金属离子掺杂及表面硫酸化改性介孔TiO_2@SiO_2制备、表征及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti02光催化剂因其具有无毒、价廉易得、稳定性好、抗光腐蚀等优点,已被广泛应用于解决当代具有全球挑战性的能源再生和环境净化问题。然而,纯TiO2材料的光生电子空穴对复合几率高;另一方面,TiO2晶体较大的禁带宽度,只有波长落在紫外光区(λ<387.5nm)才能被激发,严重地阻碍了对太阳光能量(紫外光~5%,可见光~43%,红外光~52%)的有效利用。为实现其对太阳光能量的高效利用,通过掺杂、半导体复合等改性手段调控TiO2晶体带隙,将光吸收边带红移到可见光区,是具有重要应用价值的研究方向。
     本文通过介孔化、掺杂、负载、表面硫酸化改性等技术手段,拓展TiO2光响应范围、提高量子效率,制备了6种高活性TiO2可见光催化剂。通过TEM、XRD、XPS、BET、UV-vis、IR、TG、PL等分析表征手段对TiO2光催化剂的结构、形貌、表面化学组成、光学性能进行了表征。考察了不同元素掺杂对光催化活性的影响,研究了其在环境治理方面的应用,为Ti02可见光催化剂的开发应用提供了实验和理论依据。研究取得了如下主要创新结果:
     (1)通过原位溶胶-凝胶法成功地制备了一种新型紫外和可见光响应介孔SO42-/xMo-TiO2@SiO2复合光催化剂,与商业化光催化剂Degussa P25相比较,发现制得的复合光催化剂紫外和可见光催化活性显著提高。复合光催化剂具有多级介孔结构、较大的比表面积、典型的锐钛矿相,Mo已掺入到TiO2晶格。以甲基橙为模型化合物,光降解试验表明复合光催化剂的光活性依赖于Mo掺杂剂的浓度,当Mo/Ti=0.5mol%时,表现出最佳的紫外和可见光催化活性,其紫外光解60mmin及可见光催化反应40h时甲基橙脱色率分别为100%、80.2%。适量掺杂可以捕获光生电子和减少电子空穴的复合率,加快光催化反应。复合光催化剂具有良好的重复使用性能,循环使用6次后紫外光催化降解20mg/L的甲基橙溶液60min,脱色率仍然保持在90.0%以上。
     (2)以钛酸四丁酯为前驱体,P123为模板剂,钨酸铵为掺杂剂,通过溶胶凝胶法合成了可见光响应介孔SO42-/xW-TiO2@SiO2复合光催化剂。研究分析表明,W掺杂不仅拓展了Ti02光催化剂可激发光范围,还使之具有较大表面积及孔容、高锐钛矿相结构、高光生电子空穴分离效率。复合光催化剂的紫外与可见光催化活性均高于P25,当W/Ti=0.25mol%,光催化活性最高,其紫外光解60min及可见光催化反应40h的甲基橙脱色率分别为98.89%、91.7%,使用5次后紫外光解60min甲基橙脱色率仍然保持在94.6%。
     (3)成功制备了纯锐钛矿晶相的SO42-/xRE(Nd3+, La3+, Y3+)-TiO2@SiO2复合光催化剂。稀土离子掺杂复合光催化剂不仅抑制了晶粒生长,还阻止了锐钛矿相向金红石相的转变。最适宜掺杂浓度为0.25mol%, SO4270.25mol%RE (Nd3+, La3+, Y3+)-TiO2@SiO2光催化剂产生了较强的可见光吸收,带隙变窄。介孔SO42-/0.25mol%Nd-TiO2@SiO2光催化剂的光催化活性最好,其紫外与可见光催化活性均高于P25,紫外光下60min甲基橙脱色率为99.8%,可见光下40h甲基橙脱色率为90.5%,经循环使用6次后紫外光解120min后,甲基橙脱色率为95.8%。这种高活性是因为稀土离子掺杂光催化剂具有大的比表面积、良好的结晶性、光吸收红移现象及高光生电子空穴分离效率。
     (4)以钛酸四丁酯为钛源、P123为模板剂、氯化铌为掺杂剂,通过微波辅助溶胶-凝胶法合成了可见光响应介孔SO42-/xNb-TiO2@SiO2复合光催化剂。微波辅助制备的介孑(?)SO42-/xNb-TiO2@SiO2复合光催化剂不仅拓展了光吸收范围,还使之具有较大比表面积、孔体积、典型的锐钛矿结构、高光生电子空穴分离效率。其中微波加热法制备的介孑(?)SO42-/0.25mol%Nb-TiO2@SiO2复合光催化剂的紫外与可见光催化活性最高,均高于商业化光催化剂P25,紫外光照60min,甲基橙脱色率为99.28%;可见光照40h,甲基橙脱色率为84.43%,循环使用5次后紫外光解脱色率仍保持在93.6%。
Titanium dioxide photocatalyst is widely used to solve the energy regeneration and environmental purification problems as contemporary global challenges due to it has many advantages such as non-toxic, cheap availability, excellent stability, against photo-corrosion, etc. However, the recombination rate of photoinduced electron-hole pairs is particularly high in the bulk TiO2photocatalysts. On the other hand, TiO2with wide band gap energy excited only in the ultraviolet light (UV) region (λ<387.5nm) is seriously inhibits the fully using of natural sunlight, which consists of5%ultraviolet light,43%visible light, and52%infrared light. In order to achieve effective utilization of solar energy, regulating band gap energy of TiO2crystalline by modification techniques such as doping, semiconductor coupling and shifting its absorption edge from UV region to the visible light (VL) region is research direction with important application value.
     In order to expend light responsive region and enhance quantum efficiency of TiO2, six kinds of high photoactivity samples have been prepared by mesopore, doping, support and surface modification etc., whose structure, morphology, surface chemical components and optical properties were characterized by varoius techniques. The effect of different elements doping on photocatalytic activity and application of samples in environmental governance have been studied, which provides a solid experimental foundation and theoretical basis for developing the application of VL photocatalyst. Some innovative results obtained are as follows:
     1. A novel UV and VL responsive sulfated Mo-doped TiO2@SiO2mesoporous photocatalyst was successfully in situ synthesized by a sol-gel method. Moreover, both UV and VL photocatalytic activity of this composite photocatalyst was greatly enhanced comparing with Degussa P25. Their multi-level mesoporous structure, high specific surface area and typical anatase phase were demonstrated by varoius techniques. The VL absorption and doping Mo into TiO2matrix were confirmed as well. It was founded that the photocatalytic activity of methyl orange (MO) degradation depended on the concentration of the Mo dopant. A0.5mol%Mo dosage was optimal for both UV and VL photoactivity. The suitable amount dopants can capture photogenerated electrons and decrease the recombination rate of electron-hole pairs and accelerate photocatalytic reaction. Furthermore, the composite showed good recycling endurance, the decolorization rate of MO with initial concentration of20mg/L still keeps at above90.0%under UV irradiation for60min after six consecutive cycles.
     2. VL driven mesoporous sulfated W doped TiO2@fumed SiO2photocatalysts were synthesized via sol-gel method with tetrabutyl titanate (TBOT) as precursor, P123as a template and ammonium tungstate as dopant. The results confirmed by varoius techniques showed that the doping of W resulted in not only an increase in the surface area, pore volume and separation efficiency of photogenerated electron-hole pairs of sulfated mesoporous TiO2@SiO2, but also in inhibition of phase transition from anatase to rutile. Photo-degradation results revealed that W doping could greatly improve the photocatalytic activity of sulfated TiO2@SiO2with mesostructure, higher than that of undoped samples and the commercially available Degussa P25titanium dioxide by degradation of methyl orange aqueous solutions. Doping with W showed higher photocatalytic activity and its optimal molar dosage was0.25%, which caused MO discoloration rate of91.7%,98.9%irradiation under VL (λ>400nm) for40hours and UV for60min respectively. The decolorization rate of MO is up to94.6%under UV irradiation for60min after five consecutive cycles.
     3. A novel processing technology was developed for the preparation of high photoactive sulfated RE-doped TiO2@fumed SiO2composite photocatalyst with mesoporous and anatase single-phase structures. Doping of RE ions not only suppressed the crystal growth, but also prevented phase transition from anatase to rutile phase. The optimal molar dosage was0.25%, The SO42-/0.25mol%RE (Nd3+, La3+, Y3+)-TiO2@SiO2showed strong absorption in the UV-vis range and a red shift in the band gap transition, narrowing the band gap. Photocatalytic efficiency of SO42-/0.25mol%Nd-TiO2@SiO2sample exhibits higher than samples doping with the other two RE ions and commercial P25, which caused99.8%,90.05%MO to be degraded under UV and VL irradiation, respectively. The decolorization efficiency of MO keeps at95.8%under UV irradiation for120min after six consecutive cycles. The enhanced photocatalytic activity could be attributed to the higher specific area, good crystallinity, strong VL absorption, the effective separation of photogenerated electron-hole pairs in the RE ions doping photocatalyst.
