硫属化合物复合薄膜的制备及光电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属硫属化物(如硫化物、硒化物和碲化物等)纳米材料具有独特的光电性质,在太阳能电池等方面有广泛的应用前景。将金属硫属化物与TiO2复合,可以提高材料的光电转换效率,是光电材料领域的研究热点之
     本论文首先应用聚乙二醇(PEG)作为造孔剂,制备了多孔Ti02薄膜,然后将Ag2Se、PbSe、SnS等金属硫属化合物沉积其表面,制备复合薄膜。采用扫描电镜(SEM)、X射线衍射(XRD)、紫外—可见光谱(UV-vis)等测试技术对所得薄膜进行了表征,探讨了所得薄膜的形成过程及影响因素,并以氙灯作为光源,研究了各种薄膜的光电转换性质。
     主要研究内容如下:
     1.Ag2Se/Ti02纳米复合薄膜的制备及其光电性质研究
     在Ti02溶胶中加入PEG,采用浸渍提拉法首先在导电玻璃上制备多孔Ti02薄膜,然后利用界面反应将Ag2Se沉积到Ti02薄膜上,制备Ag2Se/Ti02复合薄膜。采用XRD、SEM、UV-vis等测试技术对所得薄膜进行表征。以氙灯作为光源,用电化学工作站测试各种薄膜的光电转换性质,探讨溶胶中PEG的加入量对薄膜光电转换性质的影响。结果表明:Ag2Se/Ti02复合薄膜的光电性质优于纯Ti02薄膜,当PEG加入量为10%时其光电流最大。
     2.PbSe/BaTiO3/Ti02纳米复合薄膜的制备及其光电性质的研究
     首先以浸渍提拉的方式在导电玻璃上制备多孔Ti02薄膜,然后将溶胶-凝胶法制备的BaTi03复合在TiO2薄膜表面,最后采用界面反应将PbSe沉积到BaTi03/Ti02薄膜上,制备出PbSe/BaTi03/Ti02复合薄膜。用XRD和SEM方法对各种薄膜和纳米粒子进行表征,利用UV-vis测定其光学性质。以氙灯作为光源,用电化学工作站测试各种薄膜的光电流和开路电压,探讨其光电转换性质。结果表明:由于BaTi03的引入,减少了空穴与载流子的无效复合,使所得PbSe/BaTiO3/Ti02复合薄膜能产生大的光电流。
     3.SnS/TiO2纳米复合薄膜的制备及其光电性质研究
     首先采用浸渍提拉法在导电玻璃上制备多孔TiO2薄膜,然后在常温下用界面反应将SnS沉积到TiO2薄膜上。用XRD、SEM、UV-vis等测试技术对各种薄膜进行表征。用氙灯作为光源,采用电化学工作站测试各种薄膜的光电流和开路电压,探讨其光电转换性质。结果表明:合成薄膜表面的SnS粒径为几十纳米,由于其在可见光区有强的吸收,拓宽了薄膜的光电响应范围,因而使所得SnS/Ti02复合薄膜能产生大的光电流和开路电压。
Metal chalcogenide (such as selenide, sulfide and telluride) nano-materials have special photoelectric properties, and wide potential applications in solar cell and others. The efficiency of photo-electric transformation would be heightened by complexing metal chalcogenide with TiO2, which is a hot field in photoelectric materials.
     In this paper, the porous TiO2 thin film was first prepared by adding PEG in the TiO2 sol. Then, the composite films were constructed by depositing Ag2Se, PbSe and SnS on the surface TiO2 thin film. The films as-abtained were characterized by Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Ultraviolet-visible Spectrophotometer (UV-vis). The formation mechanism and the influence factors for the films were exploited. With the xenon lamp light as source, the photoelectric conversion performance of the films was examined.
     Main work as follows:
     1. The preparation and photoelectric performance of Ag2Se/TiO2 interface composite film
     First, the porous TiO2 film was prepared with conduct glass plate by dipping-lifting process in the sol mixing PEG. Then, the Ag2Se/TiO2 composite film was made through the interfacial reaction of Ag2Se. The films as-obtained were characterized by SEM, XRD, and UV-vis. The photoelectric conversion performance of the films was examined by electeochemical workstation with xenon lamp light source. The effect of the amount of the PEG in the sol on the photoelectric conversion was studied. The results show that the photoelectric conversion efficiency of the Ag2Se/TiO2 composite film is higher than that of the pure TiO2 film. The largest photocurrent was obtained by the Ag2Se/TiO2 composite film prepared with the amount of the 10% PEG in the sol.
