介孔MCM-41中纳米硫化锌的组装与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化锌材料具有许多特殊的光电性能,在薄膜电致发光装置、光电二极管、红外窗材料以及光催化剂等领域有着广泛的应用。纳米尺寸的ZnS因其能带宽度大于其相应的体相材料,而具有更广泛的应用前景。但其应用受制于其稳定性,因为纳米材料高的化学反应活性使其易于氧化、聚集,进而导致结构和性质的巨大变化,因此提高ZnS材料的稳定性十分必要。要达到这个目的可采用的方法即是将纳米材料组装到有固定孔道的模板中,或在其外表面镀一层惰性的薄膜。近年来,MCM-41因其规则的六方结构和均一孔径而成为一种广泛研究的组装载体。
     本文利用溶剂热法、微波法和等体积浸渍法三种方法在介孔MCM-41中组装ZnS纳米晶体,提高纳米ZnS材料的稳定性。并用X射线衍射(XRD),紫外可见光谱(UV-Vis),N_2吸附(N_2 adsorption-desorption isotherms),透射电镜(TEM)等手段对得到的材料进行表征。由XRD计算得到三种方法制得的ZnS粒子尺寸在1.6~2.0nm间。ZnS的存在使MCM-41骨架强度降低,并导致比表面积、孔径和孔体积的减小。量子尺寸效应引起UV-Vis光谱蓝移28~45nm。表征结果表明由溶剂热合成的纳米ZnS材料主要集中在孔内,尺寸较小且载体MCM-41骨架结构保持完整,证明溶剂热法是一种有效的组装方法。最后对溶剂热法考察实验条件发现本文所提出的溶剂热合成法,可以在较宽的合成条件下获得ZnS/MCM-41材料,并得到了最佳实验条件:
     (1)硫化过程:H_2S流速80ml/min;硫化温度120℃;硫化时间2h;固定床硫化。
     (2)制备ZnO/MCM-41过程的最佳实验条件:反应物浓度为0.03M;晶化温度为70℃;晶化时间为2h;无水乙醇为溶剂;选乙酸锌为锌源。
As a wide-band gap semiconductor, ZnS particles have been found applications in thin-film electroluminescent devices, light-emitting diode, IR windows materials and photocatalysis. Nanosized materials are of importance due to its novel properties which differ from its bulk. It is well accepted that the stability of nanoscale materials is a key factor which determines their applications. Nanoscale materials often exhibit high chemical reactivity. The high chemical reactivity often results in dramatic changes in their structures and properties, which limits their applications. In order to lower the chemical reactivity of ZnS, some researchers prepared the nanomaterials in porous materials or the other inert film. With the protection of porous materials or the inert film, the nanocrystals were not easy to aggregation. In recent years, many studies indicate that the mesoporous MCM-41 is one of the best host materials, due to its regular hexagonal arrays of uniform pore opening.In order to enhance the stability of the nano-sized materials, the present work describes the preparation of binary semiconductor ZnS nanocrystals in the channels of mesoporous MCM-41 using solvothermal method, microwave method and pore value impregnation. The nano-sized materials prepared by the three methods were characterized by XRD, UV-Vis, N_2 adsorption-desorption isotherms and TEM et al. It is shown that the nano zinc sulfide crystals are about 1.6-2.0 nm. The existence of ZnS inside the host results in the decrease of surface area, pore diameter and pore volume. And a blue shift(28~45nm) in UV-Vis absorption spectra is observed. It shows that the solvothermal method is an effective route to assemble zinc sulfide into the mesoporous channels of MCM-41. The diameter of zinc sulfide synthesized by solvothermal method is smaller and the hexagonal order of the host material is maintained during the assembly process. In addition, the synthesis conditions of the solvothermal method are investigated. The results show that the ZnS/MCM-41 materials assembled by solvothermal method can be achieved in a wide range of conditions. And the best conditions are as follows:(1) Sulfidation conditions: H2S flow rate 80 ml/min, temperature 120℃, time 2h.(2) The conditions of synthesizing ZnO/MCM-41: Zn(CH_3COO)_2 concentration 0.03M, crystalization temperature 70℃, crytalization time 2 h, ethanol as the solvent.
