多孔介质中甲烷水合物降压分解实验与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对当前能源短缺和环境恶化的严峻形势,寻求高效、清洁能源成为人类面临的迫切任务。甲烷水合物具有储量大、能量密度高、燃烧清洁等优点,被认为是21世纪最具开发前景的能源,开展甲烷水合物的基础物性及其开采技术的研究具有重要的理论和现实意义。
     本论文针对多孔介质中的甲烷水合物进行降压分解实验和数值模拟研究。建立了模拟多孔介质中甲烷水合物生成和分解的实验系统,测得了多孔介质中甲烷水合物的相平衡曲线。在此基础上,系统地进行了甲烷水合物的生成和降压分解实验研究,分析了开采动态及影响因素,结果表明边界传热能极大的影响水合物的分解速率。
     采用通入过量气体提高水转化率的定容合成甲烷水合物实验方法,较大程度上避免了在测量过程中水合物的生成和分解,国内首次利用甲烷测量了恒温恒压恒流条件下含不同水合物饱和度时多孔介质的绝对渗透率,通过与当前通用模型的比较,发现与Masuda渗透率模型拟合较好。
     建立了三维立方体孔隙网络模型,研究了孔径分布对水合物相平衡的影响,模拟了水合物在多孔介质中生成导致的渗透率变化,模拟结果与实验数据吻合较好,表明了采用孔隙网络模型可以在微观尺度上模拟多孔介质中水合物的生成和分解。
     考虑水、气、水合物三相,水、气、水合物三组分,根据质量守恒和能量守恒原理,考虑水合物在多孔介质中的生成分解动力学和热力学,建立了基于二维轴对称的甲烷水合物分解数学模型,采用全隐式方法进行求解。通过与实验结果对比,验证了数学模型的准确性。对实验室尺度下多孔介质中甲烷水合物降压分解进行了影响因素敏感性分析,结果表明,水合物分解速度常数、渗透率下降指数、气液两相相对渗透率、岩石导热系数、水合物藏初始温度和各相饱和度、出口压力以及边界传热等均会影响多孔介质中甲烷水合物分解速率。
     研究结果表明:气相相对渗透率的增加较相应液相相对渗透率的增加更能提高水合物的分解速率;对高饱和度的水合物藏,需要采用降压和注热联合开采;液相饱和度对水合物分解速率的影响存在一个最优值,大约为相应的有效残余饱和度;在较强边界传热条件下,累积产气量增加有限,而耗热量增加较多,且多孔介质区域内可能同时存在水合物生成和分解。
Energy shortage and environmental pollution are serious problems we have to cope with in the world. Developing efficient and clear energy source has become an urgent task to solve these problems. Since Methane Hydrate (MH) has many advantages including a vast amount of reserve, high energy capacity and less pollution after combustion, it has been viewed as a potential energy source for the 21st Century. The studies on the basic properties and production techniques of MH are very important in theoretical and practical aspects.
     The physical modelings of MH formation and dissociation in porous media were conducted using a self-designed apparatus. The phase equilibrium curves of MH in porous media were measured, which are very consistent with those obtained by other researchers. Under our experimental conditions, the MH formation and dissociation in porous media by depressurization were studied and the production performance and influencing factors were analyzed. The results show that higher boundary heat can increase largely MH dissociation rate.
     MH in porous media was formed with constant volume method by injecting excess methane gas which can improve the water conversion rate as much as possible. The permeabilities of hydrate-bearing porous media were measured with methane, which decrease the effect that MH formation or dissociation during measurement on experiment data. The experiment results were compared with existing models and it was found that they were good fitting with Masuda's model.
     A three-dimensional cubic pore network model was developed to model the phase shift of MH in porous media with different pore sizes. The permeability variation of hydrate-bearing porous media was studied. The simulation results are consistent with experiment data well, which shows that pore network model can be used to study MH formation and dissociation in porous media at micro scale.
