Zr铌合金的真空电子束焊接工艺研究.稀有金属快报. 2008, 27(12):22~25
    23 M. Singha, G. N. Morschera, T. P. Shpargel. Active Metal Brazing of Titanium to High-Conductivity Carbon-Based Sandwich Structures. Materials Science and Engineering A. 2008, 498:31~36
    24 A. Elrefaey, W. Tillmann. Effect of Brazing Parameters on Microstructure and Mechanical Properties of Titanium Joints. Journal of Materials Processing Technology. 2009, doi:10.1016/j.jmatprotec.2009.01.006
    25 R. K. Shiue, S. K. Wu, Y.T. Chen, et al.. Infrared Brazing of Ti50Al50 and Ti–6Al–4V Using Two Ti-Based Filler Metals. Intermetallics. 2008, 16:1083~1089
    26 R. Asthana, M. Singh. Joining of Partially Sintered Alumina to Alumina,Titanium, Hastealloy and C–SiC Composite Using Ag–Cu Brazes. Journal of the European Ceramic Society. 2008, 28(6):17~631
    27 X. Yue, P. He, J.C. Feng, et al.. Microstructure and Interfacial Reactions of Vacuum Brazing Titanium Alloy to Stainless Steel Using An AgCuTi Filler Metal. Materials Characterization. 2008, 59:1721~1727
    28 I. T. Hong, C. H. Koo. Vacuum-Furnace Brazing of C103 and Ti–6Al–4V with Ti–15Cu–15Ni Filler-Metal. Materials Science and Engineering A. 2005, 398:113~127
    29 O. Botstein, A. Schwarzman, A. Rabinkin. Induction Brazing of Ti-6Al-4V Alloy with Amorphous 25Ti-25Zr-50Cu Brazing Filler Metal. Materials Science and Engineering A. 1995, A206:14~23
    30 C. T. Chang, Y. C. Du, R. K. Shiue, C. S. Chang. Infrared Brazing of High-Strength Titanium Alloys by Ti–15Cu–15Ni and Ti–15Cu–25Ni Filler Foils. Materials Science and Engineering A. 2006, A420:155~164
    31 C. T. Chang, R. K. Shiue. Infrared Brazing Ti-6Al-4V and Mo Using the Ti-15Cu-15Ni Braze Alloy. International Journal of Refractory Metals & Hard Materials. 2005, 23:161~170
    32 C. T. Chang, Z. Y. Wu, R. K. Shiue, C. S. Chang. Infrared Brazing Ti-6Al-4V and SP-700 Alloys Using the Ti-20Zr-20Cu-20Ni Braze Alloy. Materials Letters. 2007, 61:842~845
    33 D. W. Liaw, Z. Y. Wu, R. K. Shiue, C. S. Chang. Infrared Vacuum Brazing of Ti-6Al-4V and Nb Using the Ti-15Cu-15Ni Foil. Materials Science and Engineering A. 2007, A454-455:104~113
    34 I. T. Hong, C. H. Koo. Microstructural Evolution and Shear Strength of Brazing C103 and Ti-6Al-4V Using Ti-20Cu-20Ni-20Zr (wt.%) Filler Metal. International Journal of Refractory Metals & Hard Materials. 2006, 24:247~252
    35 H. Y. Chan, D. W. Liaw, R. K. Shiue. Microstructural Evolution of Brazing Ti–6Al–4V and TZM Using Silver-Based Braze Alloy. Materials Letters. 2004, 58:1141~1146
    36 H. Y. Chan, D. W. Liaw, R. K. Shiue. The Microstructural Observation of Brazing Ti-6Al-4V and TZM Using the BAg-8 Braze Alloy. International Journal of Refractory Metals & Hard Materials. 2004, 22:27~33
    37 I. T. Hong, C. H. Koo. The Study of Vacuum-Furnace Brazing of C103 and Ti–6Al–4V Using Ti–15Cu–15Ni Foil. Materials Chemistry and Physics. 2005,94:131~140
    38 I. A. Frolov. Contact Reactive Brazing of Copper to Steel Via A Manganese Interlayer. Welding Production.1972, 19(10):28~31
    39 V. P. Kruchinin, I. I. Metelkin. Contact Reactive Brazing of Ceramics to Metal. Welding Production. 1972, 19(12):68~73
    40余春,吴铭方,于治水,等. Ti/Cu/Ti接触反应钎焊微观组织分析.华东船舶工业学院学报. 2004, 18 (2):56~60