引文
[1] 孙芳.中孔分子筛的合成与纳米半导体组装:(硕士学位论文).江苏:苏州大学,2001.
    [2] 李玲,向航.功能材料与纳米技术.化学工业出版社,2002.
    [3] 寇华敏.硫化物纳米半导体材料的溶剂热合成及结构表征:(硕士学位论文).安徽:合肥工业大学,2003.
    [4] Wang X D, Gao P X, Li J et al. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes. Advanced Materials. 2002, 14(23): 1732-1735.
    [5] Kim H, Sigmund W. Zinc sulfide nanocrtstals on carbon nanotubes. Journal of Crystal Growth. 2003, 255(1-2):114-118.
    [6] 沈宗华,王安杰,解建国等.二维硫化锌材料的制备及其研究进展.化工进展.2006,25(4):392-396.
    [7] 王敦青,焦秀玲,陈代荣.硫化锌的性质、用途及制备方法概述.山东化工.2003,32:12-15.
    [8] Calandra P, Goffredi M, Liveri V. Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1999, 160(1):9-13.
    [9] Shao L X, Chang K, Hwang H. Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications. Applied Surface Science. 2003, 212-213(complete):305-310.
    [10] 裘式纶,翟庆洲,肖丰收,张宗韬等.新型沸石分子筛主体-纳米客体复合材料研究进展.物理化学学报.1998,14(12):1116-1122.
    [11] 田博之.新型介观结构材料的合成:从无定形到晶态:(硕士论文).上海:复旦大学,2004
    [12] Yosef M, Schaper A K, Frolba M et al. Stabilization of the thermodynamically favored polymorph of cadmium chalcogenide nanoparticles CdX(S, Se, Te) in the polar mesopores of SBA-15 silica. Inorganic Chemistry. 2005, 44(16):5890-5896.
    [13] Xu W, Liao Y T, Akins D L. Formation of CdS nanoparticles within modified MCM-41 and SBA-15. The Journal of Physical Chemistry B. 2002, 106(43):11127-11131.
    [14] Gao F, Lu Q Y, Liu X Y et al. Controlled synthesis of semiconductor PbS nanocrystals and nanowires inside mesoporous silica SBA-15 phase. Nano Letters. 2001, 1(12):743-748
    [15] Yin L W, Bando Y, Zhu Y C et al. Controlled carbon nanotube sheathing on ultrafine InP nanowires. Applied Physical Letters. 2004, 84(26):5314-5316.
    [16] Rossetti R, Hall R, Gibson J M et al. Hybrid electronic properties between the molecular and solid state limits: Lead sulfide and silver halide crystallites. Jouranl of Chemical Physics. 1985, 83(3):1406-1410.
    [17] Dalas E, Kallitsis J, Sakkopoulos S et al. Cadmium sulfide precipitation in aqueous media: spontaneous precipitation and controlled overgrowth on polyaniline. Journal of Colloid Interface Science. 1991, 141(1):137-145.
    [18] Stucky G D.Mac Dougall J E. Quantum confinement and host/guest chemistry: probing a new dimension. Science. 1990,247(4943):669-678.
    [19] Zhang W H, Shi J L, Chen H R et al. Synthesis and characterization of nanosized ZnS confined in ordered mesoporous silica. Chemical of Materials. 2001.13(2) :648~654.
    [20] Uchida H, Ogata T, Yoneyama H et al. Preparation of size quantized indium phosphide in zeolite cages. Chemical Physics Letters. 1990,173(1):103-106.
    [21] Mac Dougall J E, Eckert H, Stucky G D et al. Synthesis and characterization of group III-V semiconductor clusters:gallium phosphide GaP in zeolite Y. Journal of the American Chemical Society. 1989,111(20):8006-8007.
    [22] Steele M R, Macdonald P M, Ozin G A et al. Topotactic metal organic chemical vapor deposition in zeolite Y:structure and properties of CH3MY from MOCVD reactions of (CH3)_2MHY, where M=Zn, Cd. Journal of the American Chemical Society. 1993,115(16) :7285-7292.
