新型扭振减振器有限元分析及仿真优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扭转振动是汽车动力传动系统的主要振动形式,它影响着汽车的使用性能和乘坐的舒适性。传统的从动盘式扭振减振器(Clutch Torsional Damper, CTD)虽对控制扭振及其噪声起着积极作用,但实践证明,该方法存在着严重的不足和缺点。诞生于上世纪八十年代中期的双质量飞轮减振器(Dual Mass Flywheel, DMF)由于克服了CTD的不足,有效地降低传动系扭转振动,使得汽车减振降噪技术发生了质的飞跃。然而,由于DMF的设计要求高,加工难度大,技术性能指标严格,目前在国内仍停留在样件制作阶段,还难以普及。鉴于此,某企业开发了一种减振效果明显优于CTD,但是略差于DMF的新型扭振减振器(New Type of Vibrational Damper,简称NVD),其结构简单、易于加工制造。
     本文以NVD为研究对象,主要对其结构和减振性能进行研究:(1)NVD自身振动特性的计算和分析;(2)固有特性分析以及在各种工况下的静、动强度研究;(3)在汽车动力传动系中的振动特性分析;(4)在轴系中减振效果的仿真优化研究。
     首先介绍了扭振减振器的发展概况和相关研究的国内外现状,特别是DMF的产生、发展以及减振原理等,并提出了论文研究的目的及意义。
     其次,对NVD的结构特点、工作原理进行了详细的分析,并就其自身结构建立力学模型和数学模型,从而对其振动特性进行了研究。
     第三,借助于相关有限元理论和工具,进行固有特性分析,即模态分析。然后,根据NVD所匹配的汽车在极限工况(突然起步和紧急制动)、怠速和行驶工况下的所受载荷情况,进行相应的静、动态强度分析,分析结果表明,除铆钉不满足强度外,其它零部件均满足强度要求,并提出了两种改善强度的合理方法。
     第四,将NVD置于汽车轴系中,在动力学软件ADAMS中建立轴系扭振模型的虚拟样机,通过动力学仿真分析,得到各参数变量对减振器减振效果的影响。
     最后,对安装有NVD的轴系虚拟样机进行在怠速下的仿真优化,分别以两种不同目标函数作为优化目标,然后得到不同的优化参数,通过对比研究两组参数,得到合理的最优值,并对最优阻尼值进行共振验算,结果表明,最优参数能够有效衰减共振时的扭振幅值。另外,也对传动系在不同减振效果下所对应变量参数的取值情况进行了研究。
     新型扭振减振器具有良好的发展空间和前景,因此,对装备有NVD或类似扭振减振器的整车动力传动系统的结构和扭振特性进行分析和仿真研究,具有重要的指导价值和实际意义。
Torsional vibration is an important component vibration in Automobile Powertrain, which plays a very important part in performance and ride comfort. Although traditional Clutch Torsional Damper (CTD) has a positive effect on controlling torsional vibration and noises, it has been proved that CTD system has serious disadvantages. Dual Mass Flywheel (DMF) was invented in 1980s. As it can effectively overcome the shortcomings of CTD and reduce the torsional vibration of transmission agent, the automotive damping and noise reduction techniques was greatly enhanced. However, because of its high design demand and severe performance requirements and hard to machine, DMF is still stay to the stage of sample manufacturing at home presently. Based on this fact, a corporation developed a New Torsional Vibration Damper (NVD) which is simple in construction and easy to manufacture. Experimental research shows that NVD is much better than CTD in damping effects, but weaker than DMF slightly.
     This dissertation studies the construction and damping property of this new type of torsional vibration damper, mainly includes 4 aspects: (1) Vibration Characteristic and output response were calculated and analyzed; (2) Natural characteristics and static and dynamic strength in different working conditions were studied; (3) The analysis of vibration Characteristics in Automobile Powertrain were carried out; (4) The damping effect in the vehicle drivetrain was simulated and each important parameter of the damper was optimized with ADAMS software.
     First of all, the dissertation introduces the general development of torsional vibration damper and the domestic and international developments of related research, especially includes the advent, development and damping principle of DMF, etc. Meanwhile, the study content and its research purpose and meaning were illustrated.
     Then, the structural characteristics and working principle of NVD were analyzed in detail, and the mathematical and mechanical models were established based on its structure. After that the vibration characteristics of this damper was studied.
     Moreover, modal analysis of this new type of damper was carried out with the finite element theory and tools. Also, static and dynamic structural strength, stress and strain under static and dynmic load were calculated and analyzed. Where, the static load is working load limit (includes sudden starting and emergency braking) and the dynamic load includes real load of idle speed and running condition. The analytical results revealed that the part of rivets can not meet strength requirement under static load and all other parts can meet requirements. Therefore, two reasonable methods were proposed to improve the strength of rivets.