    41吴铭方,杨敏,张超,等. Ti/Cu共晶反应液相铺展及组织.焊接学报. 2005, 26(10):68~71
    42蔡伟,曹东辉. Ti/Cu接触反应行为研究.氯碱工业. 2007, 12:39~41
    43余春,吴铭方,于治水. Ti/Cu/Ti接触反应钎焊溶解机理.试验与研究. 2004, 33 (2):17~19
    44吴铭方,蒋成禹,于治水,等. TC4/72Ag-28Cu钎焊组织及Ti-Cu化合物生长机理研究.航空材料学报. 2001, 21 (3):29~32
    45浦娟,吴铭方,袁媛. 6063铝合金接触反应钎焊接头组织及晶界渗透行为研究.稀有金属材料与工程. 2007, 36 (3):168~171
    46董占贵,钱乙余,石素琴,等. Al/Cu/Al接触反应液相行为及其连接.焊接学报. 2001, 22 (6):45~47
    47邱小明,殷世强,孙大谦,等. Al共晶接触反应钎焊热力学分析.中国有色金属学报. 2001, 11 (6):1017~1020
    48何鹏,钱乙余,冯吉才,等.复合电热餐具铝/不锈钢接触反应钎焊新技术.中国有色金属学报. 2003, 13 (6):1519~1522
    49何鹏,冯吉才,钱乙余,等.接触反应法解决铝/不锈钢钎焊的缺陷及脆性.材料科学与工艺. 2005, 13 (1):82~85
    50袁媛,吴铭方,浦娟. 6063铝合金/Si粉接触反应钎焊研究.试验与研究. 2007, 36 (4):17~18
    51钱乙余,董占贵,石素琴,等.铝接触反应钎焊的成缝行为.焊接学报. 2001, 22 (5):13~16
    52董占贵,钱乙余,马鑫,等.接触反应钎焊中间层材料的选择原则.中国有色金属学报. 2002, 12 (2):241~244
    53董占贵,钱乙余,石素琴,等. Al合金接触反应钎焊接头力学响应及中间层厚度的确定.焊接学报. 2002, 23 (1):34~36
    54张启运,庄鸿寿.钎焊手册.机械工业出版社. 1998: 12~340
    55李卓然,顾伟,冯吉才.陶瓷与金属连接的研究现状.第十二次全国焊接学术会议论文集.焊接. 2008, 3:55~60
    56吴昌忠,陈静,陈怀宁,等.钎料对金属/陶瓷钎焊接头残余应力的影响.机械工程材料. 2005, 29(9): 18~20
    57 J. A. Fernie, P. L. Threadgill, M. N. Watson. Progress in Joining of Advanced Materials. Welding and Material Fabrication. 1991, 59(4):179~184
    58 M. P. Maloletov. Theoretical Fundamentals and Technology of Electron Beam Welding Ceramics to Metals. Welding International. 1995, 64(3):237~239
    59 S. Matsuoka. Ultrasonic Welding of Ceramics/Metals Using Inserts. Journal of Materials Processing Technology. 1998, 75(2):259~265
    60 K. Hokamoto, M. Fujita, H. Shimokawa, et al. A New Method for Explosive Welding of Al/ZrO2 Joint Using Regulated Underwater Shock Wave. Journal of Materials Processing Technology. 1999, 85(1):175~179
    61 Y. Miyamoto. Ceramic-to-Metal Welding by a Pressurized Combustion Reaction. Journal of Material Research. 1986, 1(1):7~9
    62 Q. S. Ming, J. Sexual. Joining Mechanism of Field-Assisted Bonding of Electrolytes to Metals. Journal of Mechanical Engineering. 2002, 18(4):1~5
    63 V. G. Novikov. Diffusion Bonding Dissimilar Materials in Aerospace Technology. Welding International. 1995, 65(6):477~478
    64 A. Kar, S. P. Sagar, A. K. Ray. Characterization of the Ceramic-Metal Brazed Interface Using Ultrasonic Technique. Materials Letters. 2007, 61:4169~4172
    65 M. C. A. Nono, J. J. Barroso, P. J. Castro. Mechanical Behavior and Microstructural Analysis of Alumina-Titanium Brazed Interfaces. Materials Science and Engineering A. 2006, 435-436:602~605
    66 M. Singh, R. Asthana, T. P. Shpargel. Brazing of Ceramic-Matrix Composites to Ti and Hastealloy Using Ni-Base Metallic Glass Interlayers. Materials Science and Engineering A. 2007, doi:10.1016/j.msea.2007.11.150
    67 A. Kar, A. K. Ray. Characterization of Al2O3–304 Stainless Steel Braze Joint Interface. Materials Letters. 2007, 61:2982~2985
    68 A. Shapiro, A. Rabinkin. State of the Art of Titanium-Based Brazing Filler Metals. Welding Journal. 2003, 82(10):36~43
    69 R. Voytovych, F. Robaut, N. Eustathopoulos. The Relation between Wetting and Interfacial Chemistry in the CuAgTi/Alumina System. Acta Materialia. 2006, 54: 2205~2214
    70 P. Kritsalis, B. Drevet, N. Valignat, N. Eustathopoulos. Wetting Transitions inReactive Metal-Oxide System. Scripta Metallurgica et Materialia. 1994, 30(9):1127~1132