    [23] Chen P, Wu X, Lin J et al. Synthesis of Cu nanoparticles and microsized fibers by using carbon nanotubes as a template. The Journal of Physical Chemistry B. 1999,103(22) :4559-4561.
    [24] Zhou H J, Cai W P, Zhang L D et al. Synthesis and structure of indium oxide nanoparticles dispersed within pores of mesoporous silica.Materials Reserach Bulletin. 1999, 34(6): 845-849.
    [25] Cai W P, Tan M, Wang G Z et al. Reversible transition between transparency and opacity for the porous silica host dispersed with silver nanometer particles within its pores. Applied Physics Letters. 1996,69(20):2980-2982.
    [26] Ukisu Y, Kazusaka A. Preparetion and catalysis of a copper-pyridine complex encapsulated into a zeolite supercage. Journal of Molecular Catalysis. 1991, 70(2):165-174.
    [27] Nakaoka Y, Nosaka Y. Electron spin resonance study of radicals produced by photoirradiation on quantized and bulk ZnS particles. Langmuir. 1997,13(4):708-713.
    [28] Nanda J, Sapra S, Sarma D D et al. Size-selected zinc sulfide nanocrystallites: synthesis, structure and optical studies. Chemistry of Materials. 2000,12(4):1018-1024.
    [29] Velikov K P, Blaaderen A. Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica. Langmuir. 2001,17(16):4779-4786.
    [30] Wang Y, Herron N. Optical properties of cadmium sulfide and lead(II) sulfid clusters encapsulated in zeolites. The Journal of physical Chemistry. 1987, 91(2):257-260.
    [31] Herron N, Wang Y, Eddy M M et al. Structure and optical properties of CdS superculsters in zeolite hosts. Journal of The American Chemical Society. 1989,111(2) :530-540.
    [32] Ozin G A, Steels M R, Holmes A J. Intrazeolite topotactic MOCVD. 3-dimensional structure-controlled synthesis of II-VI semiconductor nanoclusters. Chemistry of Matericals, 1994, 6(7):999-1010.
    [33] Felicia I. Formation of semiconductor clusters in zeolites. Surface Science. 2003, 532-535(complete):816 - 821.
    [34] 郭兴巴图,肖丰收,徐如人.水热合成法在分子筛中组装功能材料.高等学校化学学报.1998,19:1900-1903
    [35] Ozin G A, Gil C. Intrazeolite organometallics and coordination complexes: internal versus external confinement of metal guests. Chemical Reviews. 1989, 89(8):1749-1764.
    [36] Monnier A, Scxhuth F, Huo Q et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science. 1993, 261(5126): 1299-1305.
    [37] Koyano K A, Tatsumi T, Tanaka Y et al. Stabilization of mesoporous molecular sieves by trimethylsilylation. The Journal of Physical Chemistry B. 1997, 101(46):9436-9440.
    [38] Zhao X S, Lu G Q. Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption study, The Journal of Physical Chemistry B. 1998, 102(9):1556-1561.
    [39] Jaroniec C P, Kruk M, Jaronic M et al. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes. The Journal of Physical Chemistry B. 1998, 102(28):5503-5510.
    [40] Feng X, Fryxell G E, Wang L O et al. Functionalized monolayers on ordered mesoporous supports. Science. 1997, 276(5314):923-926.
    [41] Moller K, Bein T. Inclusion chemistry in periodic mesoporous hosts. Chemistry of Materials. 1998, 10(10):2950-2963.
    [42] Froba M, Kohn R, Bouffaud G et al. Fe_2O_3nanoparticles within mesoporous MCM-48 silica:in situ formation and characterization. Chemistry of Materials. 1999, 11(10):2858-2865.
    [43] Corma Avelino. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews. 1997, 97(6):2373-2419.
    [44] Sakamoto Y, Kaneda M, Terasaki O et al. Direct imaging of the pores and cages of three-dimensional mesoporous mateials. Nature. 2000, 408(6811):449-453.
    [45] Huo Q S, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chemistry of Materials. 1996, 8(5):1147-1160.
    [46] Tuel A. Modification of mesoporous silicas by incorporation of heteroelements in the framework. Microporouous and Mesoporous Materials. 1999, 27(2-3):151-169.