     2. The preparation and photoelectric performance of PbSe/BaTiO3/ TiO2 interface composite film
     First, the TiO2 film on the conduct glass plate was prepared by dipping-lifting process with sol-gel solution. Then, the BaTiO3 was deposited on the surface of the TiO2 film by sol-gel method. Finally, the PbSe/BaTiO3/TiO2 composite film was prepared by the interfacial reaction of PbSe. The films as-obtained were characterized by SEM, XRD and UV-vis. The photoelectric conversion performance of the films was examined by electeochemical workstation with xenon lamp light source. The results show that the large photocurrent can be obtained with the PbSe/ BaTiO3/TiO2 composite film since the useless recombination of the hole and electron was decreased in the presence of BaTiO3.
     3. The preparation and photoelectric performance of SnS/TiO2 interface composite film
     First, the TiO2 film on the conduct glass plate was prepared by dipping-lifting process with sol-gel solution. Then, the SnS/TiO2 composite film was made by depositing SnS on the surface of the TiO2 film at room temperature. The films as-obtained were characterized by SEM, XRD and UV-vis. Using the xenon lamp light as source, the photoelectric conversion performance of the films were examined by electeochemical workstation. The results show that the large photocurrent and open circuit voltage can be obtained with the SnS/TiO2 composite film, since the SnS has strong absorption in visible light district, which broadens the scope of its optical response.
引文
[1]Yutaka Ohya, Hiroki Koyama. Electrical properties of p-n contact with oxide semiconductor thin films fabricated by liquid phase method[J]. Materials Science and Engineering,1998, B54(1-2):55-59.
    [2]N.L. Dmitruk, O.Yu. Borkovskaya. Fluctuation model for p-n heterojunction solar cells[J]. Solar Energy Materials & Solar Cells,2006,90 (15):2496-2500.
    [3]Yi-Mu Lee, Chun-Hung Lai. Preparation and characterization of solid n-TiO2/p-NiO hetrojunction electrodes for all-solid-state dye-sensitized solar cells[J]. Solid-State Electronics,2009,53 (10):1116-1125.
    [4]Jianhua Z, Aihua W.24.5%efficiency silicon PERT cells on,MCZ substrates and 24.7% efficiency PERL cells on FZ substrates [J]. Progress in Photov Research and Appl,1999,7:471—474.
    [5]S. Gall,C.Becker. Polycrystalline silicon thin-film solar cells on glass[J]. Solar Energy Materials & Solar Cells,2009,93 (6-7):1004-1008.
    [6]Armin G. Aberle.Thin-film solar cells[J]. Thin Solid Films, 2009,517(17):4706-4710.
    [7]Gratzel M. The advent of mesoscopiei njection solar cells[J]. Res Appl.2006,1 4(5):429-442.
    [8]Arturo Morales-Acevedo. Physical basis for the design of CdS/CdTe thin film solar cells[J]. Solar Energy Materials & Solar Cells,2006,90 (6) 678-685.
    [9]Brian E. McCandless,Kevin D. Dobson. Processing options for CdTe thin film solar cells[J]. Solar Energy,2004,77 (6):839-856.
    [10]N. Romeo, A. Bosio. Recent progress on CdTe/CdS thin film solar cells[J]. Solar Energy,2004,77 (6):795-801.
    [11]ThomasWilhelm,Baptiste Berenguier. Efficient CuInS2(CIS) solar cells by photoelectrochemical conditioning[J]. C. R. Chimie,2006,9 (2):294-300.
    [12]M. Altosaar, M. Danilson. Further developments in CIS monograin layer solar cells technology [J]. Solar Energy Materials & Solar Cells,2005,87 (1-4): 25-32.
    [13]SeokhyunYoon,TaehunYoon. Nanoparticle-based approach for the formation of CIS solar cells[J]. Solar Energy Materials & Solar Cells,2009,93 (6-7): 783-788.
    [14]J. Chen, D.W. Zhao. Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells[J]. Electrochemistry Communications,2009,11(12):2265-2267.
    [15]S. Biswas, M.F. Hossain. Fabrication of Gratzel solar cell with TiO2/CdS bilayered photoelectrode[J]. Thin Solid Films,2008,517 (13):1284-1288.
    [16]Thitima Rattanavoravipa, Takashi Sagawa. Photovoltaic performance of hybrid solar cell with TiO2 nanotubes arrays fabricated through liquid deposition using ZnO template[J]. Solar Energy Materials & Solar Cells,2008,92 (11):1445-1449.