     4. VL responsive mesoporous SO42-/xNb-TiO2@SiO2photocatalysts were prepared by microwave assited so-gel method with TBOT as the precuesor, P123as a template and niobium chloride as dopant. Microwave assisted sol-gel method fabrication not only extend light absorption region, but also obtain an increase in the surface area, pore volume, typical anatase structure, high separation efficiency of photogenerated electron-hole pairs of mesoporous SO42-/xNb-TiO2@SiO2photocatalyst. Mesoporous SO42-/0.25mol%Nb-TiO2@SiO2displays the highest UV and VL photocatalytic activity among all photocatalysts including Degussa P25, which photodecolorization rate of methyl orange were84.43%,99.28%irradiation under VL (λ>400nm) for40hours and UV for60min, respectively. Mesoporous SO42-/0.25mol%Nb-TiO2@SiO2also showed good recycling endurance, the photocataiytic decolorization rate for MO still reaches93.6%after five consecutive cycles under UV irradiation for60min.
引文
[1]Fujishima Akira.Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972, 238 (5358):37-38.
    [2]Linsebigler Amy L., Lu Guangquan, Yates Jr John T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J].Chemical Reviews,1995,95:735-738.
    [3]Zheng Yun, Pan Zhiming, Wang Xinchen. Advances in photocatalysis in China[J]. Chinese Journal of Catalysis,2013,34(3):524-535.
    [4]李旦振,付贤智.具有高活性宽光谱响应的新型光催化材料[J].中国科学:化学,2012,42(4):415-432.
    [5]许宜铭.环境污染物的光催化降解:活性物种与反应机理进展[J].化学进展,2009,21(2-3):524-533.
    [6]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002:1-289.
    [7]张金龙,陈锋,何斌.光催化[M].上海:华东理工大学出版社,2004:1-173.
    [8]刘守新,刘鸿编著.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006:1-350.
    [9]蒲永平.功能材料的缺陷化学[M].北京:化学工业出版社,2008:1-194.
    [10]周明华.介孔二氧化钛光催化剂的制备、表征及性能研究[D].武汉理工大学博士毕业论文,2006:1-20.
    [11]Nishizawa H., Aoki Y. The crystallization of anatase and the conversion to bronze-type TiO2 under hydrothermal conditions[J].Journal of Solid State Chemistry,1985,56(2):58-165.
    [12]Yang Zhenguo, Choi Daiwon, Kerisit Sebastien, et al. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides:A review [J]. Journal of Power Sources,2009, 192 (2):588-598.
    [13]陈闪山,朱银华,李伟,等.含Ti02(B)介孔氧化钛材料的制备、特性和应用[J].催化学报,2010,31(6):605-614.
    [14]张佳佳,唐子龙,张中太.单斜相Ti02的制备及气敏性能[J].硅酸盐学报,2011,39(3):470-474.
    [15]宫玉梅,梁青,宋敬川,等.模板法制备Ti02介孔材料的研究进展[J].化工新型材料,2013,41(1):18-19,24.
    [16]Antoneli David M, Ying Jackie Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified Sol-Gel method[J].Angewandte Chemie International Edition in English,1995,34 (18):2014-2017.
    [17]Sung Chang Chih, Fung KuanZong, Hung I Ming,et al. Synthesis of highly ordered and worm-like mesoporous TiO2 assisted by tri-block copolymer [J]. Solid State Ionics 2008,179 (27-32):1300-1304.
    [18]Asuha S., Zhou X.G., Zhao S. Adsorption of methyl orange and Cr(Ⅵ) on mesoporous TiO2 prepared by hydrothermal method[J]. Journal of Hazardous Materials,2010,181 (1-3):204-210.
    [19]Yun Hui-suk, Miyazawa Kuni'chi,Honma Itaru, et al. Synthesis of semicrystallized mesoporous TiO2 thin films using triblock copolymer templates[J]. Materials Science and Engineering C,2003, 23 (4):487-494.
    [20]An Taicheng, Liu Jikai,Li Guiying, et al. Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2 [J]. Applied Catalysis A:General,2008, 350 (2):237-243.
    [21]Yu Jiaguo, Wang Guohong,Cheng Bei, et al.Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders [J]. Applied Catalysis B:Environmental,2007,69 (3-4):171-180.
    [22]Yoo Kye Sang, Lee Tai Gyu, Kim Jinsoo.Preparation and characterization of mesoporous TiO2 particles by modified sol-gel method using ionic liquids [J]. Microporous and Mesoporous Materials,2005,84 (1-3):211-217.
    [23]Kuo Yu Lin, Su Te Li, Kung Fu Chen, et al. A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO2 photo-catalysts [J]. Journal of Hazardous Materials,2011,190 (1-3):938-944.
    [24]翁景峥,陈少平,陈娜洁,等.二氧化钛复合纸板对甲基橙水溶液的光催化降解[J].中国造纸,2009,28(9):38-41.
    [25]Mills German, Hoffmann Michael R. Photocatalytic degradation of pentachloro- phenol on TiO2 particles:Identification of intermediates and mechanism of reaction [J]. Environmental Science Technology,1993,27(8):1681-1689.
    [26]Li Xiaolong,Cubbage Jerry W.,Tetzlaff Troy A,et al. Photocatalytic degradation of 4-chlorophenol.1.The hydroquinone pathway [J]. Journal of Organic Chemistry,1999, 64(23):8509-8524.
    [27]袁胜利,张宗权.负载型Ti02光催化剂对有机磷农药废水降解的研究[J].西北农林科技大学学报(自然科学版),2005,33(8):123-125.
    [28]吕英英,余乐书,张小兰,等.磷掺杂Ti02纳米粒子膜的负载及其太阳光催化降解亚甲基蓝[J].南京师大学报(自然科学版),2011,34(2):50-53.
    [29]赵清华,全学军,谭怀琴,等.焦化废水中有机污染物的光催化处理[J].化工进展,2009,29(8):894-898.
    [30]李莉,张秀芬,马禹,等.微波增强Ti02光催化降解染料和水杨酸[J].化工学报,2008,59(12):3067-3072.
    [31]Yu Jimmy C.,Yu Jiaguo, Zhao Jincai.Enhanced photocatalytic activity of meso- porous and ordinary TiO2 thin films by sulfuric acid treatment [J].Applied Catalysis B:Environmental 2002,36 (1):31-43.
    [32]刘洋,杨海燕.Ti02光催化降解苯和甲苯的动力学研究[J].化学通报,2007,70(3):222-227.
    [33]刘洋,李岩,尚静,等.纳米粒子光催化氧化室内挥发性有机污染物甲苯的研究[J].环境科学学报,2006,26(12):1964-1970.
    [34]赵春禄,王培霞,张鹏.光催化降解模拟室内挥发性有机污染物研究[J].环境工程学报,2008,2(2):249-252.
    [35]杨秋景,徐自力,谢超,等.铕掺杂对纳米TiO2的光催化活性的影响[J].高等学校化学学报,2004,25(9):1711-1714.
    [36]沈文浩,龙周,陈小泉,等.纳米Ti02光催化降解甲醛的影响因素[J].华南理工大学学报(自然科学版),2010,38(8):142-146.
    [37]Wang Limin, Wang Nan, Zhu Lihua, et al. Photocatalytic reduction of Cr (VI) over different TiO2 photocatalysts and the effects of dissolved organic species[J]. Journal of Hazardous Materials, 2008,152(1):93-99.
    [38]傅宏祥,吕功煊,李树本.有机物存在下Cr6+离子的光催化还原[J].物理化学学报,1997,13(2):106-112.
    [39]Mirand Cristian,Yanez Jorge,Contreras David,et al. Photocatalytic removal of methylmercury assisted by UV-A irradiation[J].Applied Catalysis B:Environmental 2009,90 (1-2):115-119.
    [40]Lopez-Munoz M. J., Aguado J., Arencibia A., et al. Mercury removal from aqueous solutions of HgCl2 by heterogeneous photocatalysis with TiO2 [J]. Applied Catalysis B:Environmental 2011,104 (3-4):220-228.
    [41]Murruni Leonardo, Conde Flavio, Leyva Gabriela, et al. Photocatalytic reduction of Pb (Ⅱ) over TiO2:New insights on the effect of different electron donors[J].Applied Catalysis B: Environmental 2008,84 (3-4):563-569.