     An advanced 2-D axisymmetric simulator including three phase (water, gas, and hydrate) and three components (water, gas, and hydrate) was developed based on the mass and energy conservation theory. The thermodynamic and intrinsic dynamic of MH in porous media are considered in the simulator. The governing equations are dicretized with finite difference method and solved with fully-implicit manner. The data matching was conducted using the mathematical model and the experimental results, which is consistent with each other and proves the accuracy of the mathematical model. The sensitive factors were studied for laboratory-scale MH dissociation by depressurization. The results suggest that intrinsic kinetic constant, permeability reduction index, gas-water relative permeability, rock heat conductivity, initial temperature, initial phase saturation, outer pressure and boundary heat transfer are sensitive for MH production by depressurization. The increase of gas relative permeability causes higher hydrate dissociation rate than the corresponding increase of water relative permeability does; the combination of depressurization and thermal stimulation is a better technique to explore MH in the MH reservoirs with high initial hydrate saturation; The initial water saturation has an optimum value for increasing hydrate dissociation rate and the value is about equal to the effective residual water saturation; Under the condition of higher boundary heat transfer, the increase of cumulative gas production is less than the increase of cumulative heat absorbed, the formation in some regions and dissociation in other regions maybe occur simultaneously.
引文
[1]BP Statistical review of world energy 2008[M]. BP Group:England,2008.
    [2]McMullan R K, Jeffrey G A. Polyhedral clathrate hydrates IX structure of ethylene oxide hydrate[J]. Journal of Chemical Physics,1965,42:2725-2732.
    [3]Mak T C, McMullan R K. Polyhedral clathrate hydrates X structure of the double hydrate of tetrahydrofuran and hydrogen sulfide[J]. Journal of Chemical Physics,1965, 42:2732-2737.
    [4]Konstantin A K, Uchadin A, Ripmeester J A. A complex clathrate hydrate structure showing bimodal guest hydration[J]. Nature,1999,397:420-423.
    [5]Grover T. Natural gas hydrates-Issues for gas production and geomechanical stability[D]. Texas:Texax A&M University,2008.
    [6]樊栓狮.天然气水合物储存与运输技术[M].北京:化学工业出版社,2005.
    [7]赵生才.德国气水合物研究计划简介[J].天然气地球科学,2001,12(2):63-67.
    [8]郑军卫.美国国家甲烷水合物多年研究计划简介[J].天然气地球科学,2001,12(2):42-45.
    [9]宋海斌,松林修.日本的天然气水合物地质调查工作[J].天然气地球学,2001,12(2):46-53.
    [10]雷怀彦,郑艳红.印度国家天然气水合物研究计划[J].天然气地球科学,2001,12(2):54-62.
    [11]林徽,陈光进.气体水合物分解动力学研究现状[J].过程工程学报,2004,4(1):69-74.
    [12]U.S. Geological Survey. A global inventory of natural gas hydrate occurrence[M/OL]. http://walrus. wr. usgs. gov/globalhydrate, [2009,5,23].
    [13]梅平,刘华荣,陈武等.天然气水合物的勘探、开采及环境效应研究进展[J].化学与生物工程,2007,24(10):1-4.
    [14]Gudmundsson J S, Parlaktuna M, Khokhar A A. Storing natural gas as frozen hydrate [J]. SPE Production and Facilities,1994:69-73.
    [15]Gudmundsson J S, Boslashrrehaug A. Frozen hydrate for transport of natural gas [C]. Procceeding 5th International Offshore and Polar Engineering Conference. The Hague,1995, June 11-16,I:282-288.
    [16]杜晓春,黄坤,孟涛.天然气水合物储运技术的研究和应用[J].石油与天然气工,2005,34(2):94-96.
    [17]李化,罗小武,江伍英,等.天然气水合物储运技术综述[J].天然气与油气开采,2006,24(3):62-64.
    [18]陈宝宏,韩璐,李良君,等.天然气水合物相关技术研究进展[J].河南石油,2004,18(3):63-65.
    [19]Elliot G, Barraclough B. Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrate[P]. US:4424858,1984.
    [20]Lee L. Method for separation of gas constituents employing hydrate promote[P]. US:6602326,2003.
    [21]胡玉峰.天然气水合物及相关新技术研究进展[J].天然气工业,2001,21(5):84-86.
    [22]樊拴狮,程宏远,陈光进,等.水合物法分离技术研究[J].现代化工,1999,19(2):11-15.
    [23]许维秀,李其京,陈光进.水合物法分离炼厂气的技术进展[J].河南化工,2006,23(6):14-17.
    [24]Sloan E D, Koh C A. Clathrate hydrates of natural gase[M]. Boca Raton:CRC Press,2008.
    [25]Milkov A V, Sassen R. Economic geology of off shore gas hydrate accumulation sand provinces[J].Marine and Petroleum Geology,2002,19 (1):1-11.