    [17]吴锦雷.纳米光电功能薄膜[M].北京大学出版社,2006.
    [18]D. jin, B. yun. Photocatalytic TiO2 deposition chemical vapordeposit-ion[J]. J Hazard Mater,2000, B73(2):199-206.
    [19]H.F. Sun, C.Y. Wang.Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure[J]. J Non-Cryst Solids,2008,354(12-13): 1440-1443.
    [20]L. Randeniya, A. Bendavid, P. Martin, et al. Photoelec—trochemical and structural properties of TiO2 and N-doped TiO2 thin films synthesized using pulsed direct current plasma—activated chemical vapor deposition[J]. J Phys Chem C,2007,111:18334-18340.
    [21]Purica M, Budianu E, Rusu E. Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition[J]. Thin Solid Films,2002, 403(1):485-488.
    [22]陈光华,邓金祥.纳米薄膜技术与应用[M].化学工业出版社,2004.
    [23]W.H.Ching, Michael Leung. Solar photocatalytic degradation of gaseous for maldehyde sol-gel TiO2 thin film for Enhancement of in door air quality [J]. Sol Energy,2004,77(1):29-35.
    [24]T.F. Wen, J.P. Gao, J.Y. Shen. Preparation and characterization of TiO2 thin films by the sol-gel process [J]. J Mater Sci,2001,36(1):5923-5926.
    [25]C. Garzettaet, E. Bontempi. Novel selective ethanol Sensors:TiO2 thin films sol-gel spin-coating [J]. Sensor and Actuat B-Chem.,2003, B93(1-2):49-50.
    [26]R. Sonawane, S. Hegde, M. Dongare. Preparations of titanium (IV)oxide thin film photocatalyst by sol-gel dip coating[J]. Mater Chem and Phys,2003,77: 744-750.
    [27]D. Bao, A. Kuang. Sol-Gel derived c-axis oriented ZnO thin films[J].Thin Solid Films,1998,312:37-39.
    [28]Z.Z, Ye, H.H. Chen, R. Liu, et al. Structure and PL spectrum of ZnO films prepared by DC reactive magnetron sputtering[J]. Chinese Journal of Semiconductors,2001,22:1015-1020.
    [29]邹璐,叶志镇.磁控溅射中生长参数对氧化锌薄膜性能的影响[J].微纳电子技术,2001,(06):55-58.
    [30]洪剑寒,王鸿博等.磁控溅射法制备纳米Ag薄膜的AFM分析和导电性能[J].纺织学报,2006,9:14-17.
    [3l]陈光华,邓金祥等.新型电子薄膜材料[M].化学工业出版社,2002.
    [32]翁晴,程树英.ZnS薄膜的电沉积及表征[J].福州大学学报(自然科学版).2008,1:73-76.
    [33]沈宗华,王安杰,解建国等.二维硫化锌材料的制备及其研究[J].化工进展,2006,25(4):392-396.
    [34]Tohru YuKawa, Katsumi Kuwabara, Kunihito Koumoto. Electrodeposition of CuInS2 from aqueous solution Part Ⅱ.Electrodeposition of CuInS2 film[J]. Thin Solid Films,1996,286:151-153.
    [35]A.M. Martinez, A.M. Fernandez, L.G. Arriaga, U. Cano. Preparation and characterization of Cu-In-S thin films by electrodeposition[J]. Mater Chem and Phys,2006,95:270-274.
    [36]D. M. Bagnall, Y.F. Chen. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assis-ted MBE[J]. J Crystal Growth, 1998,184-185:605-609.
    [37]赵彤,陈凡.BaTiO3/SrTiO3超晶格的激光分子束外延生长与二阶光学非线性研究[J].中国科学(A辑).2000,30(5):463-468.
    [38]贺永宁,朱长纯等.激光分子束外延工艺用ZnO陶瓷靶材的研究[J].硅酸盐学报,2005,33(3):299-303.
    [39]成晓玲,胡礼军等.纳米二氧化钛薄膜制备研究进展[J].表面技术,2005,34(8):1-8.
    [40]熊晓东,凌玲等.银掺杂的TiO2光催化纳米薄膜制备及农药降解性能[J].有色金属,2002,54(B07):204-206.