    71 Y. V. Naidich, V.S. Zhuravlev, I. I. Gab, B.D. Kostyuk, et al.. Liquid Metal Wettability and Advanced Ceramic Brazing. Journal of the European Ceramic Society. 2008, 28: 717~728
    72王娟,李亚江,马海军,刘鹏. Ti/Cu/Ti复合中间层扩散连接TiC-Al2O3/W18Cr4V接头组织分析.焊接学报. 2006, 27(9):9~12
    73 D. Travessa, M. Ferrante, G. D. Ouden. Diffusion Bonding of Aluminium Oxide to Stainless Steel Using Stress Relief Interlayers. Materials Science and Engineering A. 2002, 337:287~296
    74 A. M. Kliauga, D. Travessa, M. Ferrante. Al2O3/Ti interlayer/AISI 304 Diffusion Bonded Joint Microstructural Characterization of the Two Interfaces. Materials Characterization. 2001, 46:65~74
    75 M. Brochu, M. D. Pugh, R. A. L. Drew. PTLPB of Si3N4 to FA-129 Using Nickel as A Core Interlayer. International Journal of Refractory Metals and Hard Materials. 2004, 22:95~103
    76 O. Dezellus, J. Andrieux, F. Bosselet, M. S. Peronnet, et al.. Transient Liquid Phase Bonding of Titanium to Aluminium Nitride. Materials Science and Engineering A. 2008, doi:10.1016/j.msea.2007.10.104
    77 J. Andrieux, O. Dezellus, F. Bosselet, M. S. Peronnet, et al.. Details on the Formation of Ti2Cu3 in the Ag-Cu-Ti System in the Temperature Range 790 to
    860°C. Journal of Phase Equilibria and Diffusion. 2008, 29(2): 156~162
    78 W. B. Hanson, K. I. Ironside, J. A. Fernie. Active Metal Brazing of Zirconia. Acta Materialia. 2000, 48:4673~4676
    79 D. Sciti, A. Bellosi, L. Esposito. Bonding of Zirconia to Super Alloy with the Active Brazing Technique. Journal of the European Ceramic Society. 2001, 21:45~52
    80 A. H. Carim, C. H. Mohr. Brazing of Alumina with Ti4Cu2O and Ti3Cu3O Inerlayers. Materials Letters. 1997, 33:195~199
    81 G. P. Kelkar, A. H. Carim. Al Solubility in M6X Compounds in the Ti-Cu-O System. Materials Letters. 1995, 23:231~235
    82 J. J. Kim, J. W. Park, T. W. Eagar. Interfacial Microstructure of Partial Transient Liquid Phase Bonded Si3N4-to-Inconel 718 Joints. Materials Science and Engineering A. 2003, 344:240~244
    83 O. Smorygo, J. S. Kim, M. D. Kim, T. G. Eom. Evolution of the Interlayer Microstructure and the Fracture Modes of the Zirconia/Cu–Ag–Ti filler/Ti Active Brazing Joints. Materials Letters. 2007, 61:613~616
    84 C.F. Liu, J. Zhang, Y. Zhou, Q.C. Meng, M. Naka. Effect of Ti Content on Microstructure and Strength of Si3N4/Si3N4 Joints Brazed with Cu–Pd–Ti Filler Metals. Materials Science and Engineering A. 2008, 491:483~487
    85 A. Marmur. Thermodynamic Aspects of Contact-Angle Hysteresis. Advances in Colloid and Interface Science. 1994, 50:121~141
    86 A. Marmur. Equilibrium Contact Angles: Theory and Measurement. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1996, 116:55~61
    87 A. Contreras, C. A. Leon, R. A. L. Drew, et al.. Wettability and Spreading Kinetics of Al and Mg on TiC. Scripta Materialia. 2003, 48:1625~1630
    88 N. Eustathopoulos. Dynamics of Wetting in Reactive Metal/Ceramic Systems. Acta Materialia. 1998, 46: 2319~2327
    89 A. Mortensen, B. Drevet, N. Eustathopoulos. Kinetics of Diffusion-Limited Spreading of Sessile Drops in Reactive Wetting. Scripta Materialia. 1997, 36(6):645~651