    [26]杨培举.中国能源战略的惊喜和忧患[J].中国船检,2004,7:14-16.
    [27]Moridis G J. Numerical studies of gas production from class2 and class3 hydrate accumulations at the Mallik Site, Mackenzie Delta, Canada[J]. SPE Joural,2004, 7(3):175-183.
    [28]Pooladi D M. Gas production from hydrate reservoirs and its modeling[J]. Journal of Petroleum Technology,2004,56(6):65-71.
    [29]Tang L, Rui X, Huang C, et al. Experimental of investigation of production behavior of gas hydrate under thermal stimulation in unconsolidated sediment[J]. Energy&Fuels,2005, 19(6):2402-2407.
    [30]李栋梁.微波作用下天然气水合物分解特性研究[D].广州:广州能源研究所,2004.
    [31]Castaldi M J, Zhou Y. Down-hole combustion method for gas production from methane hydrates[J]. Journal of Petroleum Science and Engineering,2007,56(1-3):176-185.
    [32]Vander J H, Platteeuw J C. Clathrate solutions [J]. Advance of Chemical Physics,1959, 2:1-57.
    [33]Clarke M A, Darvish M P, Bishnoi P R. A method to predict equilibrium conditions of gas hydrate formation in porous media[J]. Industrial & Engineering Chemistry Research,1999, 38(6):2485-2490.
    [34]Klauda J B, Sandler S I. Modeling gas hydrate equilibrium in laboratory and natural porous media[J]. Industrial & Engineering Chemistry Research,2001,40(20):4197-4208.
    [35]Yousif M H, Sloan E D. Experimental investigation of hydrate formation and dissociation in consolidated porous media[J]. SPE Reservoir Engineering,1991,6(4):452-458.
    [36]Turner D, Sloan E D. Hydrate phase measurement and predictions in sediments[C]. Proceedings of the 4th International Conference on Gas Hydrates, Yokohama, Japan,2002.
    [37]Marion G M, Catling D C, Kargel J S. Modeling gas hydrate equilibria in electrolyte solutions[J]. Computer Coupling of Phase Diagrams and Thermochemistry,2006,30(3):248-259
    [38]Javanmardi J, Moshfeghian M. A new approach for prediction of gas hydrate formation conditions in aqueous electrolyte solutions[J]. Fluid Phase Equilibria,2000, 168(2):135-148.
    [39]Lei H, Zheng Y. Equilibrium PT curve of methane hydrates in the presence of AlC13[J]. Chinese Science Bulletin,2003,48(1):53-56.
    [40]Jager M D, Peters C J, Sloan E D. Experimental determination of methane hydrate stability in methanol and electrolyte solutions[J]. Fluid Phase Equilibria,2002, 193(1-2):17-28.
    [41]Handa Y P. Compositons, Enthalpies of dissociation, and heat capacities in the range 85 to 270K for clathrate hydrate of methane, ethane, and propane, and enthalpy of dissociation of isobutene hydrate, as determined by a heat-flow calorimeter[J]. Journal of Chemical Thermodynamics,1986,18(10):915-921.
    [42]Rueff R M, Sloan E D, Yesavage V F. Heat capacity and heat of dissociation of methane hydrate[J]. AIChE Journal,1988,34(9):1468-1476.
    [43]Kim H C, Bishnoi P R, Heidemann R A, et al. Kinetics of methane hydrate decomposition [J]. Chemical Engineering Science,1987,42(7):1645-1653.
    [44]Englezos P, Kalogerakis N, Dhalabhai P D, et al. Kinetics of formation of methane and ethane gas hydrate[J]. Chemical Engineering Science,1987,42(11):2647-2658.
    [45]Englezos P, Kalogerakis N, Dhalabhai P D, et al. Kinetics of formation of from mixtures og methane and ethane[J]. Chemical Engineering Science,1987,42(11):2659-2666.
    [46]Clarke M, Bishnoi P R. Determination of the intrinsic rate of ethane gas hydrate decomposition[J]. Chemical Engineering Science,2000,55(21):4869-4883.
    [47]Clarke M, Bishnoi P R. Determination of the active energy and intrinsic rate constant of methane gas hydrate decomposition[J]. Canada Journal of Chemical Engineering,2001, 79(2):143-147.
    [48]Skovborg P, Rasmussen P. A mass transport limited model for the growth of methane and ethane gas hydrates[J]. Chemical Engineering Science,1994,49:1131-1143.