    [41]V.G. Bessergenev, R.J.F. Pereira. Study of physical and photocatalytic properties of titanium dioxide thin films prepared from complex precursors by chemical vapour deposition[J]. Thin Solid Films,2006,503 (1/2):29-39.
    [42]Andrew Mills, George Hill. Thick titanium dioxide films for semiconductor photocatalysis[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003,160 (3):185-194.
    [43]Judit Menesi, Renata Kekesi. Photocatalysis on silver-layer silicate/titanium dioxide composite thin films at solid/vapour interface[J]. Catalysis Today,2009, 144(1-2):160-165.
    [44]Wirat Jarernboon, Samuk Pimanpang. Optimization of titanium dioxide film prepared by electrophoretic deposition for dye-sensitized solar cell application[J]. Thin Solid Films,2009,517 (16):4663-4667.
    [45]G.R.A. Kumara, M. Okuya. Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films:enhancement of the efficiency[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004,164(1-3):183-185.
    [46]B.S. Richards, S.F. Rowlands. Potential cost reduction of buried-contact solar cells through the use of titanium dioxide thin films [J]. Solar Energy,2004,76 (1-3):269-276.
    [47]郭洪蕾,顾德恩.光催化活性Ti02薄膜的研究进展[J].电子元件与材料2006,3(3):1-4.
    [48]Kun-Mu Lee, Chih-Wei Hu. Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells[J]. Solar Energy Materials and Solar Cells.2008,92 (12):1628-1633.
    [49]R.S. Singh, V.K. Rangari. Nano-structured CdTe, CdS and TiO2 for thin film solar cell applications[J]. Solar Energy Materials and Solar Cells,2004,82 (1-2):315-330.
    [50]Toyoda T, Tsuboya I, Shen Q. Effect of rutile-type content on nanos-tructured anatase-type TiO2 electrode sensitized with CdSe quantum dots characterized with photoacoustic and photoelectrochemical current spectroscopies[J]. Materials science and engineering. C, Biomimetic and supramolecular systems, 2005,25(5-8):853-857.
    [51]Niitsoo O, Sarkar S K,Pejoux C. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells[J]. J Photochem Photobio A,2006,181(2-3):306-313.
    [52]Rincon M E, Gomez-Daza O, Corripio C. Sensitization of screen-printed and spray-painted TiO2 coatings by chemically depos-ited CdSe thin films[J]. Thin Solid Films,2001,389(1-2):91-98.
    [53]Shen Q, Katayama K, Yamaguchi M. Study of ultrafast carrier dy-namics of nanostructured TiO2 films with and without CdSe quantum dot deposition using lens-free heterodyne detection transient grating technique[J]. Thin Solid Films, 2005,486:15-19.
    [54]Biswas S, Hossain M F. Fabrication of Gratzel solar cell with TiO2/CdS bilayered photoelectrode[J]. Thin Solid Films,2008,517:1284-1288.
    [55]Wijayantha K G U, Peter L M. Fabrication of CdS quantum dot sensitized solar cells via a pressing route[J]. Sol Energ Mat Sol C,2004,83:363-36.
    [1]LI Qian, ZHANG Xiu lian. Synthesis of TiO2 Nano structured Film Composed of Needle Shaped Particles[J]. Chemical Research,2006,17(1):20-23.
    [2]周彩楼,赵丹.协同组装法制备二氧化钛多孔薄膜[J].硅酸盐学报,2006,34(10):1167-1171.
    [3]Busani T, Devine R A B. Dielectric and Infrared Properties of TiO2 Films Containing Anatase and rutil[J]. Semiconductor Science and Technology, 2005,20(8):870-874.
    [4]杨大纲,李秋叶.二氧化钛纳米膜电极的形貌和光电化学性质[J].化学研究,2004,12(4):6-9.
    [5]O,Regan B,Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991,353:737-740.
    [6]张含平,林原.CdSe敏化Ti02纳米晶多孔膜电极的制备及其光电性能研究[J].现代化工,2006,(11):39-41.
    [7]R. Kniprath, S. Duhm. Internal Structure of Nanoporous TiO2/Polyion Thin Films Preparedby Layer-by-Layer Deposition[J]. Langmuir,2007,23(19): 9860-9865.
    [8]L. K. Randeniya, A. Bendavid. Photoelectrochemical and Structural Properties of TiO2 and N-Doped TiO2 Thin Films Synthesized Using Pulsed Direct Current Plasma-Activated Chemical Vapor Deposition[J]. J. Phys. Chem. C,2007, 111(49):18334-18340.