    [47] Lim S, Haller G L. Gas phase methanol oxidation on V-MCM-41. Applied Catalysis A:General. 1999, 188(1-2):277-286.
    [48] Wang X X, Lefebvre F, Patarin J et al. Synthesis and characterization of zirconium containing mesoporous silicas: Ⅰ, hydrothermal synthesis of Zr-MCM-41-type materials. Microporous and Mesoporous Materials. 2001, 42(2-3):269-276.
    [49] Leon R, Margolese D, Stucky G D et al. Nanocrystalline Ge filaments in the pores of a mesosilicate. Physical Reviews B. 1995, 52(4):2285-2288.
    [50] Dapurkar S E, Badamali S K, Selvam P. Nanosized metal oxides in the mesoporous of MCM-41 and MCM-48 silicates. Catalyst Today. 2001, 68(1-3):63-68.
    [51] Srdanov V I, Alxneit I, Stucky G D et al. Optical properties of GaAs confined in the pores of MCM-41. The Journal of Physial Chemistry B. 1998,102(18):3341-3344.
    [52] Zhou W Z, Thomas J M, Shephard D S et al. Ordering of ruthenium cluster carbonyls in mesoporous silica. Science. 1998, 280(5364):705-708.
    [53] Badamali S K, Sakthivel A, Selvam P. Influence of aluminium sources on the synthesis and catalytic activity of mesoporous A1MCM-41 molecular sieves. Catalysis Today. 2000, 63(2-4):291-295.
    [54]Bohlmann W, Poppl A, Michel D. Electron spin resonance studies of copper complexes incorporated in zeolites and mesoporous molecular sieves. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 1999,158(1-2):235-240.
    [55] Kowalak S, Stawinski K, Mackowiak A. Incorporation of zinc into silica mesoporous molecular sieves. Microporous and Mesoporous Materials. 2001, 44-45:283-293.
    [56] Bhaumik A, Tatsumi T. Organically modified titanium-rich Ti-MCM-41, efficient catalysts for epoxidation reactions. Journal of Catalysis. 2000,189(1):31-39.
    [57] Zhang W H, Shi J L, Wang L Z. Preparation and characterization of ZnO clusters inside mesoporous silica. Chemitry of Materials. 2000,12(5):1408-1413.
    [58] Zhang W Z, Froba M, Wang J L et al. Mesoporous titanosilicate molecular sieves prepared at ambient temperature by electrostatic (S~+I~-, S~+X~-I~+) and neutral (S°I°) assembly pathways: A comparison of physical properties and catalytic activity for peroxide oxidations. Journal of The Ameriacn Chemical Society. 1996,118(38):9164-9171.
    [59] Klimova T, Rodriguez E,Martinez M et al. Synthesis and characterization of hydrotreating Mo catalysts supported on titania-modified MCM-41. Microporous and Mesoporous Materials. 2001,44-45:357-365.
    [60] Tan M, Cai W P, Zhang L D. Optical absorption of ZnS nanocrystals inside pores of silica, Applied Physical Letters. 1997, 71(25):3697-3699.
    [61] Xi H G, Qian X F, Yin J et al. Photoluminescence of ZnS-PVK nanocomposites confined in ethylenediamine modified MCM-41. Materials Letters. 2003, 57(18):2657-2661.
    [62] Shan Y, Gao L, Zheng S. A facile approach to load CdSe nanocrystallites into mesoporous SBA-15. Materials Chemistry and Physics. 2004, 88(1):192-196.
    [63] Shan Y, Gao L. Synthesis, characterization and optical properties of CdS nanoparticles confined in SBA-15. Materials Chemistry and Physics. 2005,89(2-3):412-416.
    [64] Chae W S, Yoon J H, Yu H et al. Ultraviolet emission of ZnS nanoparticles confined within a functionalized mesoporous host.The Journal of Physical Chemistry B. 2004, 108(31): 11509-11513.
    [65] Zhang J L, Han B X, Hou Z S et al. Novel method to load nanoparticles into mesoporous materials:Impregnation of MCM-41 with ZnS by compressed CO_2. Langmuir. 2003, 19(18):7616-7620.