     Fourthly, the virtual prototype of torsional vibration model was built in the kinetic software of ADAMS after NVD was placed in the Automobile Powertrain. Then through dynamics simulation analysis, the influence of each parameter variables on damping effect of NVD was obtained.
     Finally, the virtual prototype of shafting which is equipped with NVD was simulated and optimized under idle speed. The optimization method is that two different target function was made with the minimum of function value as optimization objective, respectively. Then different optimal parameters were obtained, by comprehensive studying those two groups of parameters, reasonable optimal value was got, and the resonance checking of the optimum damping coefficient was carried out. The results indicated that the resonance amplitude can be effectively dampened by the effect of optimal parameters. Otherwise, how to get suitable values on each parameter variables in powertrain under different damping effect was studied.
     New torsional vibration damper has a huge developing space and very bright developing prospects. Accordingly, it has great guiding value and practical significance to research on the analysis and simulation of the torsional vibration characteristics of Automobile Powertrain which is equipped with NVD or other similar torsional vibration dampers.
引文
[1]周建刚.长螺旋弹簧结构的双质量飞轮仿真分析.制造业信息化, 2006,4: 24-26.
    [2]刘圣田,吕振华,袁念诗.双质量飞轮式扭振减振器.汽车技术,1997(1): 23~27.
    [3] Arno Sebulke. The Two-Mass Flywheel-A Torsional Vibr- ation Damper for the Power Train of Passenger Cars-State of the Art and Further Technical Development[C].SAE 870394.
    [4] Albert Albers, Marc Albrecht, Arne Krger and Ralph Lux. New Methodology for Power Train Development in the Aut- omotive Engineering-Integration of Simulation, Design and Testing[C]. SAE 2001-01-3303.
    [5]吕振华,吴志国,陈涛.双质量飞轮-周向短弹簧型扭振减振器弹性特性设计原理及性能分析[J].汽车工程, 2003,5: 493-497.
    [6]史文库,龙岩,卢玉东.多级非线性双质量飞轮参数设计和优化.振动与冲击, 2009,28: 92-96.
    [7]吕春锋,双质量飞轮特性研究与仿真分析,[D],上海交通大学,2008.
    [8]徐世彦.汽车动力传动系双质量飞轮式扭振减振器的研究[D].长春:吉林大学,2007.
    [9] Peter Sehwibing,et etal. Noise and vibration control measure in the Powertrain of Passenger cars.Proeeedings of the 1991 transaetions. Joumal of Passenger cars. Pp787-795.
    [10]李峥.DMF350双质量飞轮的开发研究[硕士学位论文].吉林:长春:吉林大学汽车工程学院,2005.
    [11]刘云,双质量飞轮扭振特性研究,[D],武汉理工大学,2009.
    [12]林世裕.膜片弹簧与碟形弹簧离合器的设计与制造[M].东南大学出版社,1995.
    [13]钱人一.德国鲁克公司的双质量飞轮(上)[J].汽车与配件,2006 (5) 35-37.
    [14]钱人一.德国鲁克公司的双质量飞轮(下)[J].汽车与配件,2006 (12) 44-47.
    [15] Patrice Berrin, Eric Breton. Ayman Mokdad. Radial Dual Mass Flywheel[M]. SAE Tran. 950893,1995.
    [16] Klaus Steinel. Clutch Tuning to Optimize Noise and Vibration Behavior in Trucks and Buses [C]. SAE 2000-01-3292.
    [17] Albert Albers, Marc Albrecht, Arne Kruger and Ralph Lux. New Methodology for Power Train Development in the Automotive Engineering-Integration of Simulation, Design and Testing[C]. SAE 2001-01-3303.
    [18] Alexander Fidlin, Roland Seebacher. DMF simulation techniques-Finding the needle in the h-aystack[C]. LuK Symposium, 2006: 55-71.
    [19] Hans Jürgen Drexl. Torsional Dampers and Alternative Systems to Reduce DrivelineVibrations[C], SAE 870393.
    [20] Albert. Advanced Development of Dual Mass Flywheel(DMFW) Design&Noise Control for Today’s Automobiles[C]. 5th LuK Symposium, Bühl,Germany,1994.
    [21]王砚红,汽车动力传动系双质量飞轮式扭振减振器的结构设计与动力学特性研究,[D],吉林大学,2005.
    [22]赵金霞.双质量飞轮的作用和特性[J].新技术新工艺,2003(5):19- 20.