    [42]Yang Zheng peng, Zhang Chun jing. Mechanism and kinetics of Pb (Ⅱ) adsorption on ultrathin nanocrystalline titania coatings[J]. Journal of Hazardous Materials,2009,172 (2-3):1082-1086.
    [43]Zhou Xiang dong, Chen Feng,Yang Jin tao, et al. Preparation and self-sterilizing properties of Ag@TiO2-styrene-acrylic complex coatings[J].Materials Science and Engineering C 2013,33 (3):1209-1213.
    [44]王荣民,刘发锐,何玉凤,等.改性纳米氟碳涂料的自清洁性与抗菌性[J].石油化工,2013,42(3):325-329.
    [45]樊新民,洪洋,汪洋.胶溶法制备具有自清洁与抗菌性能的Ti02薄膜[J].人工晶体学报,2013,42(2):310-315.
    [46]鞠剑锋,李澄俊,徐铭,等.纳米Ti02复合抗菌材料的制备及在纺织品整理中的应用[J].印染助剂,2005,22(3):37-39.
    [47]曹宝成,张旭,王育华,等.掺氮Ti02修饰自凝基托树脂的抗菌性能研究[J].功能材料,2013,44(1):119-123.
    [48]李越湘,吕功煊,李树本,等.光催化降解污染物制氢反应与原位红外表征[J].物理化学学报,2003,19(4):329-333.
    [49]张晓艳,崔晓莉.C-N共掺杂纳米Ti02的制备及其光催化制氢活性[J].物理化学学报,2009,25(9):1829-1834.
    [50]Kato Hideki, Kudo Akihiko. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium[J].Journal of Physical Chemistry B, 2002,106(19):5029-5034.
    [51]Niishiro Ryo, Kato Hideki, Kudo Akihiko. Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions[J]. Physical Chemistry Chemical Physics,2005,7(10):2241-2245.
    [52]Yuzawa Hayato, Yoshida Hisao. Direct aromatic-ring amination by aqueous ammonia with a platinum loaded titanium oxide photocatalyst [J]. Chemical Communications,2010, 46(46):8854-8856.
    [53]Palmisano Giovanni, Addamo Maurizio, Augugliaro Vincenzo, et al. Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO2 suspensions [J].Chemical Communications,2006,42(9):1012-1014.
    [54]Li Xinyong, Chen Guohua,Po-Lock Yue, et al.Photocatalytic oxidation of cyclohexane over TiO2 nanoparticles by molecular oxygen under mild conditions [J]. Chemical Technology and Biotechnology,2003,78(12):1246-1251.
    [55]Higashida Suguru, Harada Aiko, Kawakatsu Rikako, et al. Synthesis of a coumarin compound from phenanthrene by a TiO2-photocatalyzed reaction [J].Chemical Communications,2006, 42(26):2804-2806.
    [56]Ohno Teruhisa, Tokieda Kojiro, Higashida Suguru, et al. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene [J]. Applied Catalysis A:General, 2003.244 (2):383-391.
    [57]Maldotti Andrea, Amadelli Rossano, Samiolo Luca, et al. Photocatalytic formation of a carbamate through ethanol-assisted carbonylation of p-nitrotoluene [J]. Chemical Communications,2005, 41(13):1749-1751.
    [58]周建伟,王储备,褚亮亮,等.Ti02/石墨烯纳米复合材料制备及其光催化性能研究[J].人工晶体学报,2013,42(4):762-767.
    [59]Abou Asi Mudar, He Chun,Su Minhua, et al. Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light [J]. Catalysis Today,2005,175 (1):256-263.
    [60]Peng Yen Ping,Yeh Yun Ta,Shah S. Ismat, et al. Concurrent photoelectrochemical reduction of CO2 and oxidation of methyl orange using nitrogen-doped TiO2 [J]. Applied Catalysis B: Environmental 2012,123-124:563-569.
    [61]Jochum W, Eder D, Kaltenhauser G, et al. Impedance measurements in catalysis:Charge transfer in titania supported noble metal catalysis [J].Topics Catalysis,2007,46(1-2):49-55.
    [62]Hufschmidt D, Bahnemann Detlef, Testa Juan J., et al. Enhancement of the photocatalytic activity of various TiO2 materials by platinisation [J]. Journal of Photochemistry photobiology A: Chemistry,2002,148(1-3):223-231.
    [63]Zhang Changbin, He Hong. A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature [J].Catalysis Today,2007,126 (3-4):345-350.
    [64]Li Xiukai, Zhuang Zongjin, Li Wei, et al. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2 [J].Applied Catalysis A:General,2012, 429-430:31-38.
    [65]Altomare Marco, Selli Elena. Effects of metal nanoparticles deposition on the photocatalytic oxidation of ammonia in TiO2 aqueous suspensions [J].Catalysis Today,2013,209:127-133.
    [66]Wu Ling, Yu Jimmy C., Fu Xianzhi.Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation [J]. Journal of Molecular Catalysis A:Chemical,2006,224(1-2):25-32.
    [67]Xu Jiehui, Wang Wenzhong, Sun Songmei, et al. Enhancing visible-light-induced photocatalytic activity by coupling with wide-band-gap semiconductor:A case study on Bi2WO6/TiO2 [J]. Applied Catalysis B:Environmental 2012,111-112:126-132.
    [68]Zhao Shanshan, Chen Shuo,Yu Hongtao, et al. g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation [J]. Separation and Purification Technology,2012,99:50-54.
    [69]Han Chenghui, Li Zhiyu, Shen Jianyi.Photocatalytic degradation of dodecylbenzene-sulfonate over TiO2-Cu2O under visible irradiation[J].Journal of Hazardous Materials,2009, 168(1):215-219.
    [70]Min YuLin,Zhang Kan,Chen YouCun,et al.Sonodegradation and photodegradation of methyl orange by InVO4/TiO2 nanojunction composites under ultrasonic and visible light irradiation [J].Ultrasonics Sonochemistry,2012,19 (4):883-889.
    [71]Abdel-Messih M.F., Ahmed M.A., El-Sayed Ahmed Shebl. Photocatalytic decolorization of Rhodamine B dye using novel mesoporous SnO2-TiO2 nano mixed oxides prepared by sol-gel method[J].Journal of Photochemistry and Photobiology A:Chemistry,2013,260:1-8.
    [72]Yu Xiaodan, Wu Qingyin, Jiang Shicheng, et al. Nanoscale ZnS/TiO2 composites:preparation, characterization, and visible-light photocatalytic activity [J].Materials Characterization,2006,57 (4-5):333-341.
    [73]Xie Yu Long, Li Zi Xia, Xu Zhu Guo, et al. Preparation of coaxial TiO2/ZnO nanotube arrays for high-efficiency photo-energy conversion applications[J]. Electro- chemistry Communications, 2011,13(8):788-791.
    [74]Tseng Hui-Hsin, Lee Wenlian William,Wei Ming-Chi,et al.Synthesis of TiO2/SBA-15 photocatalyst for the azo dye decolorization through the polyol method [J]. Chemical Engineering Journal,2012,210:529-538.
    [75]Liu Hong, Su Yun, Hu Hongjiu, et al. An ionic liquid route to prepare mesoporous ZrO2-TiO2 nanocomposites and study on their photocatalytic activities[J].Advanced Powder Technology, 2013,24 (3):683-688.
    [76]Xin Baifu, Ren Zhiyu, Wang Peng, et al. Study on the mechanisms of photoinduced carriers' separation and recombination for Fe3+-TiO2 photocatalysts [J]. Applied Surface Science,2007,253 (9):4390-4395.
    [77]Zhang Zhenyi, Shao Changlu,Zhang Lina, et al. Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity[J].Journal of Colloid and Interface Science,2010,351 (1):57-62.
    [78]Woo S.H., Kim W.W., Kim S.J., et al. Photocatalytic behaviors of transition metal ion doped TiO2 powder synthesized by mechanical alloying [J]. Materials Science and Engineering A,2007,449-451:151-1154.
    [79]Liu Guoguang, Zhang Xuezhi, Xu Yajie, et al. The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities [J].Chemosphere,2005,59 (9):1367-1371.
    [80]Devi Gomathi L., Kumar Girish S., Murthy Narasimha B., et al. Influence of Mn2+and Mo6+ dopants on the phase transformations of TiO2 lattice and its photocatalytic activity under solar illumination [J]. Catalysis Communications,2009,10 (6):794-798.
    [81]Huo Yuning, Zhu Jian, Li Jingxia, et al. An active La/TiO2 photocatalyst prepared by ultrasonication-assisted sol-gel method followed by treatment under supercritical conditions [J]. Journal of Molecular Catalysis A:Chemical,2007,278(1-2):237-243.
    [82]Xie Jimin, Jiang Deli,Chen Min, et al. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,372 (1-3):107-114.