    [49]Hwang M J, Wright D A, Kapur A et al. An experimental study of crystallization and crystal growth of methane hydrates from melting ice[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry,1990,8(1):103-116.
    [50]Staykova D K, Hansen T, Salamatin A N et al. Kinetic diffraction experiments on the formation of porous gas hydrate[C]. Proceedings of the 4th International Conference on Gas Hydrates, Yokohama, Japan,2002.
    [51]Stern L A, Kirby S H, Durham W B. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice[J]. Science, 1996,273(5283):1843-1848.
    [52]Yousif M H, Abass H H, Selim M S, et al. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE Reservoir Engineering,1991, 6(1):69-76.
    [53]Masuda Y, Kurihara M, Ochuchi H et al. A field-scale simulation study on gas productivity of formations containing gas hydrates[C]. Proceedings of the 4th International Conference on Gas Hydrates, Yokohama, Japan,2002.
    [54]Civan F C. Scale effect on porosity and permeability:kinetics, model and correlation[J]. AIChE Journal,2001,47(2):271-287.
    [55]Civan F C. Relating permeability to pore connectivity using a power-law flow unit equation [J]. Petrophysics,2002, 43(6):457-476.
    [56]Civan F C. Fractal formation of the porosity and permeability relationship resulting in a power-law flow unit equation-A leaky-tube model[C]. Proceedings of the SPE International Symposium and Exhibition on Formation Damage Control, SPE 73785, Lafayette, Louisana,2002.
    [57]Berge L I, Jacobsen K A, Solstad A. Measured acoustic wave velocities of R11 (CC13F) hydrate samples with and without sand as a function of hydrate concentration [J]. Journal of Geophysical Research,1999,104(B7):15415-15424.
    [58]Helgerud M B. Wave speeds in gas hydrate and sediments containing gas hydrate:A laboratory and modeling study[D]. California:Stanford University,2001.
    [59]Lee M W, Collett T S. Elastic properties of gas hydrate bearing sediments[J]. Geophysics,2001,66:763-771.
    [60]Tohidi B, Anderson R, Clennell M B, et al. Synthetic porous media by means of glass micro models[J]. Geology,2001,29(9):867-870.
    [61]Spangberg E. Modeling of the influence of gas hydrate on electrical properties of porous sediments[J]. Journal of Geophysics Research,2001,106(B4):6535-6548.
    [62]Kleinberg L, Brewer G, Yesinowski J P. Deep sea NMR:Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability[J]. Journal of Geophysics Research,2003,108(B3):2508-2577.
    [63]Masuda Y S, Naganawa S, Fujita K, et al. Modeling and experimental studies on dissociation of methane gas hydrates in Berea sandstone cores[C]. The 3rd International Conference on Gas Hydrates, Salt lake city, Utah, USA,1999.
    [64]Masuda Y S, Naganawa S, Sato K. Numerical Calculation of gas hydrate production performance from reservoirs containing natural gas hydrates[C]. SPE Asia Pacific Oil and Gas Conference, Kuala Lumpur, Malaysia,1997.
    [65]Sakamoto Y, Komai T, Kawabe Y, et al. Properties of Multiphase Flow in Marine Sediment with Gas Hydrate[C]. Proceeding 5th ISOPE Ocean Mining Symposium, Tsukuba, Japan, ISOPE, 2007.
    [66]Sakamoto Y, Komai T, Kawabe Y et al. Formation and Dissociation Behavior of Methane Hydrate in Porous Media-Part 1:Estimation of Permeability in Methane Hydrate Reservoir [J]. Journal of MMIJ,2004,120(5):85-90.
    [67]Sakamoto Y, Komai T, Kawabe Y et al. Experimental Study on Physical Phenomena in Methane Hydrate Reservoir and Its Gas Production Behavior During Hot Water Injection Process-Part 2:Estimation of Permeability in Methane Hydrate Reservoir[J]. Journal of MMIJ,2005, 121 (2/3):44-50.
    [68]Sakamoto Y, Komai T, Kawabe Y et al. Laboratory-scale Experiment of Methane Hydrate Dissociation by Hot-Water Injection and Numerical Analysis for Permeability Estimation in Reservoir:Part 1-Numerical Study for Estimation in Methane Hydrate Reservoir[J]. International Journal of Offshore and Polar Engineering,2007,17(1)::47-56.