    [9]M. Cecilia, Fuertes,Galo. Processing of Macroporous Titania Thin Films:From Multiscale Functional Porosity to Nanocrystalline Macroporous TiO2[J]. Chem. Mater,2006,18(8):2109-2117.
    [10]Istvan Robel,Vaidyanathan Subramanian. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films[J]. J. Am. Chem. Soc,2006,128(7):2385-2393.
    [11]M.E. Rincon, Gomez-Daza. Sensitization of screen-printed and spray-painted TiO2coatings by chemically deposited CdSe thin films[J]. Thin Solid Films,2001,389(1-2):91-98.
    [12]M.E.Rincon,Jimenez,Martinez. Thermal treatment effectsin the photovoltaic conversion of spray-painted TiO2 coatingssensitized by chemically deposited CdSe thin films[J]. Solar Energy Materials & Solar Cells,2001,70 (2):163-173.
    [13]S.J. Pawar, P.P. Chikode. Studies on electrodeposited silver selenide thin film by double exposure holographic interferometry[J]. Materials Science and Engineering,2007,137 (1-3):232-236.
    [14]G. Beck, J. Janek. Negative and linear positive magnetoresistance effect in silver-rich silver selenide [J]. Solid State Sciences,2008,10 (6):776-789.
    [15]Yong Cui, Gang Chen. Solvothermal syntheses of β-Ag2Se crystals with novel morphologies [J]. Journal of Solid State Chemistry,2003,172 (1):17-21.
    [16]Z. Y. Jiang, R. B. Huang. Synthesis of Silver Selenide Bicomponent Nanoparticles by a Novel Technique:Laser' Solid' Liquid Ablation [J]. Journal of Solid State Chemistry,2001,160(2):430-434.
    [17]Robel I, Subramanian V,Kuno M. Quantum dot solar cells. Har-vesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films[J]. J Am Chem Soc,2006,128:2385-2393.
    [18]Gerischer H, Luebke M. A particle size effect in the sensitization of TiO2 electrodes by a CdS deposit[J]. J Electroanal Chem,1986,204:225-227.
    [1]王冬至,刘福田.多孔纳米二氧化钦薄膜的制备及其光催化活性[J].陶瓷学报,2006,27(4):397-401.
    [2]Beata Tryba. Immobilization of TiO2and Fe -C-TiO2photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water[J]. Journal of Hazardous Materials,2008,151 (2-3):623-627.
    [3]Jirapat Ananpattarachai, Puangrat Kajitvichyanukul. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants[J]. Journal of Hazardous Materials,2009, 168(1):253-261.
    [4]Xiang Dong, Jie Tao. Enhanced photoelectrochemical properties of F-containing TiO2 sphere thin film induced by its novel hierarchical structure[J]. Applied Surface Science,2009,255 (16) 7183-7187.
    [5]Chuen-Shii Chou, Ru-Yuan Yang. Preparation of TiO2/Nano-metal composite particles and their applications in dye-sensitized solar cells[J]. Powder Technology,2009,194 (1-2):95-105.
    [6]OliviaNiitsool,ShaibalK.Sarkar. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells [J]. Journal of Photochemistry and Photobiology A: Chemistry,2006,181 (2-3):306-313.
    [7]R.S. Singh, V.K. Rangari, S. Sanagapalli. Nano-structured CdTe, CdS and TiO2 for thin film solar cell applications[J]. Solar Energy Materials and Solar Cells, 2004,82 (1-2):315-330.
    [8]P. Sudhagar, June Hyuk Jung, Suil Park, R. Sathyamoorthy. Self-assembled CdS quantum dots-sensitized TiO2 nanospheroidal solar cells:Structural and charge transport analysis [J]. Electrochimica Acta,2009,55 (1):113-117.
    [9]A. Munoz,J. Melendez,M.C. Torquemada. PbSe photodetector arrays for IR sensors [J]. Thin Solid Films,1998,317(1-2):425-428.
    [10]V. Sholin, A.J.Breeze, I.E.Anderson, Y.Sahoo. All-inorganic CdSe/PbSe nanoparticle solar cells[J]. Solar Energy Materials & Solar Cells,
    2008,92(18):1706-1711.
    [11]Seiki Kitada, Einosuke Kikuchi, Akira Ohno. Effect of diamine treatment on the conversion efficiency of PbSe colloidal quantum dot solar cells[J]. Solid State Communications,2009,149 (41-42):1853-1855.