    [83]Rengaraj S.,Venkataraj S., Yeon Jei-Won, et al. Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr (VI) under UV light illumination[J]. Applied Catalysis B:Environmental,2007,77(1-2):157-165.
    [84]Khan Matiullah, Cao Wenbin. Preparation of Y-doped TiO2 by hydrothermal method and investigation of its visible light photocatalytic activity by the degradation of methylene blue [J]. Journal of Molecular Catalysis A:Chemical,2013,376:71-77.
    [85]Chiou Chwei-Huann, Juang Ruey-Shin. Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles [J].Journal of Hazardous Materials,2007,149 (1):1-7.
    [86]Ananpattarachai Jirapat, Kajitvichyanukul Puangrat,Seraphin Supapan.Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants [J]. Journal of Hazardous Materials,2009,168 (1):253-261.
    [87]Wang Y. Q., Yu X. J., Sun D. Z. Synthesis, characterization, and photocatalytic activity of TiO2-xNx nanocatalyst [J].Journal of Hazardous Materials,2007,144 (1-2):328-333.
    [88]Nolan Nicholas T., Synnott Damian W., Seery Michael K., et al. Effect of N-doping on the photocatalytic activity of sol-gel TiO2[J]. Journal of Hazardous Materials,2012,211-212:88-94.
    [89]Menendez-Floresa Victor M., Bahnemann Detlef W., Ohno Teruhisa.Visible light photocatalytic activities of S-doped TiO2-Fe3+ in aqueous and gasphase [J].Applied Catalysis B:Environmental, 2011,103 (1-2):99-108.
    [90]Tian Hua, Ma Junfeng,Li Kang, et al. Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange[J].ceramics International,2009,35 (3):1289-1292.
    [91]Nam Sang-Hun, Kim Tae Kwan, Boo in-Hyo. Physical property and photocatalytic activity of sulfur doped TiO2 catalysts responding to visible light [J].Catalysis Today,2012,185 (1):259-262.
    [92]Lin YaoTung,Weng Chih Huang, Lin Yu Hao, et al. Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst [J]. Separation and Purification Technology,2013,116:114-123.
    [93]Zhou Bin, Schulz Meghan, Lin H. Y., et al. Photoeletrochemical generation of hydrogenover carbon-doped TiO2 photoanode [J].Applied Catalysis B:Environmental,2009,92 (1-2):41-49.
    [94]Wu Xiaoyong, Yin Shu, Dong Qiang, et al. Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method[J]. AppliedCatalysis B: Environmental,2013,142-143:450-457.
    [95]Li Liang, Yang Yulin, Liu Xinrong, et al. A direct synthesis of B-doped TiO2 and its photocatalytic performance on degradation of RhB[J]. Applied Surface Science,2013,265:36-40.
    [96]Lu Na, Zhao Huimin,Li Jingyuan, et al. Characterization of boron-doped TiO2 nanotube arrays prepared by electrochemical method and its visible light activity [J]. Separation and Purification Technology,2008,62:668-673.
    [97]Lu Xiaona,Tian Baozhu,Chen Feng, et al. Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity [J]. Thin Solid Films,2010,519(1):111-116.
    [98]Wang Zhuyi,Chen Cheng,Wu Fengqing, et al. Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals[J].Journal of Hazardous Materials,2009,164 (2-3):615-620.
    [99]Zhang C.-N., Li J.-G., Leng Y.-H., et al. (Eu3+-Nb5+)-codoped TiO2 nanopowders synthesized via Ar/O2 radio frequency thermal plasma oxidation processing:Phase composition and photoluminescence properties through energy transfer[J]. Thin Solid Films,2010,518 (13):3531-3534.
    [100]Lin Lin, Chai Yuchao, Yang Yingchao, et al. Hierarchical Gd-La codoped TiO2 microspheres as robust photocatalysts[J]. International Journal of Hydrogen Energy,38(3):2634-2640.
    [101]Bai Hongwei, Kwan Keith Shan Yao,Liu Zhaoyang, et al. Facile synthesis of hierarchically meso/nanoporous S and C-codoped TiO2 and its high photocatalytic efficiency in H2 generation[J].Applied Catalysis B:Environmental,2013,129:294-300.
    [102]Behpour Mohsen, Atouf Vajiheh. Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation [J]. Applied Surface Science,2012,258 (17):6595-6601.
    [103]Ding Xing, Song Xiao, Li Pengna, et al. Efficient visible light driven photocatalytic removal of NO with aerosol flow synthesized B, N-codoped TiO2 hollow spheres [J]. Journal of Hazardous Materials,2011,190 (1-3):604-612.
    [104]Xiao Qi, Gao Lan. One-step hydrothermal synthesis of C, W-codoped mesoporous TiO2 with enhanced visible light photocatalytic activity [J].Journal of Alloys and Compounds,2013, 551:286-292.
    [105]Liu Hailin, Lu Zhihong,Yue Ling, et al. (Mo+N) codoped TiO2 for enhanced visible-light photoactivity [J]. Applied Surface Science,2011,257 (22):9355-9361.
    [106]Xu Jingjing, Ao Yanhui, Fu Degang, et al. A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity [J]. Journal of Colloid and Interface Science,2008,328 (2):447-451.
    [107]Cheng Xiuwen, Yu Xiujuan, Xing Zipeng. One-step synthesis of visible active C-N-S-tridoped TiO2 photocatalyst from biomolecule cystine [J].Applied Surface Science,2012,258 (19):7644-7650.
    [108]Jiang Hongquan,Yan Panpan,Wang Qiaofeng,et al. High-performance Yb, N, P-tridoped anatase-TiO2 nano-photocatalyst with visible light response by sol- solvothermal method [J].Chemical Engineering Journal,2013,215-216:348-357.
    [109]Cheng Xiuwen, Yu Xiujuan, Xing Zipeng. One-step synthesis of Fe-N-S-tri-doped TiO2 catalyst and its enhanced visible light photocatalytic activity [J].Materials Research Bulletin,2012, 47(11):3804-3809.
    [110]Charanpahari A., Umarea S.S., Gokhale S.P., et al. Enhanced photocatalytic activity of multi-doped TiO2 for the degradation of methyl orange [J].Applied Catalysis A:General,2012, 443-444:96-102.
    [111]Wang Yongzhong, Zhong Mingqiang, Chen Feng, et al. Visible light photocatalytic activity of TiO2/D-PVA for MO degradation [J].Applied Catalysis B:Environmental,2009, 90(1-2):249-254.
    [112]Zhao Jincai, Wu Taking, Wu Kaiqun, et al. Photoassisted degradation of dye pollutants.3. degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation:evidence for the need of substrate adsorption on TiO2 particles [J]. Environmental Science & Technology,1998,32(6):2394-2400.
    [113]Radoi6ic Marija B., Jankovic Ivana A., Despotovic Vesna N., et al. The role of surface defect sites of titania nanoparticles in the photocatalysis:Aging and modification [J]. Applied Catalysis B:Environmental,2013,138-139:122-127.
    [114]Shang Xili, Li Bin, Li Changhai, et al. Preparation and enhanced visible light catalytic activity of TiO2 sensitized with benzimidazolone yellow H3G [J].Dyes and Pigments,2013,98 (3):358-366.
    [115]Janczyk Agnieszka,Wolnicka-Glubisz Agnieszka, Urbanska Krystyna, et al. Photocytotoxicity of platinum (IV)-chloride surface modified TiO2 irradiated with visible light against murine macrophages [J].Journal of Photochemistry and Photobiology B:Biology.2008,92(1):54-58.
    [116]曹婷婷,罗光富,邹彩琼,等.席夫碱铁-TiO2复合物光催化降解有毒有机污染物[J].化学学报,2011,69(2):1438-1444.
    [117]Mekprasart W., Vittayakom N., Pecharapa W. Ball-milled CuPc/TiO2 hybrid nanocomposite and its photocatalytic degradation of aqueous Rhodamine B [J]. Materials Research Bulletin,2012, 47(11):3114-3119.
    [118]Yang Shiying, Chen Youyuan, Zheng Jianguo, et al. Enhanced photocatalytic activity of TiO2 by surface fluorination in degradation of organic cationic compound [J]. Journal of Environmental Sciences,2007,19(1):86-89.
    [119]Lv Kangle,Yu Jiaguo, Deng Kejian, et al. Synergistic effects of hollow structure and surface fluorination on the photocatalytic activity of titania [J]. Journal of Hazardous Materials, 2010,173(1-3):539-543.
    [120]Le Khoa Tien, Flahaut Delphine, Foix Dominique, et al. Study of surface fluorination of photocatalytic TiO2 by thermal shock method [J]. Journal of Solid State Chemistry,2012, 187:300-308.