    [69]Shimokawara M, Ohga K, Sakamoto Y, et al. Permeability of Artificial Methane Hydrate Sediment in Radial Flow System[C]. Proceedings of The Seventh ISOPE Ocean Mining Symposium, Lisbon, Portugal,2007.
    [70]Minagawa H, Nishikawa Y, Ikeda I, et al. Measurement of methane hydrate sediment permeability using several chemical solutions as inhibitors[C]. Proceedings of The Seventh ISOPE Ocean Mining Symposium, Lisbon, Portugal,2007.
    [71]Seol Y, Kneafsey T J, Tomutsa L, et al. Preliminary relative permeability estimates of methane hydrate-bearing sand[C]. PROCEEDINGS TOUGH Symposium 2006, Berkeley,2006.
    [72]Kneafsey T J, Tomutsa L, Seol Y, et al. Relative Permeability Measurements of Hydrate-Bearing Sediments[C]. Science and Technology Issues in Methane Hydrate R&D, Engineering Conferences International, Kauai,2006.
    [73]Holder G D, Angert P K. Simulation of Gas Production from a Reservoir Containing Both Gas Hydrate Sand Free Natural Gas[C]. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana,1982.
    [74]Selim M S, Sloan E D. Hydrate Dissociation in Sediment[C]. SPE Annual Technical Conference and Exhibition, Dallas, TX,1987.
    [75]Yousif M H, Abass H H, Selim M S. Experimental and Theoretical Investigation of Methane Gas Hydrate Dissociation in Porous Media[C]. SPE Annual Technical Conference and Exhibition, Houston,1988.
    [76]Makogon Y F. Hydrates of Hydrocarbons[M]. lsd. Tulsa:Pennwell Books,1997.
    [77]Tsypkin G G. Mathematical Models of Gas Hydrates Dissociation in Porous Media[J]. Annals of the New York Academy of Sciences,2001,912(1):428-436.
    [78]Ji C, Ahmadi G, Smith D H. Natural Gas Production from Hydrate Decomposition by Depressurization[J]. Chemical Engineering Science,2001,56(20):5801-5814.
    [79]Hong H, Pooladi-Darvish M, Bishnoi P R. Analytical Modeling of Gas Production from Hydrates in Porous Media [J]. Journal of Canadian Petroleum Technology,2003,42(11):45-56.
    [80]Moridis G J. Numerical Studies of Gas Production from Methane Hydrates [J]. SPE Journal, 2003,8(4):359-370.
    [81]Ahmadi G, Ji C. Numerical Solution for Natural Gas Production from Methane Hydrate Dissociation[J]. Journal of Petroleum Science and Engineering,2004,41(4):269-285.
    [82]Sun X, Nanchary N, Mohanty K K.1-D Modeling of Hydrate Depressurization in Porous Media[J]. Transport in Porous Media,2005,58(3):315-338.
    [83]Sun X, Mohanty K K. Kinetic simulation of methane hydrate formation and dissociation in porous media[J]. Chemical Engineering Science,2006,61(11):3476-3495.
    [84]陈科.水合物气藏开采机理研究[D].成都:西南石油大学,2005.
    [85]李淑霞,陈月明,杜庆军.天然气水合物开采方法及数值模拟研究评述[J].中国石油大学学报(自然科学版),2006,30:147-151.
    [86]李淑霞,陈月明,杜庆军.天然气水合物开采数值模拟的参数敏感性分析[J].现在地质,2005,19:109-122.
    [87]郝永卯,薄启炜,陈月明,等.天然气水合物降压开采实验研究[J].石油勘探与开发,2006,33:218-222.
    [88]冯自平,沈志远,唐良广,等.水合物降压分解的实验与数值模拟[J].化工学报,2007,58(6):1548-1553.
    [89]李淑霞.天然气水合物开采物理模拟与数值模拟研究[D].东营,中国石油大学,2006.
    [90]Bae J, Sung W and Kwon S. An Experimental Analysis of Hydrate Production using Multi-Well, Plate-Type Cell Apparatus[J]. Korean Chemical Engineering research,2007, 45(3):304-309.
    [91]Sung W, Lee H and Yang H. An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric Heating Method in Porous Rocks[J]. Korean Chemical Engineering research,2004,42(1):115-120.