    [23] Kenishi Yamamoto, et al. Consideration of a new type two mass flywheel. Proceedings of the 1991 Noise and vibration conference. USA. May,1991.Pp 161-166.
    [24]刘圣田,吕振华等.双质量飞轮式扭振减振器,汽车技术,1997(1): 23~27.
    [25] Reik, W., Friedmann.O., Agner, I. et al. The Clutch-The heart of the Double Clutch Gearbox.VDI Berichte, 2006(3): 65-88.
    [26] Schweinfurt, Hartmut Batch. Systematic Search for and Vibratory Assessment of New Action Principles for Alternative Rotary Vibration Decoupling Systems in the Passenger Car Driveline.DRIVE SYSTEM TECHNIQUE, 2004(6):3~12.
    [27] Taehyun, K., Hanlim, S., Sungho, H. et al. Analysis of dual mass flywheel using discrete arcsp-ring model, Key Engineering Materials. Volume 326-328Ⅱ, 2006:1607~1610.
    [28] Zink.M, Hausner, Welter.R.. The Clutch and the Release System-Anengaging topic 8.Luk Kolloquium, 2006.
    [29]赵孝峰,汽车双质量飞轮扭振减振器的结构分析与性能研究,[D],重庆大学,2009.
    [30]齐洪刚,一种新式双质量飞轮特性研究及其结构设计,[D],吉林大学,2007.
    [31]张铁山.液压弹簧式双质量飞轮的研究[J].上海工程技术大学学报.2000 (4): 301~304.
    [32]吕振华,熊海龙,陈涛.汽车动力传动系双质量飞轮-径向弹簧型扭振减振器弹性特性设计方法[J].汽车工程,2002 (1): 10~20.
    [33]刘圣田、吕安涛、马见明.典型双质量飞轮式扭振减振器结构分析[J].山东省交通科技,1998(2): 19~21.
    [34] Soon-Jae Hong. Dual mass flywheel using air damping[C]//United States Patent 2003/0233907 Al.
    [35]张世义,胡建军,李光辉.汽车动力传动系双质量飞轮式扭振减振器特性分析.设备设计/诊断维修/再制造, 2007,9: 120-124.
    [36]史文库,龙岩,卢玉东.多级非线性双质量飞轮参数设计和优化[J].振动与冲击, 2009,28:92-96.
    [37]商跃进.有限元原理与ANSYS应用指南[M].北京:清华大学出版社,2005.
    [38]蔡兴旺,付晓光.汽车构造与原理,机械工业出版社,2010.
    [39]喻凡.汽车系统动力学,北京,机械工业出版社,2005: 130~139.
    [40]张洪欣.汽车设计[M].北京:机械工业出版社,1985.
    [41]沈建和,陈树辉.非线性振动系统极限环振幅与频率的控制.振动与冲击,2009,28: 90-93.
    [42]成大先.机械设计手册(第五版),化学工业出版社,2009.
    [43]郑建荣.ADAMS虚拟样机技术入门与提高,北京,机械工业出版社,2005.
    [44]石博强,申焱华,宁晓斌等.ADAMS基础与工程范例教程,北京,中国铁道出版社,2007.
    [45]范成建,熊光明,周明飞.虚拟样机软件MSC.ADAMS应用与提高.北京,机械工业出版
    [46]社,2006.
    [47]李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2006.40-221.
    [48]张义民.机械振动,北京,清华大学出版社,2007.
    [49]孙靖民.机械优化设计[M].机械工业出版社,2005,1(3).
    [50]杨溥,等.粘滞阻尼器加固的某RC框架结构抗震性能分析及优化设计[J].重庆大学学报,2007, 30 (8):114-118.
    [51] LüZhenhua,Chen Tao. Design and Analysis of a Dual Mass Fly-wheel-circumferential SpringTorsional Damper. Proceedings of the Eleventh International Pacific Conference on Automoti-ve Engineering. Shanghai, 2001: 493-497.
    [52]吕振华,陈涛.双体飞轮-周向弹簧型扭振减振器弹性特性设计研究[J].汽车工程, 2006,28:73-77.
    [53] Timoshenko S,Young DH, Weaver Jr W. Vibration Problems in Engineering. New York: John Wiley&Sons,1974.
    [54]李学斌.动力吸振器的多目标优化和多属性决策研究[J].振动工程学报, 2009, 22(6):319-324.
    [55]苏馈足,给水管网现状分析方法研究,[硕士论文],合肥工业大学,2003.
    [56]赵云德.用广义简约梯度法求管网经济管径[J].水利学报, 1999, 6(6): 61-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700