    [121]Jiang Fang, Zheng Zheng, Xu Zhaoyi, et al. Aqueous Cr(VI) photo-reduction catalyzed by TiO2 and sulfated TiO2 [J]. Journal of Hazardous Materials,2006,134(1-3):94-103.
    [122]Niu Yuxiao, Xing Mingyang,Tian Baozhu, et al. Improving the visible light photocatalytic activity of nano-sized titanium dioxide via the synergistic effects between sulfur doping and sulfation[J]. Applied Catalysis B:Environmental,2012,115-116:253-260.
    [123]Gomez R, L6pez T, Ortiz-Islas E, et al. Effect of sulfation on the photoactivity of TiO2 sol-gel derived catalysts [J]. Journal of Molecular Catalysis A:Chemical,2003,193(1-2):217-226.
    [124]Li Danfeng, Guo Yihang, Hu Changwen, et al. Preparation, characterization and photocatalytic property of the PW11O397-/TiO2 composite film towards azo-dye degradation[J]. Journal of Molecular Catalysis A:Chemical,2004,207(2):183-193.
    [125]Gu Chaokang, Shannon Curtis. Investigationof the photocatalytic activity of TiO2-polyoxometalate systems for the oxidation of methanol [J]. Journal of Molecular Catalysis A: Chemical,2007,262 (1-2):185-189.
    [126]Marci G., Garcia-Lopez E., Palmisano L. Photo-assisted degradation of 2-propanol in gas-solid regime by using TiO2 impregnated with heteropolyacid H3PW12O40[J]. Catalysis Today,2009, 144(1-2):42-47.
    [127]Spicer Patrick T., Chaoul Olivier, Tsantilis Stavros, et al. Titania formation by TiCl4 gas phase oxidation, surface growth and coagulation[J]. Journal of Aerosol Science,2002,33(1):17-34.
    [128]Wang Zhi, Yuan Zhangfu, Zhou E. Influence of temperature schedules on particle size and crystallinity of titania synthesized by vapor-phase oxidation route [J]. Powder Technology,2006, 170(3):135-142.
    [129]Xia Bin, Huang Huizhong, Xie Youchang. Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis[J].Materials Science and Engineering:B,1999,57(2):150-154.
    [130]Shi Fuzhi, Li Yaogang, Wang Hongzhi, et al. Formation of core/shell structured polystyrene/anatase TiO2 photocatalyst via vapor phase hydrolysis[J].Applied Catalysis B: Environmental,2012,123-124:127-133.
    [131]Xie Hongyong, Zhu Luping, Wang Lingling, et al. Photodegradation of benzene by TiO2 nanoparticles prepared by flame CVD process[J]. Particuology,2011,9(1):75-79.
    [132]Xie Hongyong, Gao Guilan, Tian Zhen, et al. Synthesis of TiO2 nanoparticles by propane/air turbulent flame CVD process [J]. Particuology,2009,7(3):204-210.
    [133]Chen Y. J., Hsu M.C., Cai Y.C. Preparation of TiO2 films using nanopowder synthesized by flat-flame chemical vapor condensation method for DSSCs[J]. Journal of Alloys and Compounds, 2010,490(1-2):493-498.
    [134]Chin Sungmin, Park Eunseuk, Kim Minsu, et al. Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by chemical vapor condensation method with different precursor concentration and residence time[J]. Journal of Colloid and Interface Science,2011, 362(2):470-476.
    [135]Zhang Rubing, Gao Lian, Zhang Qinghong. Photodegradation of surfactants on the nanosized TiO2 prepared by hydrolysis of the alkoxide titanium[J]. Chemosphere,2004,54 (3):405-411.
    [136]Tong Tianzhong, Zhang Jinlong,Tian Baozhu, et al. Preparation and characterization of anatase TiO2 microspheres with porous frameworks via controlled hydrolysis of titanium alkoxide followed by hydrothermal treatment [J]. Materials Letters,2008,62(17-18):2970-2972.
    [137]Wang Hui, Liu Pingan, Cheng Xiaosu, et al. Effect of surfactants on synthesis of TiO2 nano-particles by homogeneous precipitation method [J]. Powder Technology,2008,188 (1):52-54.
    [138]Tyrpekl V., Vejpravova J. Poltierova, Roca A.G., et al. Magnetically separable photocatalytic composite γ-Fe2O3@TiO2 synthesized by heterogeneous precipitation [J]. Applied Surface Science,2011,257 (11):4844-4848.
    [139]You Yang, Zhang Shiying, Wan Long, et al. Preparation of continuous TiO2 fibers by sol-gel method and its photocatalytic degradation on formaldehyde [J].Applied Surface Science,2012,258 (8):3469-3474.
    [140]Ching W.H, Leung Michael, Leung Dennis Y. C. Solar photocatalytic degradation of gaseous formaldehyde by sol-gel TiO2 thin film for enhancement of indoor air quality [J].Solar Energy,2004,77(2):129-135.
    [141]Li Xiaobin, Wang Linling, Lu Xiaohua. Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation [J]. Journal of Hazardous Materials,2010,177 (1-3):639-647.
    [142]Simonsen Morten E., Li Zheshen, S(?)gaard Erik G. Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol-gel TiO2 film [J]. Applied Surface Science,2009,255 (18):8054-8062.
    [143]Shojaie Abdollah Fallah, Loghmani Mohammad Hassan. La3+ and Zr4+ co-doped anatase nanoTiO2 by sol-microwave method [J].Chemical Engineering Journal,2010,157(1):263-269.
    [144]Neppolian B., Wang Q., Jung H., et al. Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles:Characterization, properties and 4-chlorophenol removal application [J].Ultrasonics Sonochemistry,2008,15 (4):649-658.
    [145]Shirsath S. R., Pinjari D.V., Gogate P. R., et al. Ultrasound assisted synthesis of doped TiO2 nano-particles:Characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent [J].Ultrasonics Sonochemistry,2013,20 (1):277-286.
    [146]Wang Weian, Shi Qian,Wang Yuping, et al. Preparation and characterization of iodine-doped mesoporous TiO2 by hydrothermal method [J] Applied Surface Science,2011,257 (8):3688-3696.
    [147]Jing Yuan, Li Laisheng, Zhang Qiuyun, et al. Photocatalytic ozonation of dimethyl phthalate with TiO2 prepared by a hydrothermal method [J]. Journal of Hazardous Materials,2011,189 (1-2):40-47.
    [148]Inaba Ryoji, Fukahori Takayuki, Hamamoto Masato, et al. Synthesis of nanosized TiO2 particles in reverse micelle systems and their photocatalytic activity for degradation of toluene in gas phase [J].Journal of Molecular Catalysis A:Chemical,2006,260 (1-2):247-254.
    [149]Sivalingam G., Nagaveni K., Hegde M.S., et al. photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2 [J].Applied Catalysis B:Environmental,2003,45 (1):23-38.
    [150]Liang Jun, Hu Litian, Hao Jingcheng. Preparation and characterization of oxide films containing crystalline TiO2 on magnesium alloy by plasma electrolytic oxidation[J]. Electrochimica Acta, 2007,52(14):4836-4840.
    [151]杨辉,申乾宏,高基伟.锐钛矿-金红石混晶TiO2溶胶的制备及光催化性能[J].稀有金属材料与工程,2008,37(增2):201-204.
    [152]Yang Dongjiang, Liu Hongwei, Zheng Zhanfeng, et al. An efficient photocatalyst structure:TiO2 (B) nanofibers with a shell of anatase nanocrystals[J]. Journal of the American Chemical Society, 2009,131(49):17785-17893.
    [153]向全军,余家国.暴露{001}面TiO2纳米片分等级花状结构的制备及其光催化活性[J].催化学报,2011,32(4):525-531.
    [154]杨儒,李敏,李友芬,等.锐钛矿型纳米TiO2介孔粉体表面织构的研究[J].高等学校化学学报,2003,24(1):146-150.
    [155]Koci K., Obalova L.,Matejova L., et al. Effect of TiO2 particle size on the photocatalytic reduction of CO2 [J]. Applied Catalysis B:Environmental,2009,89 (3-4):494-502.
    [156]刘朝辉,侯根良,苏勋家,等.热处理温度对TiO2/SiO2复合气凝胶光催化性能的影响[J].无机材料学报,2012,27(10):1079-1082.
    [157]Haque Malik M., Muneer Mohd., Bahnemann Detlef W. Semiconductor-mediated photo-catalyzed degradation of a herbicide derivative, chlorotoluron, in aqueous suspensions [J]. Environmental science & technology,2006,40 (15):4765-4770.
    [158]Nakata Kazuya, Fujishima Akira. photocatalysis:design and applications [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2012,13 (3):169-189.