    [92]Lee Y, Wang J and Park J. Hydrate Production Performance Analysis with Multi-Well, Plate-Type Apparatus Using Depressurization and Thermal Methods[J]. Korean Chemical Engineering research,2009,47(1):133-140.
    [93]Kneafsey T J, Tomutsa L, Moridis G J. Methane hydrate formation and dissociation in a partially saturated core-scale sand sample[J]. Journal of Petroleum Science and Engineering,2007,56(1-3):108-126.
    [94]Seol Y, Kneafsey T J. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand[J]. Journal of Petroleum Science and Engineering, 2009,66(3-4):121-132.
    [95]Gao S, House W and Chapman W G. NMR/MRI Study of Clathrate Hydrate Mechanisms[J]. Physical Chmistry B,2005,109(41):19090-19093.
    [96]Ersland G, Husebo J and Graue A et al. Measuring gas hydrate formation and exchange with CO2 in Bentheim sandstone using MRI tomography [J]. Chemical Engineering Journal,2009 (Article in Press).
    [97]Jin S, Nagao J and Takeya S et al. Structural Investigation of Methane Hydrate Sediments by Microfocus X-ray Computed Tomography Technique under High-Pressure Conditions[J]. Japanese Journal of Applied Physics,2006,45(27):714-716.
    [98]Jin S, Takeya S and Hayashi J et al. Structural analyses of artificial methane hydrate sediments by microfocus X-ray computed tomography [J]. Japanese Journal of Applied Physics, 2004,43(1):5673-5675.
    [99]Kuniyasu 0, Yoshiro K and Tomoyuki H. MRI measurement of hydrate density maps of gas hydrate formation using fine-bubble injection and mixing process[J]. Nippon Dennetsu Shinpojiumu Koen Ronbunshu,2003,40(3):789-790.
    [100]Ouar H, Cha S B and Wildeman T R et al. The formation of natural gas hydrates in water-based drilling fluids[J]. Chemical engineering research & design,1992,70:48-54.
    [101]Thakore J L, Holder G D. Solid vapor azeotropes in hydrate-forming systems[J]. Industrial & Engineering Chemistry Research,1987,26(3):462-469.
    [102]Adisasmito S, Frank R J and Dendy E et al. Hydrates of carbon dioxide and methane mixtures[J]. Journal of Chemical & Engineering Data,1991,36(1):68-71.
    [103]樊栓狮,石磊,郭彦坤等.甲烷气体水合物相平衡测试新装置及新方法[J].天然气工业,2001,21(3):71-73.
    [104]Uchida T, Ebinuma T and Takeya S et al. Effects of Pore Sizes on Dissociation Temperatures and Pressures of Methane, Carbon Dioxide, and Propane Hydrates in Porous Media[J]. Journal of Physical Chemistry B,2002,106(4):820-826.
    [105]Smith D H, Joseph W W and Kal S et al. Equilibrium Pressure and Temperatures for Equilibria Involving SI and SII Hydrate, Liquid Water, and Free Gas in Porous Media[C]. Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Japan,2002.
    [106]Zhang W, Wilder J W and Smith D H. Interpretation of ethane hydrate equilibrium data for porous media involving hydrate-ice equlibria[J]. AIchE Journal,2002, 48(10):2324-2331.
    [107]Zhang W, Wilder W and Smith D H. Methane hydrate-ice equilibria in porous media [J]. Journal of Physical Chemistry B,2003,107(47):13084-13089.
    [108]Zhang W, Wilder W and Smith D H. Equilibrium Pressure and Temperatures for Equilibria Involving Hydrate, Ice, and Free Gas in Porous Media[C]. Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Japan,2002.
    [109]Anderson R, Llamedo M and Tohidi B et al. Experimental Measurement of Methane and Carbon Dioxide Clathrate Hydrate Equilibria in Mesoporous Silica[J]. Journal of Physical Chemistry B,2003,107(15):3507-3514.
    [110]Anderson R, Llamedo M and Tohidi B et al. Characteristics of Clathrate Hydrate Equilibria in Mesopores and Interpretation of Experimental Data[J]. Journal of Physical Chemistry B,2003,107(15):3500-3506.
    [111]Jin Y, Hayashi J, and Nagao J et al. New Method of Assessing Absolute Permeability of Natural Methane Hydrate Sediment by Micro focus X-ray Computed Tomography [J]. Japanese Journal of Applied Physics,2007,46(5):3159-3162.