    [66] Zhang Z T, Dai S, Fan X D et al. Controlled synthesis of CdS nanopartilecs inside order mesoporous silica using ion-exchange reaction. The Journal of Physical Chemistry B. 2001, 105(29):6755-6758.
    [67] Dev S, Ramli E, Rauchfuss T B et al. Direct approaches to zinc polychalcogenide chemistry: ZnS_6(N-MeIm)_2 and ZnSe_4(N-MeIm)_2. Journal of The American Chemical Society. 1990, 112(17): 6385-6386.
    [68] Dev S, Ramli E, Rauchfuss T B et al. Synthesis and structure of [M(N-methylimidazole)_6]S_8 (M=manganese, iron, nickel, magnesium). Polysulfide salts prepared by the reaction N-methylimidazole+metal powder+sulfur. Inorganic Chemistry. 1991, 30(11):2514-2519.
    [69] Paul P P, Rauchfuss T B, Wilson S R. General synthesis of metalloid polysulfide complexes from the elements:structures of SD_2S_(152) - and InS8(N-MeIm). Journal of The American Chemical Society. 1993,115(8):3316-3317.
    [70] Ramli E, Rauchfuss T B, Stern C L. Interception of copper polysulfide clusters in the reaction of copper and sulfur in donor solvents:polysulfide complexes as the link between molecular and nonmolecular metal sulfides. Journal of The American Chemical Society. 1990, 112(10):4043-4044.
    [71] Li Y D, Ding Y, Qian Y T et al. A solvothermal elemental reaction to produce nanocrystalline ZnSe. Inorganic Chemistry.1998, 37(12):2844-2845.
    [72] Wang A.Kabe T. Fine-tuning of pore size of MCM-41 by adjusting the initial pH of the synthesis mixture. Chemical Communications. 1999, (20):2067-2068.
    [73] Lippens P E, Lannoo M. Calculation of the band gap for small CdS and ZnS crystallites. Physical Review B:Condensed Matter and Materials Physics, 1989, 39(15):10935-10942.
    [74] Peng X, Manna L, Yang W et al. Shape control of CdSe nanocrystals. Nature. 2000, 404(6773): 59-61.
    [75] Gao F, Lu Q, Xie S et al. A simple route for the synthesis of multi-armed CdS nanorod-based materials. Advanced Materials. 2002,14(21):1537-1540.
    [76] Peng Z A, Peng X G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes:nucleation and growth. Journal of The American Chemical Society. 2002, 124(13):3343-3353.
    [77] Wang W Z.Geng Y, Yan P et al. A novel mild route to nanocrystalline Selenides at room temperature. Journal of The American Chemical Society. 1999,121(16):4062-4063.
    [78] Zhang L X, Shi J L, Yu J et al.A new in-situ reduction route for the synthesis of Pt nanoculsters in the channels of mesoporous silica SBA-15. Advanced Materials. 2002,14(20): 1510-1513.
    [79] Zhu K, Yue B, Zhou W et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chemical Communications. 2003, (1):98-99.
    [80] Zhu K, He H, Xie S et al. Crystalline WO_3 nanowires synthesized by templating method. Chemical Physics Letters. 2003, 377(3-4):317-321.
    [81] Gao F, Lu Q, Zhao D Y. In situ adsorption method for synthesis of binary semiconductor CdS nanocrystals inside mesoporous SBA-15. Chemical Physics Letters. 2002, 360(5-6):585-591.
    [82] Gao F, Lu Q, Zhao e Y. Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique. Advanced Materials. 2003,15(9):739-742.
    [83] 闵嘉华,桑文斌,史伟民等.ZnS纳米微粒的形貌结构对其光学特性的影响.光学学报.2003,23(3):257-260
    [84] Yu S H, Yoshimura M. Shape and phase control of ZnS nanocrystals: Template fabrication of wurtzite ZnS single-single nanocrystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS(NH_2CH_2CH_2NH_2)_(0.5). Advanced Materials. 2002,14(4):296-300.
    [85] Huang M H, Choudrey A, Yang P D. Ag nanowire formation within mesoporous silica. Chemical Communications. 2000, (12):1063-1064.