    [159]Hufschmidt Dirk, Detlef Bahnemann, Testa Juan J., et al. Enhancement of the photocatalytic activity of various TiO2 materials by platinisation [J].Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):223-231.
    [160]Yang Yang, Wang Haiying, Li Xiang, et al. Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis [J].Materials Letters,2009,63 (2):331-333.
    [161]Colon G., Maicu M., Hidalgo M. C., et al.Cu-doped TiO2 systems with improved photo-catalytic activity [J].Applied Catalysis B:Environmental,2006,67(1-2):41-51.
    [162]YangYing, Zhong Hui, Tian Congxue, et al. Single step preparation, characterization and photocatalytic mechanism of mesoporous Fe-doped sulfated titania[J].Surface Science,2011, 605(13-14):1281-1286.
    [163]Yang Ying, Li Xinjun, Chen Juntao, et al. Effect of doping mode on the photocatalytic activities of Mo/TiO2[J].Journal of Photochemistry and Photobiology A:Chemistry,2004,163 (3):517-522.
    [164]Jeon Myung Seok, Yoon Woo Sug, Joo Hyunku, et al. Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst[J].Applied Surface Science,2000,165(2-3):209-216.
    [165]Do Y. R., Lee W, Dwight K., et al. The effect of WO3 on the photocatalytic activity of TiO2 [J].Journal of Solid State Chemistry,1994,108(1):198-201.
    [166]Papp J., Soled S., Dwight K., et al. Surface acidity and photocatalytic activity of TiO2, WO3/TiO2, and MoO3/TiO2 photocatalysts [J].Chemistry of Materals,1994,6 (4):496-500.
    [167]Fu Xianzhi,Clark Louis A.,Yang Qing, et al. Enhanced photocatalytic performance of titania-based binary metal oxides:TiO2/SiO2 and TiO2/ZrO2 [J]. Environmental Science Technology,1996,30(2):647-653.
    [168]Cao Shengli, Yeung King Lun, Yue Po-Lock.An investigation of trichloroethylene photocatalytic oxidation on mesoporous titania-silica aerogel catalysts [J]. Applied Catalysis B: Environmental,2007,76(1-2):64-72.
    [169]Yao Nan, S Cao hengli, Yeung King Lun. Mesoporous TiO2-SiO2 aerogels with hierarchal pore structures [J].Microporous and Mesoporous Materials,2008,117(3):570-579.
    [170]Cao Shengli, Yeung King Lun, Yue Po-Lock. Preparation of freestanding and crack-free titania-silica aerogels and their performance for gas phase, photocatalytic oxidation of VOCs [J].Applied Catalysis B:Environmental,2006,68(3-4):99-108.
    [171]Deng Xingyi, Yue Yinghong, Gao Zi. Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations [J].Applied Catalysis B:Environmental, 2002,39(2):135-147.
    [172]Srinivasan Sesha S., Wade Jeremy, Stefanakos Elias K., et al. Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2 [J].Journal of Alloys and Compounds,2006, 424(1-2):322-326.
    [173]Wang Xinchen, Yu Jimmy C., Liu Ping, et al. Probing of photocatalytic surface sites on SO42-/TiO2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption [J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,179 (3):339-347.
    [174]Li Hexing,Li Guisheng,Zhu Jian, et al. Preparation of an active SO42-/TiO2 photocatalyst for phenol degradation under supercritical conditions [J].Journal of Molecular Catalysis A: Chemical,2005,226(1):93-100.
    [175]Jothivel S., Velmurugan R., Selvam K., et al. Preparation, characterization and photocatalytic activity of acidic sulfated nano titania for the degradation of reactive orange 4 under UV light [J].Separation and Purification Technology,2011,72 (2):245-250.
    [176]Gambhire A.B., Lande M.K., Arbad B.R., et al. Degradation of methylene blue via photocatalysis of transition metal-loaded sulfated TiO2 [J].Applied Catalysis B:Environmental, 2011,125(3):807-812.
    [177]Fu Xianzhi, Ding Zhengxin, Su Wenyue, et al. Structure of titania-based solid superacids and their properties for photocatalytic oxidation [J].Chinese Journal of Catalysis,1999, 20(3):321-324.
    [178]Colona G., Hidalgo M.C.,Navio J.A., et al. Influence of sulfur on the structural, surface properties and photocatalytic activity of sulfated TiO2 [J]. Applied Catalysis B:Environmental, 2009,90(3-4):633-641.
    [179]Colon G., Hidalgo M. C., Munuera G., et al.Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst [J].Applied Catalysis B:Environmental, 2006,63(1-2):45-59.
    [180]Yang Pei dong, Zhao Dongyuan, Margolese David I., et al.Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J].Nature,1998,396(6707):152-155.
    [181]Soler-Illia G., Louis A., Sanchez C. Synthesis and characterization of meso- structured titania-based materials through evaporation-induced selfassembly [J]. Chemistry of Materials, 2002,14(2):750-759.
    [182]Li Donglin, Zhou Haoshen, Honma Itaru. Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization[J].Nature Materials,2004,3(1):65-72.
    [183]Tian Bozhi, Yang Haifeng, Liu Xiaoying, et al. Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors [J].Chemical Communications,2002, 17:1824-1825.
    [184]Perez Ma Dolores, Otal E., Bilmes Sara A., et al.Growth of gold nanoparticle arrays in TiO2 mesoporous matrixes[J].Langmuir,2004,20(16):6879-6886.
    [185]Choi Sung Yeun, Lee Byeongdu, Carew Daniel B., et al.3D hexagonal (R-3m) mesostructured nanocrystalline titania thin films:synthesis and characterization[J]. Advanced Functional Materials,2006,16(13):1731-1738.
    [186]Li Hexing, Bian Zhenfeng, Zhu Jian,et al. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity[J].Journal of American Chemical Society,2007, 129(27):8406-8407.
    [187]Kang Chuanhong,Jing Liqiang,Guo Tong, et al. Mesoporous SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst [J].Journal of Physical Chemistry C,2009,113 (3):1006-1013.
    [188]Sing S. W., Everett D. H., Haul R. A.W., et al. Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity[J].Pure Applied Chemistry,1985,57(4):603-619.
    [189]Yu Jiaguo, Yu Jimmy C., HoWingkei, et al. Effects of calcination temperature on the photocatalytic activity and photoinduced super hydrophilicity of mesoporous TiO2 thin films [J].New Journal of Chemistry,2002,26(5):607-613.
    [190]Yu Jimmy C., Yu Jiaguo, Zhao Jincai. Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment [J].Applied Catalysis B:Environmental,2002, 36(1):31-43.
    [191]Mishra Manish. K., Tyagi Beena, Jasara Raksh. V. Effect of synthetic parameters on structural, textural, and catalytic properties of nanocrystalline sulfated zirconia prepared by sol-gel technique [J].Industrial and Engineering Chemistry Research,2003,42(23):5727-5736.
    [192]Yu Jiaguo, Zhao Xiujian, Zhao Qingnan. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method[J].Thin Solid Films,2000,379(1-2):7-14.
    [193]Periyat Pradeepan, Pillai Suresh C., McCormack Declan E., et al. Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur- doped anatase TiO2[J]. Journal of Physical Chemistry C,2008,112 (20):7644-7652.
    [194]Yu Jimmy C., Yu Jiaguo, Zhang Lizhi, et al. Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148 (1-3):263-271.
    [195]Dieterle M., Weinberg G., Mestl G. Raman spectroscopy of molybdenum oxides Part I. Structural characterization of oxygen defects in MoO3-x by DR UV/VIS, Raman spectroscopy and X-raydiffraction [J].Physical Chemistry Chemical Physics,2002,4 (5):812-821.
    [196]Ward D.A., Ko E.I. One-step synthesis and characterization of zirconia-sulfate aerogels as solid superacids[J].Journal of Catalysis,1994,150(1):18-33.
    [197]Rosendo L., Ricardo G. Photocatalytic degradation of 4-nitrophenol on well characterized sol-gel molybdenum doped titania semiconductors [J].Topics in Catalysis,2011,54(8-9):504-511.
    [198]Mishra Manish K., Tyagi Beena, Jasra Raksh V. Synthesis and characterization of nano-crystalline sulfated zirconia by sol-gel method [J].Journal of Molecular Catalysis A: Chemical,2004,223(1-2):61-65.
    [199]Xie Chao, Xu Zili, Yang Qiujing, et al. Enhanced photocatalytic activity of titania -silica mixed oxide prepared via basic hydrolyzation [J]. Materials Science and Engineering B,2004, 112(1):34-41.
    [200]Devi L. Gomathi, Murthy B. Narasimha.Characterization of Mo doped TiO2 and its enhanced photocatalytic activity under visible light [J].Catalysis Letters,2008,125 (3-4):320-330.