    [112]Minagawa H, Nishikawa Y, and Ikeda I, et al. Relation between Permeability and Pore-Size Distribution of Methane-Hydrate-Bearing Sediment[C]. The 2008 Offshore Technology Conference, Houston, USA,2008.
    [113]Ahn T, Lee J, and Huh D, et al. Experimental Study on Two-Phase Flow in Artificial Hydrate-bearing Sediments[J]. Geosystem Engineering,2005,8(4):101-104.
    [114]Jaiswal N J, Westervelt J V, and Patil S L, et al. Phase Behavior and Relative Permeability of Gas-Water-Hydrate System[C]. AAPG HEDBERG CONFERENCE, Vancouver, BC, Canada,2004.
    [115]Seol Y, Kneafsey T J. Fluid flow through heterogeneous methane hydrate bearing sand: Observations using X-ray CT scanning[C]. Proceeding of the sixth International Conference on Gas Hydrates, Vancouver, Brith Columbia, Canada,2008.
    [116]Kneafsey T J, Seol Y and Gupta A. Permeability of Laboratory-Formed Methane-Hydrate-Bearing sand[C].2008 Offshore Technology Conference held in Houston, Texas, USA,2008.
    [117]陈卫忠,杨建平,伍国军等.低渗透介质渗透性试验研究[J].岩石力学与工程学报,2008,27(2):236-243.
    [118]Winters W J, Pecher I A, and Waite W F, et al. Physical properties and rock physics models of sediments containing natural and laboratory formed methane gas hydrate [J]. American Mineralogist,2004,89(8-9):1221-1227.
    [119]Moridis G J, Apps J, Pruess K. EOSHYDR:A TOUGH2 Module for CH4-hydrate release and flow in the subsurface[C]. LBNL-42386, Lawrence Berkeley National Laboratory, Berkeley, CA,1998.
    [120]Tsimpanogiannis I N, Lichtner P C. Pore network study of methane clathrate hydrate dissociation[J]. Transactions, American Geophysical Union,2003,84:46.
    [121]Tsimpanogiannis I N, Lichtner P C. Role of Critical Gas Saturation in Methane Production from Hydrate Dissociation at the Pore-Network Scale[C]. SPE Annual Technical Conference and Exhibition, Houston, TX,2004.
    [122]Kang Q, Tsimpanogiannis I N, and Zhang D, et al. Numerical modeling of pore-scale phenomena during CO2 sequestration in oceanic sediments [J]. Fuel Process Technology,2005, 86(14-15):1647-1665.
    [123]Tsimpanogiannis I N, Lichtner P C. Pore-network study of methane hydrate dissociation[J]. Physical Review E,2007,74(5):1-13.
    [124]Hubbert M K. Darcy's Law and the Field Equations of Flow of Underground Fluids [J]. Trans AIME.1956,207:222-239.
    [125]Patzek T W, Silin D B. Shape factor and hydraulic conductance in noncircular capillaries I:one-phase creeping flow [J]. Journal of Colloid and Interface Science,2001, 236(2):295-304.
    [126]Chatzis I, Dullien F A L. The modeling of mercury porosimetry and relative permeability of mercury in sandstones using percolation theory[J]. International Chemical Engineering,1985,25(1):47-66.
    [127]Diaz C E, Chatzis, I, and Dullien E A L. Simulation of capillary pressure curves using bond correlated site percolation on a simple cubic network [J]. Transport in Porous Media. 1987,2(3):215-240.
    [128]Marsaglia G, Zaman A. Toward a Universal Random Number[R]. Florida State University Report:FSU-SCRI-87-50.1987.
    [129]Turner D J, Cherry R S, and Sloan E D. Sensitivity of methane hydrate phase equilibrium to sediment pore size[J]. Fluid Phase Equlibria,2005,228-229:505-510.
    [130]Tohidi B, Anderson R and Clennell M B et al. Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels[J]. Geology,2001,29(9):867-870.
    [131]Aziz K, Settari A. Petroleum Reservoir Simulation[M]. Lodon:Applied Science Publisher Ltd,1979.
    [132]Hong, H. Modeling of gas production from hydrates in porous media[D]. Calgary: University of Calgary,2003.
    [133]陈月明.油藏数值模拟基础[M].东营:石油大学出版社,1989.
    [134]Kim, H C, Bishnoi, P R., Heidemann, R A. Kinetics of methane hydrate dissociation[J]. Chem Eng Sci,1987,42(7):1645-1653.