    [12]Daqin Yun, WeiFeng, HongcaiWu. Efficient conjugated polymer-ZnSe and-PbSe nanocrystals hybrid photovoltaic cells through full solar spectrum utilization[J]. Solar Energy Materials and Solar Cells,2009,93 (8):1208-1213.
    [13]Hugh W. Hillhouse, Matthew C. Beard. Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics[J]. Current Opinion in Colloid and Interface Science,2009,14 (4):245-259.
    [14]曹鸣,操卫忠,杨新华.钛酸钡晶体压电性能的分子动力学模拟[J].压电与光,2009,31(2):289-295.
    [15]Ki-Deuk Min,Jongwon Lee. Influences of particle size upon room temperature structure of BaTiO3 thin films onp-Si substrates[J]. J Mater Sci:Mater Electron, 2008,19(1):85-90.
    [16]Bo Li,Shuren Zhang. Preparation of BaTiO3-based ceramics by nanocomposite doping process[J]. J Mater Sci,2007,42(6):2090-2096.
    [17]L.Gomathi Devi, G.Krishnamurthy. TiO2/BaTiO3-assisted photocatalytic mineralization of diclofop-methyl on UV-light irradiation in the presence of oxidizing agents[J]. Journal of Hazardous Materials,2009,162 (2-3):899-905.
    [18]Li Zhang,Yunhui Shi. Dye-sensitized solar cells made from BaTiO3-coated TiO2 nanoporous electrodes[J]. Journal of Photochemistry and Photobiology A: Chemistry,2008,197 (2-3):260-265.
    [19]I. Robel, V. Subramanian, M. Kuno. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films[J]. J.Am. Chem. Soc,2006,128(7):2385-2393.
    [1]M.E. Rincon Gomez-Daza, Corripio, Orihuela. Sensitization of screen-printed and spray-painted TiO2coatings by chemically deposited CdSe thin films[J]. Thin Solid Films,2001,389(1-2):91-98.
    [2]M.E. Rincon, Jimenez.Thermal treatment effectsinthe photovoltaic conversion of spray-painted TiO2 coatingssensitized by chemically deposited CdSe thin films [J]. Solar Energy Materials & Solar Cells,2001,70 (2):163-173.
    [3]M. Devika a, N. Koteeswara Reddy. Weak rectifying behaviour of p-SnS/n-ITO heterojunctions[J]. Solid-State Electronics,2009,53 (6):630-634.
    [4]Robert W. Miles,Ogah E. Ogah. Thermally evaporated thin films of SnS for application in solar cell devices [J]. Thin Solid Films,2009,517 (17): 4702-4705.
    [5]Martin Parentean, Cosmo Carlone. Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors [J]. Physical Review B, 1990,41(8):5227-5234.
    [6]籍凤秋,曹传宝等.硼碳氮纳米管的制备及其表征[J].化工学报,2005,56(2):363.
    [7]Masaya Ichimura. Calculation of band offsets at the CdS/SnS heterojunction[J]. Solar Energy Materials and Solar Cells,2009,93 (3):375-378.
    [8]K.T. Ramakrishna Reddya, N. Koteswara Reddy. Photovoltaic properties of SnS based solar cells[J]. Solar Energy Materials and Solar Cells,2006,90 (18-19): 3041-3046.
    [9]M.Gunasekaran, M.Ichimura.Photovoltaic cells based on pulsed electrochemically deposited SnS and photochemically deposited CdS and Cd1-xZnxS.[J]. Solar Energy Materials & Solar Cells,2007,91 (9):774-778.
    [10]李兵,史成武.SnS2/SnS薄膜太阳能电池的制备与性能研究[J].合肥工业大学学报(自然科学版),2009,32(6):826-828.
    [11]M. Devika,N. Koteeswara Reddy. Weak rectifying behaviour of p-SnS/n-ITO heterojunctions[J]. Solid-State Electronics,2009,53 (6):630-634.
    [12]LI Qian, ZHANG Xiu lian. Synthesis of TiO2 Nanostructured Film Composed of Needle Shaped Particles [J]. Chemical Research.2006,17(1):20-23.
    [13]Busani T.Devine R A B. Dielectric and Infrared Properties of TiO2 Films Containing Anatase and rutil [J]. Semiconductor Science and Technology, 2005,20(8):870-874.
    [14]Zhi jie Wanga, Shengchun Qua, The application of SnS nanoparticles to bulk heterojunction solar cells[J]. Journal of Alloys and Compounds, 2009,482(1-2):203-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700