    [201]engl Vaclav, Bakardjieva Snejana.Molybdenum-doped anatase and its extra- ordinary photocatalytic activity in the degradation of orange II in the UV and vis regions [J]. Journal of Physical Chemistry C,2010,114(45):19308-19317.
    [202]Shi Jianwen, Cui Haojie, Zong Xu, et al. Facile one-pot synthesis of Eu, N-codoped mesoporous titania microspheres with yolk-shell structure and high visible-light induced photocatalytic performance [J].Applied Catalysis A:General,2012,435-436 (5):86-92.
    [203]许士洪,赵松建,谭东栋,时鹏辉,毕得福.类蛋结构的可磁分离光催化剂纳米球的制备及催化性能[J].高等学校化学学报,2012,33(7):1511-1516.
    [204]Wu Yongmei, Xing Mingyang, Zhang Jinlong, et al. Effective visible light-active boron and carbon modified TiO2 photocatalyst for degradation of organic pollutant [J]. Applied Catalysis B: Environmental,2010,97(1-2):182-189.
    [205]Wu Yongmei, Zhang Jinlong, Xiao Ling,et al. Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light [J].Applied Surface Science,2010,256 (13):4260-4268.
    [206]Ma Yunfei, Zhang Jinlong, Tian Baozhu,et al. Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity [J].Journal of Hazardous Materials,2010, 182(1-3):386-393.
    [207]Couselo Natalia, Garcia Einschlag Fernando S., et al. Tungsten-doped TiO2 vs pure TiO2 photocatalysts:effects on photobleaching kinetics and mechanism [J]. Journal of Physical Chemistry C,2008,112 (4):1094-1100.
    [208]Choi Eun Hyung, Hong Suk-In,Moon Dong Ju.Preparation of thermally stable mesostructured nano-sized TiO2 particles by modified sol-gel method using ionic liquid [J]. Catalysis Letter,2008, 123(1-2):84-89.
    [209]Colon G, Hidalgo M.C, Macias M,et al. Enhancement of TiO2/C photocatalytic activity by sulfate promotion[J]. Applied Catalysis A:General,2004,259 (2):235-243.
    [210]张青红,高濂,孙静.氧化硅对二氧化钛纳米晶相变和晶粒生长的抑制作用[J]无机材料学报,2002,17(3):415-421.
    [211]Liu Song, Guo Enyan, Yin Longwei.Tailored visible driven anatase TiO2 photocatalysts based on controllable metal ion doping and ordered mesoporous structure[J]. Journal of Materials Chemistry, 2012,22:5031-5041.
    [212]Muggli Darrin S, Ding Lefei. Photocatalytic performance of sulfated TiO2 and Deggussa P-25 TiO2 during oxidation of organics [J]. Applied Catalysis B:Environmental,2001,32 (3):181-194.
    [213]Leghari Sajjad Ahmed Khan, Sajjad Shamaila, Chen Feng, et al. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst [J]. Chemical Engineering Journal,2011,166 (3):906-915.
    [214]Sajjad Ahmed Khan Leghari, Shamaila Sajjad, Tian Baozhu, et al. One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental,2009,91 (1-2):397-405.
    [215]陈孝云,陆东芳,林淑芳.S掺杂S-TiO2/SiO2可见光响应光催化剂的制备及性能[J].催化学报,2012,33(6):993-999.
    [216]Xie Chao, Yang Qiujing, Xu Zili, et al. New route to synthesize highly active nanocrystalline sulfated titania-silica:synergetic effects between sulfate species and silica in enhancing the photocatalysis efficiency [J]. Journal of Physical Chemistry B,2006,110 (17):8587-8592.
    [217]Grunert Wolfgang, Bruckner Angelika, Hofmeister Herbert.et al. Structural properties of Ag/TiO2 catalysts for acroleinhydrogenation[J]. Journal of Physical Chemistry B,2004,108 (18), 5709-5717.
    [218]Kim Chan-Soo, Shin Jung-Woo, An Sang-Hun. et al. Photodegradation of volatile organic compounds using zirconium-doped TiO2/SiO2[J].Chemical Engineering Journal,2012,204-206, 40-47.
    [219]Cheng Ping, Deng Changsheng, Dai Xiaming, et al.Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,195(1):144-150.
    [220]Yu Jimmy C., Ho Wingkei, Yu Jiaguo, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania [J].Environmental Science & Technology, 2005,39 (4):1175-1179.
    [221]Yang Ying, Tian Congxue.Effects of calcining temperature on photocatalytic activity of Fe-doped sulfated titania [J].Photochemistry and Photobiology,2012,88(4):816-23.33
    [222]Wang Ying, WangYan, MengYanling, et al. A highly efficient visible-light-activated photocatalyst based on bismuth- and sulfur-codoped TiO2 [J]. Journal of Physical Chemistry B, 2008,112(17):6620-6626.
    [223]Fernandez Toney, Jose Gijo, Mathew Siby, et al. An ultra-low hydrolysis sol-gel route for titanosilicate xerogels and their characterization [J]. Journal of Sol-Gel Science and Technology, 2007,41(2):163-168.
    [224]Coles Martyn P., Lugmair Claus G., Terry Karl W., et al. Titania-silica materials from the molecular precursor Ti[OSi(OtBu)3]4:selective epoxidation catalysts[J]. Chemistry of Materials, 2000,12 (1):122-131.
    [225]MatinlinnalJ. P., Areva S., Lassila L. V. J.,et al.Characterization of siloxane films on titanium substrate derived from three amino silanes [J].Surface Interface Analysis,2004,36 (9):1314-1322.
    [226]Colon G., Hidalgo M.C., Navio J.A.,et al. Influence of sulfur on the structural, surface properties and photocatalytic activity of sulfated TiO2 [J]. Applied Catalysis B:Environmental,2009, 90(3-4):633-641.
    [227]Yamaguchi Tsutomu. Recent progress in solid superacid [J].Applied Catalysis,1990,61(1):1-25.
    [228]吴道新,陈启元,李洁,等.钨掺杂金红石型二氧化钛的光催化分解水析氧活性[J].中国有色金属学报,2010,20(4):730-735.
    [229]徐毓龙.氧化物与化合物半导体基础[M].西安:西安电子科技大学出版社,1991:212-222.
    [230]李芳柏,古国榜,李新军,等. WO3/TiO2纳米材料的制备及光催化性能[J].物理化学学报,2000,16(11):997-1002.
    [231]Zhan Changchao, Chen Feng, Dai Honghu, et al. Photocatalytic activity of sulfated Mo-doped TiO2@fumed SiO2 composite:A mesoporous structure for methyl orange degradation [J].Chemical Engineering Journal 2013,225:695-703.
    [232]Wu Xiaoyong, Yin Shu, Dong Qiang,et al. Photocatalytic properties of Nd and C codoped TiO2 with the whole range of visible light absorption [J].Journal of physical chemistry C,2013, 117(16):8345-8352.
    [233]Xing Mingyang, Zhang Jinlong, Chen Feng. New approaches to prepare nitrogen doped TiO2 photocatalysts and study on their photocatalytic activities in visible light [J].Applied Catalysis B: Environmental,2009,89(3-4):563-569.
    [234]Zhou Peng, Yu Jiaguo, Wang Yuanxu. The new understanding on photocatalytic mechanism of visible-light response N-S codoped anatase TiO2 by first-principles [J].Applied Catalysis B: Environmental 2013, (142-143):45-53.
    [235]Diamantia M.V., Ormellesea M., Marin E., et al. Anodic titanium oxide as immobilized photocatalyst in UV or visible light devices [J].Journal of Hazardous Materials,2011,186 (2-3):2103-2109.
    [236]Li Jinhuan, Yang Xia, Yu Xiaodan, et al. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide [J].Applied Surface Science,2009,255(1):3731-3738.
    [237]engl V., Bakardjieva S., Murafa N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles [J].Materials Chemistry and Physics,2009,114 (1):217-226.
    [238]Karakitsou Kyriaki E., Verykios Xenophon E. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage[J].Journal of Physical Chemistry, 1993,97(6):1184-1189.
    [239]Lopez T., Hernandez-Ventura J., Gomez R., et al. Photodecomposition of 2,4-dinitroaniline on Li/TiO2 and Rb/TiO2 nanocrystallite sol-gel derived catalysts [J]. Journal of Molecular Catalysis A: Chemical,2001,167 (1-2):101-107.
    [240]Anderson Carl, Bard Allen J. Improved photocatalyticactivity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials [J]. Journal of Physical Chemistry B,1997,101 (14):2611-2616.
    [241]Ranjit K.T., Willner I., Bossmann S. H., et al. Lanthanide oxide doped titanium dioxide photocatalysts:effective photocatalysts for the enhanced degradation of salicylic acid and t-cinnamic acid[J].Journal of Catalysis,2001,204 (2):305-313.