    90 K. Landry, N. Eustathopoulos. Dynamics of Wetting in Reactive Metal/Ceramic Systems: Linear Spreading. Acta Materialia. 1996, 44(10):3923~3932
    91 N. Eustathopoulos, J. P. Garandet, B. Drevet. Influence of Reactive Solute Transport on Spreading Kinetics of Alloy Droplets on Ceramic Surfaces. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences. 1998, 356(1739):871~884
    92 B. Drevet, K. Landry, P. Vikner, et al.. Influence of Substrate Orientation on Wetting Kinetics Reactive Metal/Ceramic Systems. Scripta Materialia. 1996, 35(11):1265~1270
    93 K. Landry, S. Kalogeropoulou, N. Eustathopoulos, et al.. Characteristics Contact Angles in the Aluminium/Vitreous Carbon System. Scripta Materialia. 1996, 34(6):841~846
    94 L. Espie, B. Drevet, N. Eustathopoulos. Experimental-Study of the Influence of Interfacial Energies and Reactivity on Wetting in Metal-Oxides Systems. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science. 1994, 25(3):599~605
    95 N. Eustathopoulos. Progress in Understanding and Modeling Reactive Wetting ofMetals on Ceramics. Current Opinion in Solid State and Materials Science. 2005, 9:152~160
    96 R. Bhola, S. Chandra. Parameters Controlling Solidification of Molten Wax Droplets Falling on A Solid Surface. Journal of Materials Science. 1999, 34:4883~4894
    97 V. H. Lopez, A. R. Kennedy. Flux-Assisted Wetting and Spreading of Al on TiC. Journal of Colloid and Interface Science. 2006, 298: 356~362
    98 E. Saiz, C. W. Hwang, K. Suganuma, et al.. Spreading of Sn-Ag Solders on FeNi Alloys. Acta Materialia. 2003, 51:3185~3197
    99 H. Kamusewitz, W. Possart, D. Paul. The Relation between Young’s Equilibrium Contact Angle and the Hysteresis on Rough Paraffin Wax Surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999, 156:271~279
    100 D. E. Peebles, H. C. Peebles, J. A. Ohlhausen. Kinetics of the Isothermal Spreading of Tin on the Air-Passivated Copper Surface in the Absence of A Fluxing Agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998, 144:89~114
    101 P. Shen, H. Fujii, T. Matsumoto, et al.. Reactive Wetting of SiO2 Substrates by Molten Al. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science. 1994, 35(2):583~588
    102 L. Yin, S. J. Meschter, T. J. Singler. Wetting in the Au-Sn System. Acta Materialia. 2004, 52:2873~2888
    103 F. G. Yost. Kinetics of Reactive Wetting. Scripta Materialia. 2000, 42:801~806
    104 F. G. Yost, R. R. Rye, J. A. Mann. Solder Wetting Kinetics in Narrow V-Grooves. Acta Materialia. 1997, 45(12):5337~5345
    105 F. G. Yost, E. J. O'toole. Metastable and Equilibrium Wetting States in the Bi-Sn System. Acta Materialia. 1998, 46(14):5143~5151
    106 E. Saiz, A. P. Tomsia. Kinetics of High-Temperature Spreading. Current Opinion in Solid State and Materials Science. 2005, 9: 167~173
    107 E. Saiz, R. M. Cannon, A. P. Tomsia. Reactive Spreading: Adsorption, Ridging and Compound Formation. Acta Materialia. 2000, 48: 4449~4462
    108 F. G. Yost. The Triple Line in Reactive Wetting. Scripta Materialia. 1998, 38: 1225~1228
    109 A. Kuboy, T. Makino, D. Sugiyama, et al.. Molecular Dynamics Analysis of the Wetting Front Structure in Metal/Metal Systems. Journal of Materials Science.2005, 40: 2395~2400