    [135]Clarke, M, Bishnoi, P R. Determination of the intrinsic rate of ethane gas hydrate decomposition[J]. Chem Eng Sci,2000,55(21):4869-4883.
    [136]Clarke, M, Bishnoi, P R. Determination of the active energy and intrinsic rate constant of methane gas hydrate decomposition [J]. Can J of Chem Eng,2001,79(2): 143-147.
    [137]Sloan, E. D. Clathrate hydrates of natural gases[M].2nd ed. Marcel Dekker:New York. 1998.
    [138]Hong H, Pooladi-Darvish M. A numerical study on gas production from formations containing gas hydrates[C].2003 CIPC Conference, Calgary,2003.
    [139]Moridis G J. TOUGH-Fx/HYDRATE:A code for the simulation of system behavior in hydrate-bearing geologic media[C]. Lawrence Berkeley National Laboratory,2005.
    [140]Selim M S, Sloan E D. Heat and mass transfer during the dissociation of hydrate in porous media[J]. AIChE Journal,1989,35(6):1049-1052.
    [141]Waite W F, Martin B J and Kirby S H et al. Thermal Conductivity Measurement in Porous Mixture of Methane Hydrate and Quartz Sand[J]. Geophysical Research Letters,2002, 29 (24):1-4.
    [142]Huang D Z, Fan S S. Measuring and modeling thermal conductivity of gas hydrate-bearing sand[J]. Journal of Geophysical Research,2005, 110(B1):B01311. 1-B01311.10.
    [143]Van Genuchten M T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils[J]. Soil Science Society of America Journal,1980,44:892-898.
    [144]Ertkin T, Abou-Kassem J H and King G R. Basic Applied Reservoir Simulation[M]. Richardson:Society of Petroleum Engineerings,2001.
    [145]Nazridoust K, Ahmadi G. Computational modeling of methane hydrate dissociation in a sandstone core[J]. Chemical Engineering Technology,2007,62(22):6155-6177.
    [146]Circone S, Stern L A and Kirby S H. The effect of elevated pressure on methane hydrate dissociation[J]. American Mineralogist,2004,89(7):1192-1201.
    [147]Moridis G J, Sloan E D. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments[J]. Energy Conversion and Management,2007, 48(6):1834-1849.
    [148]Moridis G J, Collett T S, Dallimore S R. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Machenzie Delta, Canada. Journal of Petroleum Science and Engineering,2004,43(3-4):219-238.
    [149]Kowalsky M B, Moridis G J. Comparison of kinetic and equilibrium reaction in simulation gas hydrate behavior in porous media. Energy Conversion and Management,2007, 48(6):1850-1863.
    [150]Alp D, Parlaktuna M, Moridis G J. Gas production by depressurization from hypothetical class 1G and Class 1W hydrate reservoirs. Energy Conversion and Management,2007,48(6): 1864-1879.
    [151]Ginsburg G V, Soloviev T and Andreeva I. Sediment grain size control on gas hydrate presence, Sites 994,995, and 997, in Proceedings of the Ocean Drilling Program, Scientific Results, Leg 164[R].2000.
    [152]Shipboard Scientific Party. Leg 204 Preliminary Report. [R]. http://www-odp. tamu. edu/publications/prelim/204_prel/204PREL. PDF,2002.
    [153]Winters W J, Dallimore S R and Collett TS, et al. Physical properties of sediments from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, in Geological Survey of Canada Bulletin 544:Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada[R].1999.
    [154]Matsumoto R. Comparison of marine and permafrost gas hydrates:Examples from Nankai Trough and Mackenzie Delta[C]. Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama,2002.
    [155]Suzuki K, Ebinuma T and Narita H. Estimation of the In-Situ Permeabilities of Nankai Trough Hydrate Bearing Sediments from Pressure Temperature Core Sample (PTCS) Core Measurements[C].2008 Offshore Technology Conference, Houston, Texas,2008.
    [156]Ji C, Ahmadi G, Smith D H. Constant rate natural gas production from a well in a hydrate reservoir[J]. Energy Conversion and Management,2003,44(15):2403-2423.
    [157]Ahmadi G, Ji C, Smith D H. Production of natural gas from methane hydrate by a constant down hole pressure well[J]. Energy Conversion and Management,2007,48(7):2053-2068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700