    [242]Liang Chunhua, Liu Chengshuai, Li Fangbai, et al. The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension [J].Chemical Engineering Journal,2009,147 (3-4):219-225.
    [243]Li F.B., Li X.Z., Ng K. H. Photocatalytic Degradation of an odorous pollutant: 2-mercaptobenzothiazole in aqueous suspension using Nd3+-Ti02 catalysts [J]. Industrial & Engineering Chemistry Research,2006,45 (1):1-7.
    [244]Niu Xinshu, Li Sujuan, Chu Huihui, et al.Preparation, characterization of Y3+-doped TiO2 nanoparticles and their photocatalytic activities for methyl orange degradation[J].Journal of Rare Earths,2011,29 (3):1225-229.
    [245]Yan Xiaoli, He Jing,Evans David G.,et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors[J].Applied Catalysis B:Environmental,2005,55 (4):243-252.
    [246]Liu Z.L., Cui Z. L., Zhang Z. K.The structural defects and UV-VIS spectral characterization of TiO2 particles doped in the lattice with Cr3+ cations[J].Materials Characterization,2005,54 (2):123-129.
    [247]Klenov Dmitrij O., Kryukova Galina N., Plyasova Lyudmila M. Localization of copper atoms in the structure of the ZnO catalyst for methanol synthesis [J].Journal of Materials Chemistry 1998,8 (7):1665-1669.
    [248]zhu M, chikyow T, ahmet P, et al. A high-resolution transmission electron microscopy investigation of the microstructure of TiO2 anatase film deposited on LaAlO3 and SrTiO3 substrates by laser ablation[J].Thin Solid Films,2003,441 (1-2):140-144.
    [249]Addamo Maurizio, Augugliaro Vincenzo, Paola Agatino Di, et al. Preparation, Characterization, and Photoactivity of Polycrystalline Nanostructured TiO2 Catalysts[J]. Journal of Physical Chemistry B,2004,108 (10):3303-3310.
    [250]Lin Jun, Yu Jimmy C. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air [J].Journal of Photochemistry and Photobiology A, 1998,116 (1):63-67.
    [251]Shi Jianwen, Zheng Jingtang, Wu Peng.Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles[J]. Journal of Hazardous Materials,2009,161 (1):416-422.
    [252]Yu Jiaguo, Yu Huogen, Cheng Bei, et al.Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment [J].Journal of Molecular Catalysis A:Chemical,2006,253 (1-2):112-118.
    [253]Tsai Chien-Cheng, Nian Jun-Nan, Teng Hsisheng.Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH [J]. Applied Surface Science,2006,253 (4):1898-1902.
    [254]Hayashi H., Torii K. Hydrothermal synthesis of titania photocatalyst under subcritical and supercritical water conditions[J].Journal of Materials Chemistry,2002,12 (4):3671-3676.
    [255]Mathur Shubhra, Vyas Rishi, Sachdev K., et al. XPS characterization of corrosion films formed on the crystalline, amorphous and nanocrystalline states of the alloy Ti60Ni40[J]. Journal of Non-Crystalline Solids,2011,357 (7):1632-1635.
    [256]Pawlak Dorota A., Ito Masahiko, Oku Masaoki, et al. Interpretation of XPS O (Is) in mixed oxides proved on mixed perovskite crystals[J].Journal of Physical Chemistry B,2002,106 (2):504-507.
    [257]Fang Jun, Bi Xinzhen, Si Dejun, et al. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides [J]. Applied Surface Science,2007,253 (22):8952-8961.
    [258]Uwamino Y., Ishizuka T. X-ray photoelectron spectroscopy of rare-earth compounds [J]. Journal of Electron Spectroscopy and Related Phenomena,1984,34(1):67-78.
    [259]Guevremont Jeffrey M., Bebie Joakim, Elsetinow Alicia R., et al. Reactivity of the (100) plane of pyrite in oxidizing gaseous and aqueous environments:effects of surface imperfections [J].Environmental Science & Technology,1998,32(23):3743-3748.
    [260]Ba-AbbadlMuneer M., Kadhuml Abdul Amir H., Mohamad Abu Bakar, et al. Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation [J].International Journal of Electrochemical Science, 2012,7:4871-4888.
    [261]Lei Xue-fei, Xue Xiang-xin,Yang He. Preparation of UV-visible light responsive photocatalyst from titania-bearing blast furnace slag modified with (NH4)2SO4 [J]. Transactions of Nonferrous Metals Society of China,2012,22 (7):1771-1777.
    [262]Xu An-wu,Gao Yuan, Liu Han-qin.The Preparation, Characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles [J].Journal of Catalysis,2002,207 (2):151-157.
    [263]Cong Ye, Tian Baozhu, Zhang Jinlong.lmproving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping [J]. Applied Catalysis B: Environmental,2011,101 (3-4):376-381.
    [264]Jiang Dong, Xu Yao, Wu Dong, et al.Visible-light responsive dye-modified TiO2 photocatalyst [J]. Journal of Solid State Chemistry,2008,181 (3):593-602.
    [265]Bensitel M., Saur O., Lavalley J. C., et al. An infrared study of sulfated zirconia [J].Materials Chemistry and Physics,1988,19 (1-2):147-156.
    [266]Song Chunfeng, Lu Mengkai, Yang Ping, et al. Structure and photoluminescence properties of sol-gel TiO2-SiO2 films [J]. Thin Solid films,2002,413 (1-2):155-159.
    [267]Hwang Dong Won, Lee Jae Sung, Li Wei, et al. Electronic band structure and photocatalytic activity of Ln2Ti207 (Ln= La, Pr, Nd) [J].Journal of Physical Chemistry B,2003,107 (21):4963-4970.
    [268]Xu Jingjing, Chen Mindong, Fu Degang, et al. Study on highly visible light active Bi-doped TiO2 composite hollow sphere[J].Applied Surface Science,2010,257 (17):227-231.
    [269]Huang Cuiying, You Wansheng, Dang Liqin, et al. Effect of Nd3+ doping on photocatalytic activity of TiO2 nanoparticles for water decomposition to hydrogen[J]. Chinese Journal of Catalysis,2006,27 (3):203-209.
    [270]Nakamura Ryuhei, Nakato Yoshihiro. Primary intermediates of oxygen photo- evolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements[J].Journal of American Chemical Society,2004,126 (4):1290-1298.
    [271]张庆祝,罗远建,李越湘,等.Zr和S共掺杂Ti02光催化剂的制备及性能[J].石油化工,2009,38(1):15-19.
    [272]Yang Jikai, Zhang Xintong, Wang Changhua, et al. Solar Photocatalytic activities of porous Nb-doped TiO2 microspheres prepared by ultrasonic spray pyrolysis [J].solid state sciences,2012, 14(1):139-144.
    [273]李旦振,郑宜,傅贤智,等.微波法制备SO42-/TiO2催化剂及其光催化氧化性能[J].物理化学学报,2001,17(3):270-272.
    [274]Sheppard L, Bak T, Nowotny J, et al. Effect of niobium on the structure of titanium dioxide thin films[J].Thin Solid Films,2006,510(1-2):119-124.
    [275]KrukM, Jaroniec M.Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chemistry of Materials,2001,13(10):3169-3183.
    [276]Sanjines R, Tang H, Berger H, et al. Electronic structure of anatase TiO2 oxide [J]. Journal of Applied Physics,1994,75(6):2945-2951.
    [277]Song Haiyan, Jiang Hongfu, Liu Ting, et al. Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+i(A=Li,Na and K)[J].Materials Research Bulletin, 2007,42(2):334-344.
    [278]Koninck M D, Manseau P, Marsan B.Preparation and characterization of Nb-doped TiO2 nanoparticles used as a conductive support for bifunctional CuCo2O4 electro- catalyst[J]. Journal of Electroanalytical Chemistry,2007,611(1/2):67-79.
    [279]刘涛,陈倩,赵小如.退火温度对Ti02及Nb掺杂Ti02薄膜的影响[J].西华大学学报:自然科学版,2011,30(4):31-34.
    [280]Brus L. Electronic wave Functions in semiconductor clusters:experiment and theory[J]. Journal of Physical Chemistry,1986,90(12):2555-2560.
    [281]Cui Ying, Du Hao, Wen Lishi. Origin of visible-light-induced photocatalytic properties of S-doped anatase TiO2 by first-principles investigation [J].Solid State Communications,2009, 149(15-16):634-637.
    [282]Tian Fenghui, Liu Chengbu, Zhao Wenwen, et al. Cationic S-doped anatase TiO2:A DFT study [J]. Journal of Computational Science & Engineering,2011,1(1):33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700