    110 M. Nomura, C. Iwamoto, S. I. Tanaka. Nanostructure of Wetting Triple Line in A Ag– Cu– Ti/Si/sub3/N/sub4/Reactive System. Acta Materialia. 1999, 47: 407~413
    111 R. Voitovitch, A. Mortensen, F. Hodaj, et al.. Diffusion Limited Reactive Wetting: Study of Spreading Kinetics of Cu–Cr Alloys on Carbon Substrates. Acta Materialia. 1999, 47: 1117~1128
    112 E Saiz, A. P. Tomsia. Kinetics of Metal-Ceramic Composite Formation by Reactive Penetration of Silicates with Molten Aluminum. Journal American Ceramic Society. 1998, 81: 2381~2393
    113 S. Avraham, W. D. Kaplan. Reactive Wetting of Rutile by Liquid Aluminium. Journal of Materials Science. 2005, 40: 1093~1100
    114 K. Landry, N. Eustathopoulos. Dynamics of Wetting in Reactive Metal/Ceramic Systems: Linear Spreading. Acta Materialia. 1996, 44(10): 3923~3932
    115 B. Drevet, K. Landry, P. Vikner, et al.. Influence of Substrate Orientation on Wetting Kinetics in Reactive Metal/Ceramic System. Scripta Materialia. 1996, 35(11): 1265~1270
    116 K. Landry, S. Kalogeropoulou, N. Eustathopoulos, et al.. Characteristic Contact Angles in the Aluminium/Vitreous Carbon System. Scripta Materialia. 1996, 34(6): 841~846
    117 N. Eustathopoulos. Progress in Understanding and Modeling Reactive Wetting of Metals on Ceramics. Current Opinion in Solid State and Materials Science. 2005, 9: 152~160
    118 R. K. Shiue, S. K. Wu, J. M. O, et al.. Microstructural Evolution at the Bonding Interface during the Early-Stage Infrared Active Brazing of Alumina. Metallurgical and Materials Transactions A. 2000, 31: 2527~2536
    119 M. Paulasto, J. Kivilahti. Metallurgical Reactions Controlling the Brazing of Al2O3 with Ag-Cu-Ti Filler Alloys. Journal of Materials Research. 1998, 13(2): 343~352
    120 O. Dezellus, F. Hodaj, N. Eustathopoulos. Chemical Reaction-Limited Spreading: the Triple Line Velocity Versus Contact Angle Relation. Acta Materialia. 2002, 50: 4741~4753
    121 A. Marmur. Equilibrium and Spreading of Liquids on Solid Surfaces. Advances in Colloid and Interface Science. 1983, 19:75~102
    122 F. B. Wyart, P.G. de Gennes. Dynamics of Partial Wetting. Advances in Colloid and Interface Science. 1992, 39:1~11
    123 F. G. Yost, P. A. Sackinger, E. J. O'toole. Energetics and Kinetics of Dissolutive Wetting Processes. Acta Materialia. 1998, 46(7):2329~2336
    124沈孝芹,李亚江, U. A. Puchkov,等. Al2O3-TiC/1Cr18Ni9Ti扩散焊接头应力分布.焊接学报. 2008, 29(10): 41~44
    125曲仕尧,邹增大,王新洪,等.氧化铝基复合陶瓷-金属钎焊界面的热应力.焊接学报. 2005, 26(4): 16~20
    126冯吉才,张丽霞. TiC金属陶瓷/铸铁钎焊接头热应力的有限元模拟.焊接学报. 2005, 26(12): 9~12
    127卢金斌,徐九华. Ag-Cu-Ti钎焊金刚石的界面结构及热应力分析.稀有金属材料与工程. 2009, 38(4): 642~645
    128孙福,李京龙,张斌升.陶瓷与金属焊接接头残余热应力研究.焊接. 2006, 11: 22~25
    129吴铭方,周小丽,马骋,等. Ti(C, N)/40Cr钎焊接头残余应力数值计算.焊接学报. 2006, 27(12): 65~68
    130吴铭方,陈健,浦娟,等. Ti(C, N)与45钢钎焊接头组织及力学性能.焊接学报. 2007, 28(12): 9~12
    131 V. I. Dybkov. Growth Kinetics of Chemical Compound Layers. Cambridge International Science. 1998: 135~170
    132 P. Villars, A. Prince, H. Okamoto. Handbook of Ternary Alloy Phase Diagrams. ASM Inernational. Materials Park. 1995: 9840~9861
    133赖和怡,刘国勋.合金扩散和热力学.冶金工业出版社. 1984:1~65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700