    [86] Zhu B L, Chen X, Xu L M et al. Fabrication of ZnS semiconductor nanodisks in layered organic-inorganic solid templates. Thin Solid Films. 2005, 474(1-2):114-118.
    [87] Ryoo R, Jun S, Kim J M et al. Generalised route to the preparation of mesoporous metallosilicates via post-synthetic metal implantation. Chemical Communications. 1997, (22):2225-2226.
    [88] 丁云峰,余锡宾,贺香红等.变形六方ZnS纳米晶的固相合成及其荧光特性.上海师范大学学报,2002,31(4):47-51.
    [89] 邢德松,石建新,庞起等.乙醇体系中硫化锌纳米粒子的制备及其光致发光性能研究.中山大学学报(自然科学版).2003,42(6):125-127.
    [90] Liu X Y, Tian B Z, Yu C Z et al. Ordered nanowire arrays of metal sulfides templated by mesoporous silica SBA-15 via a simple impregnation reaction. Chemistry Letters. 2003, 32(9): 824-825.
    [91] Marler B, Oberhagemann U, Vortmann S et al. lnflence of the sorbate type on the XRD peak intensities of loaded MCM-41. Microporous Materials. 1996, 6(5-6):375-383.
    [92] Ni Y H, Yin G, Hong J M et al. Rapid fabrication and optical properties of zinc sulfide nanocrystallines in a heterogeneous system. Materials Research Bulletin. 2004, 39(12):1967-1972.
    [93] Chen H R, Shi J L, Zhang W H et al. Incorporation of Titanium into the inorganic wall of ordered porous zirconium oxide via direct synthesis. Chemistry of Materials. 2001, 13(3):1035-1040.
    [94] Aronson B J, Blanford C F, Stein A. Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: synthesis and structural characterization. Chemistry of Materials. 1997, 9(12):2842-2851.
    [95] Takayuki A, Yukio T, Takeshi U et al. Preparation and characterization of Fe_2O_3 nanoparticles in mesoporous silicate. Journal of The Chemical Society, Chemical Communication. 1995, (16):1617-1618.
    [96] 银董红,尹笃林.微波辐射促进ZnCl_2与Y分子筛固相反应的研究.物理化学学报.1998,14(5):448-452.
    [97] Yin D H, Yin D L. The disperse and solid-state ion exchange of ZnCl_2 onto the surface of NaY zeolite using microwave irradiation. Microporous And Mesoporous Materials. 1998, 24(4-6):123-126.
    [98] Liu J F, Yin D H, Yin D L et al. ZnCl_2 supported on NaY zeolite by solid-state interaction under microwave irradiation and used as heterogeneous catalysts for high regioselective Diels-Alder reaction of myrcene and acrolein. Journal of Molecular Catalysisi A: Chemical. 2004, 209(1-2):171-177.
    [99] Wang L P, Hong G Y.A new preparation of zinc sulfide nanoparticles by solid state method at low temperature. Materials Research Bulletin. 2000, 35(5):695-701.
    [100] Kohn R, Paneva D, Dimitrov M et al. Studies on the state of iron oxide nanoparticles in MCM-41 and MCM-48 silica materials. Microporous and Mesoporous Materials. 2003, 63(1-3):125-137.
    [101] Qian Y T, Su Y, Xie Y et al. Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite. Materials Research Bulletin, 1995, 30(5):601-605.
    [102] Choi M, Kleitz F, Liu D et al. Controlled polymerization in Mesoporous silica toward the design of organic-inorganic composite nanoporous materials. Journal of The American Chemical Society. 2005, 127(6):1924-1932.
    [103] Huang J, Yang Y, Yang B et al. Synthesis of the CdS nanocrystales in polymer network. Polymer Bulletin. 1996, 36(3):337-340.
    [104] 李启厚.湿化学法制备ZnS,CdS纳米粉末的结构形貌控制及其组装形为的研究:(博士学位论文).湖南:中南大学,2001.
    [105] 李亚玲,王玉红,邵磊等.气液法制备闪锌矿纳米硫化锌粒子.北京化工大学学报.2003,30(3):26-29.
    [106] Lu H Y, Chu S Y, Tan S S. Tho characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles. Journal of Crystal Growth. 2004, 269(2-4):385-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700